Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Там проектами, связанными с искусственным интеллектом, стали активно интересоваться инвесторы — крупные раунды подняли медицинские компании WoundMetrics, Genuity Science, Tempus, AI Therapeutics. Диагнозы уже ставит искусственный интеллект, мгновенно анализируя все обследования пациента. Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы.
Нейронные сети для пациентов
- Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом
- Последние новости про современные технологии в медицине
- Новости партнеров
- Матрица зрелости ИИ-сервисов
- Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
ИИ в частных клиниках: как помогает врачам и пациентам
Решение для операционных Интегрированные операционные MVS помогут тратить меньше времени на оборудование и сконцентрироваться на самом важном — заботе о пациентах. Комплексное решение позволит внедрять передовые технологии и повышать эффективность операционных; Решение для клиник Решение на основе MVS Platform позволит сохранить бесценный хирургический опыт и создать центральный архив операций, а интеграция с МИС и PACS объединит оперблок в единое информационное пространство клиники, что обеспечит больницу необходимыми инструментами для качественного менеджмента; Решение для сети клиник Большие медицинские организации с крупной филиальной сетью требуют особой цифровой инфраструктуры, чтобы собирать большие данные, безопасно их хранить и распространять. Цифровые данные из операционных отличаются большим объемом и требуют защиты. Совокупное использование сервисов MVS Platform и МИС обеспечит администрацию клиники всеми необходимыми инструментами для качественного менеджмента.
Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов. У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии. Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта. Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте. Но обычно нейросети на это неспособны.
В 2023 г. В целом, к сентябрю 2023 г. Почти половина из них были успешными.
Систему поддержки принятия врачебных решений для диагностики рака нижних отделов желудочно-кишечного тракта ЖКТ на базе алгоритмов искусственного интеллекта Polyptron при поддержке Фонда содействия инновациям разработали специалисты компании «ЭВА Лаб» из Челябинской области. Как сообщил ИА Регнум директор по продукту Евгений Алханов, система с помощью ИИ помогает врачам в режиме реального времени выявлять ранние признаки рака кишечника. ИИ распознает аномалии прямо во время эндоскопического исследования и информирует об этом врача. Сейчас пилотный проект реализуется в больницах Челябинска, Екатеринбурга и Москвы. Только в челябинском областном онкоцентре проведено уже около 2,5 тыс. Как сообщало ИА Регнум, национальный проект «Цифровая экономика», реализуемый по решению президента Владимира Путина, призван содействовать ускоренному внедрению цифровых технологий в различных сферах жизни. Это повысит качество жизни людей, создаст условия для высокотехнологичного бизнеса, повысит конкурентоспособность страны на глобальном рынке и укрепит национальную безопасность.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек | Борис Зингерман — директор Ассоциации разработчиков и пользователей искусственного интеллекта в медицине и его экспертиза в этом вопросе особенна ценна. |
Машины лечат людей: как нейросети используют в российской медицине | Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. |
Искусственный интеллект в медицине | Искусственный интеллект в медицине. |
Искусственный интеллект в медицине: применение и перспективы | Всемирная организация здравоохранения (ВОЗ) призывает в вопросах медицины относиться к «познаниям» созданных искусственным интеллектом больших языковых моделей «с осторожностью». |
MIBS + HealthCareBusinessNews - Технологии на страже здоровья | Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что. |
ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране
Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения. Искусственный интеллект или ИИ относится к моделированию человеческого интеллекта в машинах, предназначенных для того, чтобы мыслить и учиться подобно людям. Искусственный интеллект приносит значительные инновации в медицину в России. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных. Будущее искусственного интеллекта в здравоохранении безоблачно и имеет огромный потенциал, чтобы революционизировать способы оказания медицинской помощи.
Конференция, выставка решений
- Похожие материалы
- Последние новости про современные технологии в медицине
- Диагностика заболеваний
- «Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»
Что хотите найти?
Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Рассматриваем применение ИИ в здравоохранении на примере интеллектуальной системы «Джейн», которая помогает врачам ставить верные диагнозы.
Применение искусственного интеллекта в медицине
В государственных медучреждениях создано около 1 млн рабочих мест , подключенных к МИС. Электронные подписи есть у 522 тыс. Доступ к медицинским данным дает возможность создавать цифровые сервисы. Самый популярный в настоящий момент — сервис удаленной записи на прием к врачу через портал госуслуг.
Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии.
Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства.
Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов. Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие. Автоматизация процессов Дисбаланс и дефицит медицинских кадров высшего и среднего звена был во всем мире еще до вспышки коронавируса.
По словам Андрея Наташкина, основателя и СЕО Mirey Robotics, сегодня в рамках общей хирургии уже выделилось отдельное направление — телехирургия.
Технология позволяет хирургу управлять роботизированным манипулятором, который способен совершать сверхточные движения. Но здесь есть две опасности. Первая — разрыв интернет—соединения, вторая — это кибератаки. А во время операционного вмешательства эти факторы, которые ведут к потере управления процессом, могут стать фатальными для пациента".
По словам эксперта, в связи с этим сейчас на первый план выходит вопрос обеспечения безопасных условий во время операций с использованием роботов, и недавно российские учёные представили своё решение данной проблемы: в условиях возникновения чрезвычайной ситуации манипулятор сможет автономно завершить оперативное вмешательство, без контроля со стороны хирурга. Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире. По данным сайта Da Vinci, с 2007 по 2022 год в России американскими роботами—хирургами было выполнено около 28 тыс. Однако в ближайшее время в больницах страны появятся первые роботы—хирурги отечественного производства, разработанные учёными Института конструкторско—технологической информатики РАН.
Российские роботы—хирурги смогут делать операции в брюшной полости, в области гинекологии и урологии, а также в сфере нейро— и кардиохирургии.
Но может ли здесь помочь искусственный интеллект? А это зависит от того, как настроен этот инструмент, на какой результат он нацелен. И не забываем, что инструмент — просто набор алгоритмов, зависящий от объема и качества данных «на входе», настройки, обучения и целеполагания. В некоторой степени он лишен моральных критериев. Они задаются человеком. Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации.
Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов. Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ. Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать.
И здесь возникает вызов — как научиться делать это быстро. Итак, для корректной работы ИИ нужны «чистые» машиночитаемые данные, подготовленные и размеченные высококвалифицированными специалистами выборки данных для обучения нейросетей, оцифрованные порядки оказания медицинской помощи, клинические рекомендации и стандарты оказания медицинской помощи. При смене методологии медицинские информационные системы тоже начинают наполняться новыми данными только с появлением утвержденных изменений в методологии диагностики, лечения, наблюдения пациента и т. Симбиоз или противостояние? Если мы смотрим на искусственный интеллект глазами разработчика, то видим набор алгоритмов и математических методов, которые могут обучаться на данных, анализировать изображения, искать неочевидные связи и сходства в огромных массивах данных, обнаруживать различия там, где естественный интеллект может просто их не заметить.
Будущее здравоохранения с искусственным интеллектом
Влияние Искусственного интеллекта в области медицины увеличивается с каждым годом. Технологии на базе искусственного интеллекта становятся все более востребованными в медицине и здравоохранении. Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Внедрение искусственного интеллекта (ИИ) в систему мирового здравоохранения во многом обязано американским IT-гигантам, которые с начала XXI в. инвестировали в эту сферу миллиарды. В 2024 году влияние технологий искусственного интеллекта (ИИ) на здравоохранение будет более глубоким и масштабным, чем когда-либо прежде.
Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме
В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии.