Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики. Телескоп Event Horizon (EHT) добавил большее количество обсерваторий в глобальную сеть радиотелескопов, и первое изображение черной дыры нашей галактики может быть получено меньше, чем через год. Next Generation Event Horizon Telescope. Event Horizon Telescope (EHT). «Впервые мы получили поляриметрические изображения в масштабе горизонта событий черной дыры в центре нашей Галактики, Sgr A*», — говорят исследователи.
Groundbreaking Milky Way Results From the Event Horizon Telescope Collaboration – Watch Live
Заснять космический объект удалось с помощью глобальной сети радио- и миллиметровых обсерваторий «Телескоп горизонта событий». Материалы по теме:.
Наблюдения 2009-2013 годов содержат гораздо меньше данных, чем измерения, проведенные в 2017 году, поэтому создать из них изображение было невозможно. Диаметр тени черной дыры по-прежнему соответствует предсказаниям общей теории относительности Эйнштейна для черной дыры с массой 6,5 миллиарда солнечных. Но несмотря на то, что диаметр кольца объекта оставался постоянным, данные показали один сюрприз: колебания кольца. Поскольку поток материи турбулентен, кажется, что полумесяц колеблется со временем.
Демонстрация происходила на пресс-конференциях, проведённых одновременно в шести городах мира.
Астрономический объект представляет собой сверхмассивное космическое тело диаметром 10 млрд км, не излучает и не отражает свет. Снимок создан на суперкомпьютере после обработки данных с восьми телескопов по всему миру. Искажений изображения удалось избежать в том числе благодаря наблюдениям и расчётам российских учёных. Астрофизики заявляют, что полученные результаты в очередной раз подтверждают общую теорию относительности Альберта Эйнштейна. За свою работу исследователи могут получить Нобелевскую премию, считают эксперты. Загадочное космическое тело диаметром 10 млрд км затягивает материю, не излучает и не отражает свет.
Увидеть можно лишь тень объекта — круглое чёрное пятно в облаке светящегося газа. Проект EVT был создан специально для исследования чёрных дыр. Для совместной работы объединились астрофизики из почти 40 стран.
Тем не менее вид аккреционных дисков двух чёрных дыр описывается выражениями, предсказанными в рамках Общей теории относительности. Люмине и его «компьютерная чёрная дыра», 1978.
Задолго до того, как у астрофизиков появились инструментальные возможности для фотографирования таких чёрных дыр, их изображения пытались получить при помощи компьютерного моделирования. Один из таких рисунков на фото справа — первый результат компьютерной симуляции аккреционного диска, который создал в 1978 году французский астроном Жан-Пьер Люмине. Визуализацию он создавал, уже имея в виду объект в центре галактики M87, который сфотографируют только через сорок лет. Кроме доступных на тот момент вычислительных мощностей, за неимением компьютерной рисовалки, ему пришлось использовать самодельную «аналоговую» технику, нанося на бумагу тушью точки с плотностью, соответствующей компьютерному расчёту. Тогда это, по-видимому, воспринималось как научная игрушка без особых приложений: визуализация таких объектов вошла в моду только через десять лет, и в конце 1980-х годов появились первые «истинно-компьютерные» изображения аккреционных дисков.
Оба снимка чёрных дыр созданы на основе массива данных радиотелескопов, собранных в 2017 году. Собрать паззл из снимков «нашей» чёрной дыры оказалось значительно труднее. Газ вблизи чёрной дыры движется со скоростью, близкой к скорости света.
Телескоп Event Horizon будет зондировать тайны пространства
Алгоритм визуализации сверхмассивной чёрной дыры по данным, полученным радиотелескопами, разработала Кэтрин Боуман. В 2020 году международное сотрудничество над проектом удостоилось медали Альберта Эйнштейна.
