Новости атомная батарейка

И вот очередная громкая новость: американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая способна проработать тысячи лет. Ученые российской атомной отрасли вплотную приблизились к созданию так называемого бета-вольтаического источника питания на основе радиоактивного изотопа никель-63. В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет. В 1975 г. был впервые имплантирован кардиостимулятор РЭКС-А1, где источником питания служила плутониевая атомная батарейка.

Что за ядерную батарейку создали российские учёные?

примерно 100 лет). Устройство ядерной батарейки можно сравнить с полупроводниковой солнечной батареей. Теперь пришло время рассказать о компактной атомной батарее созданной российскими учеными. Как будто концепции ядерных батарей недостаточно, есть и более эксцентричная идея — создавать батареи из искусственных наноалмазов.

Российские ученые создали атомную батарейку с зарядом на 20 лет

Человечество оказалось на пороге освоения ближайших к Земле планет. Американцы первые образцы своих атомных батареек устанавливали на спутники Transit 4A и 4B. Российские разработчики уверены, что в таком деле атомные батарейки просто окажутся незаменимыми. И спрос на такие источники питания для космических проектов будет безграничным.

Самый больной вопрос — когда будет налажен широкий промышленный выпуск атомных батареек. Оптимисты, которых немало в России, надеются, что первые партии будут получены уже в 2021 году. Параллельно ведутся исследования по удешевлению стоимости атомных источников питания.

Такие исследования проводили в 2019 году британские ученые. Активно занимались проблемой уменьшения габаритов источников питания в США. Там получены два прототипа бета-гальванических батарей пока еще мощнее российских.

Работают американские изделия по схожему принципу — преобразовывают радиоактивное бета-излучение в электрический ток. Прототипы атомной батарейки NDB испытывались в Ливерморской национальной лаборатории и в "атомной" лаборатории Кембриджского университета.

Атомные батареи предлагаю использовать в качестве источника питания для космических аппаратов, объектов Арктики и кардиостимуляторов. Постоянный адрес новости: eadaily.

Это наиболее перспективный радионуклид: в миниатюрном элементе питания от излучаемого этим изотопом мягкого бета-излучения легко создать защиту, а его период полураспада - более 100 лет - достаточно длительный. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный многократными соударениями излучаемых изотопом бета-частиц. Эта система является относительно простой, она представляет собой ансамбль плотно упакованных нанокластеров никеля, наночастицы которого осаждены на поверхности диэлектрика — оксида кремния. Ключевая особенность предложенной системы заключается в том, что наночиастицы никеля распределены по размерам, средний размер частицы постепенно изменяется в выделенном направлении. И в этом же направлении происходит увеличение электрических зарядов. Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада в электрический ток без использования дополнительных сложных полупроводниковых систем. Задачей ученых НИЯУ МИФИ сейчас является исследование электрофизических свойств формируемой нанокластерной пленки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада в электричество. Первичные результаты, подтверждающие возможность реализации такой системы, ранее были опубликованы в престижном журнале AppliedPhysicsLetters.

Создана уникальная ядерная батарейка Российские физики разработали батарейку, которая может преобразовывать в электричество энергию бета-распада — излучения электронов радиоактивным элементом. Коллектив исследователей из Московского института стали и сплавов под руководством заведующего кафедрой материаловедения полупроводников и диэлектриков профессора Юрия Пархоменко представил прототипы радиоизотопных батареек, созданных по технологии преобразования энергии бета-излучения в электрическую энергию на основе монокристаллов пьезоэлектриков. В качестве источника использован радиоактивный изотоп «никель-63». Его период полураспада около 100 лет, что позволяет создавать элементы питания со сроками службы до 50 лет. Хотя бета-распад — один из видов радиоактивного излучения, людям нечего бояться.

