В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет. На заводе «Элемаш» в Электростали делают батарейки для ядерных реакторов, которые используют по всему миру.
Российские ученые создали атомную батарейку с зарядом на 20 лет
Российские ученые создали батарейку, работающую 100 лет | Российские учёные презентовали прототип атомной батареи, способной работать без подзарядки 80 лет. |
Компания Betavolt Technology создала атомную батарейку для смартфонов, способную работать 50 лет | Конструкция ядерной батареи BV100. Ядерный аккумулятор BV100 очень маленький — его габариты составляют 15x15x5 миллиметров. |
Батарейка для Севморпути будет работать на плутонии-238
Это улавливают окружающие капсулу фотоэлементы, способные выдерживать колоссальную жару. И на выходе уже сейчас, на стадии прототипа, обеспечивается мощность, способная заставить светиться электрическую лампочку на несколько свечей. Казалось бы, зачем так сложно? Ведь тепло, неизменный спутник процесса радиоактивного распада, способно давать ток напрямую. Примерно так рассуждали ученые прошлых поколений в Советском Союзе, когда конструировали и запускали в серийное производство радиоизотопный термоэлектрический генератор РИТЭГ. Он работал на бета-частицах стронция 90 по другому принципу — термоэлектрическому. Иначе говоря, как термопара: между холодным и разогретым от активного источника контактами возникало напряжение, током от которого и запитывали приборы. Для эвакуации последних РИТЭГов с автономных антарктических метеопостов в 2015 году, кстати, пришлось снаряжать полярную миссию.
С тех пор российские автоматические метеостанции в труднодоступных районах электричество получают от ветряков. Секрет в специальных термофотоэлементах, которые эффективно преобразуют свет ближнего диапазона инфракрасного спектра в электричество. В итоге энергии теряется меньше.
Учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку, которая в десять раз мощнее и вдвое дешевле существующих аналогов.
Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Применение такой батареи возможно лишь в специальных микроэлектронных устройствах, в том числе в приборах, работающих в критических условиях — в космосе, под водой или в горах, отмечают исследователи. Например, в качестве аварийного источника питания небольших датчиков.
Однако она дает представление о будущих применениях. В частности, Betavolt предполагает, что при соблюдении соответствующих норм атомные батарейки могут использоваться потребителями для питания таких устройств, как мобильные телефоны, предлагая альтернативу частой подзарядке обычных аккумуляторов. Батарея не генерирует внешнего излучения, не воспламеняется и не взрывается в ответ на раздражители. Эта особенность также открывает путь к потенциальному применению в медицине, например, в кардиостимуляторах и искусственных сердцах. Что касается сроков, то сказать сложно.
Однако известно, что в настоящее время BV100 находится на стадии опытной эксплуатации, а в планах — серийное производство. В будущем Betavolt также планирует разработать более мощные батареи, а также изучить возможность использования различных радиоактивных изотопов для различных целей.
В основе атомной батарейки Betavolt используется изотоп никель-63 и алмазные полупроводники. В процессе радиоактивного распада он превращается в изотоп медь-64. В природе изотопа никель-63 не существует.
Он получается в специальных ядерных реакторах, поэтому цена 1 г изотопа запредельная. Явно не для батареек смартфонов. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы.
День, когда появилась атомные батарейки с зарядом на 20 лет
Чем больше пар «изотоп — полупроводник» в батарейке, тем крупнее она в итоге оказывается. Маленькие батарейки, работающие со слабыми токами, могут помещаться, например, в кардиостимулятор — такой проект действительно существовал в США. А вот чтобы собрать батарейку, способную питать условный компьютер, уже нужна конструкция весом как минимум в несколько килограммов. Примерно как десять смартфонов, сложенных друг на друга. А ещё защитный корпус с толщиной стенки около сантиметра». Если используемый изотоп более мощный и выдаёт больше энергии, с ним можно сделать более компактную батарейку. Скажем, элементы питания для тех же кардиостимуляторов делались на основе более активного плутония и потому занимали очень мало места. Но и защита у мощных изотопов должна быть сложнее, а ещё интенсивное излучение изнашивает элементы батарейки. А это надёжно? Защитный корпус батарейки проектируют с учётом условий эксплуатации. А ещё учитывают, какой именно изотоп используется внутри.