Данные послали в Массачусетский Технологический институт и Радиоастрономический институт Макса Планка, чтобы получить два независимых результата. В апреле 2019 года человечеству показали первую живую фотографию черной дыры, которая находится в 55 млн световых лет от нас. Первая презентация изображения черной дыры в галактике M87.
Фото: www. Messier 87 — более чистый объект. В фоновом режиме ТГС наблюдает и за ними. Дальше — больше.
На это делаются большие ставки, ведь живого видео никто никогда не делал. Как, впрочем, и фотографий черной дыры до недавнего времени. Вообще работы у Телескопа Горизонта Событий хватит на несколько лет вперед. В октябре группа ученых из Университета Огайо открыла особый вид черных дыр — сверхмалые, масса которых всего в 3,3 раза больше Солнца.
А ведь раньше все были убеждены, что минимальная масса черной дыры не может быть меньше пяти солнц, потому что иначе образовалась бы нейтронная звезда. Предстоит снова скорректировать наши представления о мире!
Телескоп Event Horizon — это совместная работа, которая использует радиотелескопы по всему миру для формирования комбинированного массива размером с Землю, достаточно большого, чтобы получить изображение черной дыры. Свет создается колеблющимися электромагнитными волнами, и если он колеблется в предпочтительном направлении, его называют поляризованным. Именно так работают 3D-очки — две линзы имеют разную поляризацию, которая пропускает только часть света, поэтому наш мозг может создать в голове 3D-изображение. Поляризованный свет помогает уменьшить блики от ярких источников, что позволило команде получить более четкое представление о крае черной дыры и составить карту линий магнитного поля, присутствующих там.
Диффузное сияние на изображении горизонта событий М87 говорит нам не только о черной дыре, но и о газе, окружающем черную дыру. И при помощи нового алгоритма визуализации международной команде астрономов удалось отделить от изображения картинку фотонного кольца. Это исследование — пример современного подхода к астрономическим наблюдениям. Сейчас обсерватории собирают такое количество данных, что в них зачастую гораздо больше информации, чем кажется.
По мере изучения методов их обработки ученые вскрывают все новые пласты информации, скрытые под поверхностью. Международная команда физиков предприняла первую попытку понять, что такое черные дыры, что внутри них, откуда они берутся и что происходит на горизонте событий с помощью двух новейших технологий — квантовых вычислений и машинного обучения. Ученые считают, что ответы на эти вопросы могут быть получены при проверке голографического принципа, выдвинутого физиками в конце прошлого века. Также по теме.
Ученые сфотографировали тень космического монстра в сердце Млечного Пути
Event Horizon Telescope: истории из жизни, советы, новости, юмор и картинки — Все посты | Пикабу | Консорциум Event Horizon Telescope (EHT) с 2006 года работал над тем, чтобы получить снимок горизонта событий сверхмассивной черной дыры. |
Первый снимок чёрной дыры в центре нашей Галактики | Event Horizon Telescope Collaboration Stub. |
Астрономы показали первое в истории изображение черной дыры | Мини-печень вместо большой. Крупнейшая цифровая камера. Новости QWERTY №295. |
Телескоп горизонта событий заметил колебание тени черной дыры | EHT is a millimeter-wavelength very-long-baseline interferometry (VLBI) experiment with unprecedented micro-arcsecond angular resolution using an array of millimeter telescopes that spans the Earth. |
Телескоп горизонта событий заметил колебание тени черной дыры | Именно в этот день состоялась конференция ученых проекта Event Horizon Telescope (EHT), на которой были обнародованы изображения сверхмассивной черной дыры Стрелец А*, которая находится в самом центре нашей галактики. |
Первое в истории изображение черной дыры уже стало мемом
Кстати, «Телескоп Горизонта Событий» будет не единственным участником операции. Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530. Они также использовали данные 2017 года, полученные с помощью глобальной сети телескопов EHT (Телескоп горизонта событий). Именно эта идея и легла в основу проекта «Телескоп горизонта событий», объединившего свыше 300 учёных из шести десятков научных учреждений по всему миру. Команда телескопа горизонта событий показала первое изображение черной дыры в центре Млечного Пути. 10 апреля 2019 года международная группа астрономов должна представить первые результаты работы Телескопа горизонта событий (Event Horizon Telescope).