В НИЯУ МИФИ создали прототип ядерной батарейки

Кроме того в результате распада могут излучаться гамма-частицы высокоэнергетический фотон и свободные нейтроны. Для выработки электричества чаще всего используется тепло. Наиболее эффективный способ — испарить воду, которая, расширяясь будет крутить турбину. Теоретически при этом можно перевести до 30-40 процентов тепла в электричество. Но для компактной «батарейки» такой метод не подойдет, нужны способы прямой конвертации — без промежуточного носителя. В них делящийся материал нагревает термопару, которая генерирует электрический ток между двумя разнородными проводниками с отличающейся температурой эффект Зеебека. Они довольно широко используются в космонавтике, а также на Земле в отдаленных от цивилизации местах.

Например, они применялись как элементы питания в советских маяках вдоль Северного морского пути их было сделано более тысячи штук к концу 1980-х , или в американских долговременных зондах на океаническом дне. Чаще всего они весят несколько центнеров и обладают электрической мощностью до нескольких сотен ватт.

Кристаллическая структура вырабатывает электричество за счёт энергии, выделяемой распадающимся изотопом никеля Никель-63 в виде пластинок толщиной 2 микрометра. Использование радиоактивных источников никеля-63 более высокой чистоты позволит дополнительно улучшить плотность и мощность батарей. Betavolt планирует выпустить версию ядерной батарейки на 1 ватт к 2025 году.

Также инженеры компании хотят сделать модульную версию батареи, чтобы объединять несколько BB100 в один элемент.

Однако преобразование лучевой энергии в электрическую было не слишком эффективным из-за самой конструкции батарейки. Российским ученым удалось по-новому взглянуть на проблему: они нанесли тот же радиоактивный материал с обратной стороны от преобразователя энергии, что позволило контролировать обратный ток, который обычно «крадет» мощность батареи. Особая пористая структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока. В итоге при уменьшении размера самой батареи в три раза ее удалось сделать в 10 раз более мощной при том же сроке годности, как и ее предыдущие менее мощные аналоги — до 20 лет.

Такая батарейка относительно безопасна для человека и способна работать до 20 и более лет, но из-за дороговизны производства пока не может использоваться в быту. Её применение возможно в специальных приборах, в том числе работающих в критических условиях — в космосе, под водой или в высокогорных районах. Об этом сообщает пресс-служба вуза. Разработка описана в научном журнале Applied Radiation and Isotopes. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Она относится к так называемым бетавольтаическим элементам.

Американский стартап показал «вечную» ядерную батарейку

В Красноярском крае разработана атомная батарейка, работающая 50 лет Ученые российской атомной отрасли вплотную приблизились к созданию так называемого бета-вольтаического источника питания на основе радиоактивного изотопа никель-63.
Что за ядерную батарейку создали российские учёные? | Аргументы и Факты Китайский стартап Betavolt представил ядерную батарейку BV100, которая может генерировать электроэнергию в течение 50 лет без необходимости зарядки и обслуживания.

Вступай в наши группы и добавляй нас в друзья :)

  • Российские учёные создали атомную батарейку повышенной мощности
  • Принцип Работы
  • Почему не делают смартфоны и ноутбуки на атомных батарейках? И могут ли они появиться в будущем?
  • Сергей Леготин

Российская армия получит портативные атомные источники электропитания военной техники

примерно 100 лет). Также известно, что атомная батарейка может быть создана на основе изотопа америций-241, в этом случае устройство будет работать 432 года. Образец "ядерной батарейки" состоял из двухсот алмазных преобразователей, чередуемых слоями фольги из никеля-63 и стабильного никеля. В 1975 г. был впервые имплантирован кардиостимулятор РЭКС-А1, где источником питания служила плутониевая атомная батарейка. И вот очередная громкая новость: американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая способна проработать тысячи лет. Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет.