Например, тритий даёт довольно слабое излучение, поэтому делать огромный корпус с толстыми стенками для него не нужно. А вот для плутония нужна куда более серьёзная защита: его рекомендуют применять только там, где минимален риск потенциальной аварии. А для гипотетического бытового применения можно использовать изотопы с низкими энергиями, например тритий или никель-63. Защитные корпуса для них могут быть тоньше и меньше, ведь глубина проникновения излучения очень низкая. Даже если человек случайно возьмёт в руки никель-63, ему будет достаточно просто помыть руки, чтобы избежать негативного влияния». Корпус разрабатывают так, чтобы он мог выдерживать большие нагрузки: перепады давления вплоть до полного вакуума, повышенные и пониженные температуры, удары и катаклизмы. Ведь существующие сейчас прототипы собираются использовать в довольно суровых условиях. Даже если с источником питания что-то случится — контур закрытый, и радиация не выйдет наружу. А ещё современные батарейки оснащают системами контроля обстановки, в том числе мониторингом радиационного фона и геолокацией. Так можно следить за работой устройства, даже если оно находится в космосе или на дне океана.
Для чего нужны такие батарейки Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа. Для трития это 12 лет, а для никеля-63 — около 100. И даже после этого батарейка не перестанет работать совсем, просто её мощность упадёт вдвое. На протяжении всего срока службы её не надо подзаряжать или заменять источники питания, она полностью автономна. Реактор для кофеварки Поэтому ядерные батарейки можно использовать для питания критичных узлов. Например, на космических или арктических станциях. Обычно ядерные батарейки применяют как дополнительный источник питания вместе с химическими и солнечными батареями. Дело в том, что в производстве ядерная батарейка очень дорогая — использовать её как основной источник электричества невыгодно, хотя характеристики это позволяют. Впрочем, свою сферу применения такие элементы питания всё-таки находят. Сейчас привлекают финансирование для создания малых серий тритиевых батареек, которые отправят в космос для питания важных технологических узлов.
Химические батарейки, которые также называют гальваническими элементами , обладают высокой эффективностью отношением мощности создаваемого тока к массе , но сравнительно быстро разряжаются, и это заметно ограничивает их автономную работу. Конечно, при определенной конструкции химических элементов их можно перезаряжать тогда их называют аккумуляторами , однако даже в этом случае батарейку нужно как-то соединить с зарядным устройством, что иногда не очень удобно — например, если она обеспечивает питание кардиостимулятора. Очевидно, что остановить его работу, чтобы заменить элемент питания, невозможно. К счастью, электрическую энергию можно получать не только в химических реакциях. Около шестидесяти лет назад, в 1953 году, Пол Раппапорт заметил , что для получения электроэнергии можно использовать бета-распад радиоактивных элементов. В ходе этого распада ядра элементов испускают бета-частицы электроны или позитроны , которые могут ионизировать вещество электродов и создать на них разность напряжений. Основанные на этом принципе элементы назвали бета-вольтическими. Главным преимуществом таких элементов перед гальваническими выступает их долговечность — период полураспада некоторых радиоактивных изотопов может составлять десятки лет, следовательно, мощность элемента будет оставаться постоянной в течение всего этого периода. К сожалению, эффективность бета-вольтических генераторов сильно уступает химическим.
Тем не менее, радиоактивные генераторы все-таки использовали в 70-х годах для питания кардиостимулятров, однако впоследствии их вытеснили литий-ионные аккумуляторы, дешевизна изготовления которых перевесила долговечность бета-вольтических элементов.
Теплопроводность в сердцевине изделия отсутствует, и нужно добиться, чтобы как можно больше энергии альфа-распада переходило в излучение, — объясняет Петр Борисюк. Но так в теории — чтобы проверить это, вскоре мы проведем натурный эксперимент». Отсюда закономерный вопрос: поскольку долговременный источник работает фактически автономно в безлюдной местности, как его контролировать? То есть для учета состояния ядерной батареи собираемся задействовать весь набор современных телекоммуникационных систем. К тому же монтировать их предлагаем сразу в антивандальных контейнерах, форма и габариты которых определятся по результатам эксплуатационных испытаний. По истечении срока службы батарею будут утилизировать, а ядерный компонент изымать и захоранивать в рамках принятой в «Росатоме» программы», — добавляет Петр Борисюк. Первая тройка Ядерная батарейка вошла в Единый отраслевой тематический план научно-исследовательских и опытно-конструкторских работ «Росатома».