Event Horizon Telescope captures images of NRAO 530 quasar
Подобная возможность дала бы человечеству материал для изучения общей теории относительности в режиме сильного поля, прояснила бы научное положение горизонта событий и фундаментальную физику черных дыр, самых загадочных объектов во Вселенной, чья мистическая природа давно будоражит умы мечтателей и исследователей. В космических масштабах черные дыры считаются объектами не очень большими, но находятся они от нас в миллионах световых лет. Самым большим объектом в нашем распоряжении пока остается собственная планета, поэтому работать пришлось с ней. Ученые объединили восемь радиотелескопов, расположенных в разных местах, от Северной Америки до Испании, в один большой Телескоп Горизонта Событий Event Horizon Telescope. Всего в создании этого грандиозного проекта участвовало около 200 человек из 13 университетов и исследовательских центров: Национальной Астрономической Обсерватории Японии, Массачусетского Технологического института, Радиоастрономического института Макса Планка в Бонне и другие. Изображение, сделанное обсерваторией NASA. Эллипсами отмечены световые эха.
Фото: NASA, www. Расположение телескопов принципиально, потому что облака могут помешать приему сигналов. Так у нас появился гигантский механизм, который может из Парижа разглядеть блоху на загривке дворняги во Владивостоке. Его четкость в 2000 раз выше, чем на снимках, сделанных космическим телескопом «Хаббл». Но для чего это нам? Целью проекта стали не какие-то условные черные дыры, а два вполне конкретных объекта: черная дыра в центре эллиптической галактики М87 и Sgr A в центре Млечного Пути.
Так у нас появился гигантский механизм, который может из Парижа разглядеть блоху на загривке дворняги во Владивостоке. Его четкость в 2000 раз выше, чем на снимках, сделанных космическим телескопом «Хаббл». Но для чего это нам? Целью проекта стали не какие-то условные черные дыры, а два вполне конкретных объекта: черная дыра в центре эллиптической галактики М87 и Sgr A в центре Млечного Пути. Именно фотография первой из них потрясла мир в апреле 2019 года, когда люди по всему миру читали в новостях одно и то же: «Мир получил первый в истории снимок черной дыры».
И снимок этот сделан Телескопом Горизонта Событий. Собрать пазл без миллиона деталей Правда, наша «подзорная труба» не идеальна и дает картинку только из тех мест, где расположены части Телескопа Горизонта Событий, а он не покрывает всю планету. Этот недостаток отчасти компенсирует вращение Земли: в момент наблюдения те кусочки, которые видят радиотелескопы, тоже движутся, и в результате получаются не точки наблюдения, а линии. Основываясь на данных с таким количеством белых пятен, трудно сделать однозначные выводы, поэтому был разработан специальный алгоритм, который может достроить изображение, — CHIRP Continuous High-resolution Image Reconstruction using Patch priors. Алгоритм, разработанный ученой Кэти Боуман Katie Bouman , собирает изображение из маленьких частей, как пазл, но пользуется ради научной достоверности тремя наборами «подсказок»: из смоделированных черных дыр, астрономических изображений и повседневных фотографий, как если бы вы дали одинаковое техническое задание трем разным иллюстраторам, а потом сравнили результат.
Как на смоделированной черной дыре, так и на других возможных картинках алгоритм получает идентичные изображения. Скриншот из «Твиттера» Массачусетского технологического института. В 2018 году было записано 3500 ТБ данных, большая часть которых посвящена одному объекту — черной дыре из галактики M87.
Еще около десяти лет тому назад ученые не знали о планетах, расположенных за пределами Солнечной системы, фактически ничего. Но уже сегодня известны семь планет размером с Землю, и три из них вполне могут находиться в обитаемой зоне. Большим скачком вперед стал телескоп «Кеплер», с помощью которого удалось обнаружить около пяти тысяч планет.
Впрочем, он не дает возможность подробно изучить многие планеты, которые напоминают Землю по размеру. Они вполне могут иметь атмосферу и даже жизнь, но распознать их поможет только телескоп «Джеймс Уэбб». Ученые смогут использовать встроенные в него инфракрасные спектрометры, которые помогут в обнаружении возможной жизни на планетах из потенциально обитаемой зоны ближайших звездных систем. Около 10 лет назад ученые мало что знали о планетах, расположенных за пределами Солнечной системы, но вскоре смогут проанализировать их на наличие жизни Look Как зарождаются новые звезды в нашем Млечном пути «Хаббл» не может рассмотреть то, что находится за облаками «Хаббл» способен делать достаточно интересные снимки как в видимом свете, так и в инфракрасном. Впрочем, известно, что звезды зарождаются в массивных облаках пыли и газа, которые называют туманностями. Данный телескоп вполне может увидеть, как они выглядят снаружи, но их внутренняя часть остается недостаточно подробной даже в инфракрасном спектре.
Телескоп «Джеймс Уэбб» отличается повышенной эффективностью именно в этом частотном диапазоне, поэтому должен помочь получить еще более детализированные снимки подобных туманностей.
Он обнаружил, что мощные магнитные поля определенным образом закручивают волны света и заставляют его поляризоваться. Оказалось, что магнитные поля действительно играют важную роль в движении потоков материи в окрестностях горизонта событий. Декстер и его коллеги надеются, что дальнейшее изучение данных EHT поможет уточнить, как именно магнитные поля влияют на формирование выбросов черных дыр. Понимание этого критически важно для оценки влияния сверхмассивных черных дыр на рост галактик, в том числе и Млечного Пути, заключают ученые. Заметили ошибку?
Первое изображение чёрной дыры в центре Млечного пути
Размером объект — примерно как орбита Меркурия. На нашем небе примерно такого размера, как если бы мы пытались разглядеть бублик на Луне невооруженным глазом. Фото очень похоже на фото первой черной дыры. Но новая черная дыра меньше в несколько тысяч раз, так что заметить ее было гораздо сложнее. Она также находится в совершенно других условиях. Газ вокруг нее вращается в десятки раз быстрее. Но фото подтверждает, что физические явления, наблюдаемые на горизонте событий, становятся первоочередными, и именно от них зависит «внешность» черной дыры.
М87 находится на расстоянии 53 миллионов световых лет от нашей планеты, являясь домом для, по меньшей мере, 1 триллиона звезд. Черная дыра М87.
Снимок представлен в 2019 году Более того, черная дыра M87 — одна из крупнейших во Вселенной. Ее масса превышает солнечную в 6,5 миллиардов раз и поглощает огромное количество материи, выбрасывая энергию в космическое пространство. Подробнее о черной дыре в галактике Messier 87, мы рассказывали ранее. По мнению астрономов, поведение черной дыры в Млечном Пути для многих галактик является нормой. Сравнить полученные наблюдения можно с попыткой сфотографировать щенка, который гоняется за собственным хвостом, с помощью камеры с медленной выдержкой, — объясняют исследователи. Напомним, что аккреационный диск черной дыры представляет собой большую массу вещества, которое разогревается до огромных температур и вращается вокруг галактического центра. Это интересно: Что скрывают звезды, вращающиеся вокруг сверхмассивной черной дыры в центре нашей галактики? Телескоп горизонта событий Телескоп горизонта событий EHT улавливает излучение, испускаемое частицами внутри аккреционного диска черной дыры: пятнистое гало на полученных изображениях показывает свет, искривляемый мощной гравитацией черной дыры.