Через несколько лет ученые рассчитывают предложить заказчику линейку изделий с разным сроком службы и мощностью вплоть до нескольких сотен ваттов. Это и автономные метеопосты, и створные навигационные знаки, и гидрографические станции, и маяки, и даже космические спутники, — уверяет Петр Борисюк. Пока речь идет о создании трех автономных источников питания, которыми можно будет запитать, например, метеостанции для передачи информации о погоде на Большую землю посредством телеметрии. На этом этапе мы хотим добиться пятиваттной мощности».
Путём многочисленных экспериментов ужалось доказать, что батарейка безопасна и не генерирует внешнего излучения. Таким образом никакой радиации нет, а значит батарейка подойдёт для повседневного использования. Основные компоненты ядерной батареи состоят из преобразователя, подложки, источника никеля-63 и защитного слоя. Она имеет модульную структуру, где каждый модуль состоит, по меньшей мере, из двух преобразователей и одного слоя никеля-63. В настоящее время батарея проходит стадию пилотных испытаний, а китайская компания планирует уже совсем скоро запустить её в серийное производство.
Сложно сказать, насколько данный продукт обладает высокой масштабируемостью. Пожалуй, разумная цена и возможность выпускать миллионы батарей в год и определят успех данной технологии. Пока ни одна разработка, которая ранее казалась перспективной, так и не нашла путь на массовый рынок. Напомним, атомные батареи, или ядерные батареи, представляют собой устройства, использующие радиоактивные изотопы для генерации электричества. Они отличаются от обычных батарей тем, что могут работать в течение длительного времени без необходимости замены или подзарядки.
Российские ученые создали атомную батарейку с зарядом на 20 лет
Российские учёные презентовали прототип атомной батареи, способной работать без подзарядки 80 лет. Ученые НИТУ «МИСиС» разработали атомную батарейку с повышенной в десять раз мощностью. Ядерные батарейки – это источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электричество. Физики оптимизировали толщину слоев ядерной батарейки, использующей для производства электрической энергии бета-распад изотопа никеля-63.
Российские ученые оценили созданную в Китае ядерную батарейку
Гамулятор • Новый вариант атомной батарейки или "РИТЭГ второго поколения" (с) | Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет. |
Атомная батарейка в современном мире | О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. |
В Красноярском крае разработана атомная батарейка, работающая 50 лет | В России разработана атомная батарейка. Эта батарейка будет полувечной: новости из мира энергетики будущего. |
Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет
Атомная батарейка состоит всего из двух ключевых компонентов: источника бета-излучения и полупроводникового преобразователя. Ученые НИЯУ МИФИ вплотную подошли к созданию ядерной батарейки принципиально нового типа. Такие батареи могут стоить $100 за кВт·ч, что вдвое дешевле самых простых литий-ионных версий. Ученые НИТУ «МИСиС» представили инновационный автономный источник питания — компактную атомную батарейку, которая может работать до 20 лет. Российские ученые разработали прототип ядерной батарейки мощностью до 100Вт, которая может работать с помощью бета-распада никеля-63. Конструкция ядерной батареи BV100. Ядерный аккумулятор BV100 очень маленький — его габариты составляют 15x15x5 миллиметров.
Батарейка для Севморпути будет работать на плутонии-238
Результаты исследования были опубликованы в международном научном журнале Applied Radiation and Isotopes. Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах, а также в труднодоступных или абсолютно не доступных местах: в космосе, под водой, в высокогорных районах.
Источники питания мощностью 200 нановатт могут использоваться в датчиках различных аэрокосмических приборов, микросхем и т. Ранее канал «Наука» рассказал об изотопе урана.
На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc.
И - в космической индустрии, где важен каждый грамм веса. В отличие от литийионных аккумуляторов, атомная батарейка в тридцать раз компактнее и совершенно безвредна для человека. Первый рабочий образец чудо-батарейки планируют представить на всеобщее обозрение в течение полугода.
По мнению Betavolt, разработку можно будет использовать в мобильных телефонах их никогда не придётся заряжать! Ядерная батарейка уже проходит испытания и в будущем будет готова к серийному выпуску и использованию в коммерческих продуктах. Правда, конкретные сроки, как и стоимость, пока не озвучены.
Вечный заряд: российские ученые создают батарейку, способную работать десятилетиями
Главная/Новости/Китай представил ядерную батарейку размером с монету, которой хватит на 50 лет. Петр Борисюк занимается разработкой атомной батарейки, способной работать без подзарядки порядка 80 лет. Такая атомная батарейка будет экологически безопасна и безвредна для человека за счёт производимого мягкого бета-излучения (и отсутствия опасной гаммы). Учитывая, что батарейка которая указана в новости будет в продаже только в конце этого года, скорее у вас была другая батарейка, и может не ядерная, хз.
Российские ученые создали атомную батарейку с зарядом на 20 лет
В итоге происходит его положительный заряд. В это время коллектор заряжается отрицательно. После чего появляется разность потенциалов и образуется электрический ток. По сути наш атомный элемент питания представляет из себя слоистый пирог. Промеж 200-т алмазных полупроводников стоят 200 источников энергии, выполненных из никеля 63. Высота источника энергии составляет около 4 мм.
Его вес равен 250 миллиграмм. Маленький размер — это большой плюс для Российской атомной батарейки. Сложно отыскать нужные габариты. Большая толщина изотопа не даст появившимся в нем электронам выйти. Маленькая толщина не выгодна, так как снижается количество бета распадов в единицу времени.
То же самое и с толщиной полупроводника. Лучше всего батарейка функционирует при толщине изотопа около 2-х микрон.
Источником энергии для уникальных батареек послужил изотоп никеля-63. Сообщается, что излучение данного элемента не представляет опасности для живых организмов, его период полураспада длится приблизительно сто лет. Этой энергии должно хватить для автономного питания кардиостимулятора в течение многих лет.
Но это очень-очень дорого и сложно. Потребуется много радиоактивного материала, батарейки начнут вскрывать, а это уже вопросы безопасности производства, использования и переработки», — сообщил в разговоре с RT Сергей Леготин. В настоящий момент разработка МИСиС проходит процедуру международного патентования, а сам вуз признан зарубежными экспертами «одним из ключевых участников мирового рынка бетавольтаических батарей», отмечает пресс-служба университета. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи. Хочешь всегда знать и никогда не пропускать лучшие новости о развитии России? Подпишись , и у тебя всегда будет повод для гордости за Россию.
Он включает комбинацию катодного материала без тяжелых металлов и безопасного жидкого электролита с высокой температурой горения. Специалисты уже подсчитали, что эти материалы могут сделать аккумуляторы дешевле существующих литий-ионных и при этом будут иметь более высокие характеристики скорости зарядки и энергетической плотности, а также будут менее огнеопасными. Авторы разработки считают, что у нее есть потенциал для внедрения в отрасль электромобилей. Кроме того, тесты показали, что батарея способна прослужить достаточно долго, чтобы ее можно было использовать в интеллектуальных электросетях и новой энергетической инфраструктуре. Для будущего производства аккумуляторов IBM уже заключила коммерческое соглашение с Mercedes-Benz, поставщиком электролита Central Glass и производителем батарей Sidus. Полимеры В 2017 году стартап Ionic Materials презентовал полимерный аккумулятор, который в перспективе сможет заменить литий-ионные. Компания заявила, что полимерные литий-металлические аккумуляторы будут безопаснее, долговечнее и экономически выгоднее, так как процесс их производства похож на производство пластиковой упаковки. Аккумулятор Ionic Materials Фото: ionicmaterials. Прототип, как заявляет производитель, выдерживает до 400 циклов заряда-разряда. Компания работает над тем, чтобы увеличить этот показатель втрое. Полимер для аккумуляторов получили из алюминия и других распространенных материалов. На цинке EnZinc, стартап по производству цинковых батарей, заявил в 2021 году, что нашел способ для замены лития на нетоксичный и дешевый цинк в аккумуляторах. До этого на рынке существовали только неперезаряжаемые цинковые батареи. Они выдерживают несколько тысяч циклов зарядки и разрядки. Ведутся испытания образцов. Их можно будет масштабировать для мобильных телефонов и до транспортных систем, а также для нужд электроэнергетики. Разработка имеет специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный центр, работающий на переработанных ядерных отходах углерода-14. Бета-излучение изотопов преобразуется в электрический ток. Испытания батарейки показали, что радиационный фон остается в норме, а сама она не выделяет углекислый газ.