Event Horizon Telescope работает как единое целое Event Horizon Telescope — это глобальный радиоинтерферометр со сверхдлинной базой.
Эта сеть состоит из восьми связанных между собой обсерваторий в разных частях Земли, которые изучают одни и те же космические объекты. На новом изображении видно фотонное кольцо, состоящее из ряда все более ярких подколец, формирующих целую картину. Его не было видно на изображении 2019 года, однако ученые знали, что они есть, так как это предполагала теория Эйнштейна.
The aim of the project is to combine the real world and the digital, using street art. We want to show that the same street art equally exists in different forms. The collection is divided into three gradations, depending on the rarity.
Ученые сфотографировали тень космического монстра в сердце Млечного Пути
Эти объекты хорошо изучены в ходе реализации международного проекта «Телескоп горизонта событий» и по данным наблюдений на других интерферометрах со сверхдлинными базами. Телескоп горизонта событий EHT улавливает излучение, испускаемое частицами внутри аккреционного диска черной дыры: пятнистое гало на полученных изображениях показывает свет, искривляемый мощной гравитацией черной дыры. 10 апреля 2019 года международная группа астрономов должна представить первые результаты работы Телескопа горизонта событий (Event Horizon Telescope). Команда телескопа горизонта событий показала первое изображение черной дыры в центре Млечного Пути. Всего в проекте Event Horizon Telescope задействовано восемь обсерваторий, в частности, радиотелескоп ALMA в чилийской пустыне Атакама и SPT (South Pole Telescope) на Южном полюсе.
Астрономы показали первое в истории изображение черной дыры
ESO показала первую в истории фотографию черной дыры в центре Млечного Пути | В рамках международного проекта «Event Horizon Telescope» астрономам впервые за всю историю наблюдений удалось получить снимок черной дыры, а точнее ее тени, «отбрасываемой» на светящийся диск из перегретого газа и пыли. |
Астроном показал на что способен телескоп горизонта событий - YouTube | Телескоп горизонта событий — это проект, объединяющий в глобальную сеть данные нескольких телескопов. |
«Око» телескопа направили на ярчайший источник света во Вселенной: что увидели ученые | Настройка Event Horizon Telescope — это технический подвиг, на который потребовались годы работы, чтобы сделать вчерашнее наблюдение. |
Ученые сфотографировали тень космического монстра в сердце Млечного Пути
Который в свою очередь способен заглянуть в глубины космоса и приоткрыть тайны черных дыр. Блазар PKS 1510-089 Фото из открытого источника Первое достижение стало важным и очень интересным, но останавливаться на нем, естественно, никто не собирается. Ученые уже выбирают следующий объект для пристального наблюдения. Предположительно им станет блазар PKS 1510-089. Расстояние до него превышает 4 миллиарда световых лет, но специалисты полагают, что «Телескопу Горизонта Событий» оно окажется по плечу, и мир сможет увидеть еще более поразительные снимки и получить массу полезной информации.
Затем команде потребовалось два года, чтобы обработать данные. Результаты были получены в апреле 2019 года, когда доктор Доулман и его коллеги представили первые в истории изображения - точнее, радиокарты - черной дыры, монстра в M87.
Впервые столкновение черных дыр было «услышано» в 2015 г. Гравитационно-волновой обсерваторией с лазерным интерферометром. Теперь их можно было рассматривать как чернильный портал небытия, обрамленный кружащимся бубликом из лучистого газа в центре галактики Мессье 87. Картина появилась на первых полосах газет по всему миру, а копия сейчас находится в постоянной коллекции Музея современного искусства в Нью-Йорке. Вид на Мессье 87 в созвездии Девы, телескопом Европейской южной обсерватории Исследователям потребовалось еще два года, чтобы получить поляризованные изображения. В М87 излучение всех форм энергии растекается на более чем 100 000 световых лет от черной дыры.
Недавно обработанное изображение позволяет астрономам выявить происхождение этих полей до их происхождения в горячем хаотическом кольце наэлектризованного газа или плазмы, диаметром около 30 миллиардов миль, что больше в четыре раза орбиты Плутона. Это достижение стало возможным, потому что свет от диска частично поляризован, вибрируя больше в одном направлении, чем в других.
Event Horizon Telescope, EHT — проект по созданию большого массива телескопов, состоящего из глобальной сети радиотелескопов и объединяющего данные нескольких станций интерферометрии с очень длинной базовой линией VLBI по всей Земле. Алгоритм визуализации сверхмассивной чёрной дыры по данным, полученным радиотелескопами, разработала Кэтрин Боуман.
Такого прежде никто не видел. В астрономии — сенсация. Обнародованы первые в мире снимки черной дыры. Их получила обсерватория «Телескоп горизонта событий» Event Horizon Telescope , объединившая в глобальную сеть несколько крупнейший радиотелескопов, разбросанных по разным континентам. Работая совместно, телескопы образовали «тарелку» небывалого размера, которая позволила заглянуть вглубь Вселенной на десятки миллионов световых лет и натурально разглядеть там черную дыру — гигантский объект в центре галактики М87.
Его, а точнее поверхность черной дыры или горизонт событий, выражаясь астрономически, ученые показали на пресс-конференции, которую команда телескопа провела в Вашингтоне в National Press Club 10 апреля 2019 года. В "Телескоп горизонта событий" объединились несколько радиотелескопов. Черная дыра — это объект огромной массы, гравитация которого не выпускает даже свет. Горизонт событий — эта некая граница, за которую он — свет - не может вырваться. На фото горизонт событий выглядит темным пятном.
Его окружает кольцо огня, порожденное, по словам ученых, «огромной силой гравитации этого объекта».
Получена первая фотография сверхмассивной чёрной дыры в центре нашей Галактики
Впервые получено изображение тени черной дыры в центре Млечного Пути | Телескоп горизонта событий (англ. Event Horizon Telescope, EHT) — проект по созданию большого массива телескопов. |
Event Horizon Telescope releases first ever black hole image | это глобальная сеть из радиотелескопов, которые работая вместе достигают очень высокого углового разрешения, что позволяет увидеть детали вокруг сверхмассивных черных дыр. |
Первое в истории изображение черной дыры уже стало мемом
Ученые хотят использовать Телескоп Горизонта Событий, чтобы заснять на видео, как черная дыра Sagittarius A* в центре нашей галактики затягивает в себя то, что находится вокруг. When the Event Horizon Telescope (EHT) observed Sgr A* in April 2017 to make the new image, scientists in the collaboration also peered at the same black hole with facilities that detect different wavelengths of light. Эти объекты хорошо изучены в ходе реализации международного проекта «Телескоп горизонта событий» и по данным наблюдений на других интерферометрах со сверхдлинными базами. Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530.
Event Horizon Telescope
Команда телескопа горизонта событий показала первое изображение черной дыры в центре Млечного Пути. EHT (Event Horizon Telescope) представляет собой глобальный радиоинтерферометр со сверхдлинной базой, работающий на длине волны 1,3 миллиметра. Кстати, «Телескоп Горизонта Событий» будет не единственным участником операции.
Photographing a black hole
The event horizon is a team of programmers and specialists in the field of cryptocurrencies. Первая сверхмассивная черная дыра, изображение окрестностей которой было получено при помощи Телескопа горизонта событий, предоставила также и то, что исследователи называют «однозначным доказательством вращения черных дыр». Телескоп Event Horizon (EHT) добавил большее количество обсерваторий в глобальную сеть радиотелескопов, и первое изображение черной дыры нашей галактики может быть получено меньше, чем через год. Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530. Изображение было получено международной исследовательской группой – Коллаборацией «Телескоп Горизонта Событий» («Event Horizon Telescope» EHT), которая выполнила наблюдения объекта при помощи глобальной сети радиотелескопов.