Батарейка для Севморпути будет работать на плутонии-238

Принцип атомной батарейки в том, что радиоактивный изотоп, распадаясь, излучает тепло и разогревает капсулу, в которой он находится, до полутора тысяч градусов. Ученые НИТУ «МИСиС» разработали компактную батарейку на атомной энергии, заряда которой хватит на 20 лет. В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет. Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи.

Регистрация

  • Электротранспорт и бытовая техника
  • Вступай в наши группы и добавляй нас в друзья :)
  • Неоружейный плутоний: российские ученые создали уникальную ядерную батарейку
  • Ядерное питание: российские учёные создали атомную батарейку повышенной мощности

Российские физики уплотнили энергию ядерной батарейки в десять раз

В России создана миниатюрная и долговечная атомная батарейка 22 августа 2020 г. Исследователи из России создали компактную атомную батарейку, которая в десять раз мощнее существующих аналогов, сообщает russian. Такая батарейка относительно безопасна для человека и способна работать до 20 и более лет. Её применение возможно в специальных приборах, в том числе работающих в критических условиях — в космосе, под водой или в высокогорных районах.

Российские специалисты разработали "атомную батарейку", имеющую повышенную мощность 17 Января 2023 Специалисты российского НИТУ "МИСиС" практически завершили работы по перспективному автономному и при этом миниатюрному источнику питания, выполненному в виде плоской "батарейки" с компактными размерами, способной проработать не менее 20 лет. Новая разработка имеет бетавольтаический элемент с двусторонним нанесением радиоактивного элемента и оригинальной трехмерной структурой, из-за чего данный источник питания имеет небольшие размеры, повышенную удельную мощность, а также низкую себестоимость при массовом производстве.

Альфа-источник окружен вакуумной капсулой, внешние стенки которой покрыты слоем наночастиц. Тепло от ионизирующего излучения нагревает капсулу примерно до 1,5 тыс. К, заставляя ее поверхность светиться.

Это улавливают окружающие капсулу фотоэлементы, способные выдерживать колоссальную жару. И на выходе уже сейчас, на стадии прототипа, обеспечивается мощность, способная заставить светиться электрическую лампочку на несколько свечей. Казалось бы, зачем так сложно? Ведь тепло, неизменный спутник процесса радиоактивного распада, способно давать ток напрямую. Примерно так рассуждали ученые прошлых поколений в Советском Союзе, когда конструировали и запускали в серийное производство радиоизотопный термоэлектрический генератор РИТЭГ. Он работал на бета-частицах стронция 90 по другому принципу — термоэлектрическому. Иначе говоря, как термопара: между холодным и разогретым от активного источника контактами возникало напряжение, током от которого и запитывали приборы. Для эвакуации последних РИТЭГов с автономных антарктических метеопостов в 2015 году, кстати, пришлось снаряжать полярную миссию.

Также по теме Слоёная батарея: учёные предложили новую технологию создания натриевых аккумуляторов Российские и немецкие исследователи выяснили, что в аккумуляторных батареях вместо редкого и дорогого лития можно использовать натрий,... Несмотря на относительную безопасность для человека и возможность работать до 20 и более лет, атомные батарейки пока не находят применения в быту из-за дороговизны производства. Но это очень-очень дорого и сложно. Потребуется много радиоактивного материала, батарейки начнут вскрывать, а это уже вопросы безопасности производства, использования и переработки», — сообщил в разговоре с RT Сергей Леготин. В настоящий момент разработка МИСиС проходит процедуру международного патентования, а сам вуз признан зарубежными экспертами «одним из ключевых участников мирового рынка бетавольтаических батарей», отмечает пресс-служба университета. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи.

Российские ученые создали батарейку, работающую 100 лет

Про супер-долгую атомную батарейку с повышенной в 10 раз мощностью". Причём батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах. Атомная батарейка, также известная как радиоизотопный генератор тепла (РИГТ), является источником энергии, который использует процесс распада радиоактивных изотопов для. "Росатом" изготовил первую опытную партию компактных ядерных батареек. Атомная батарейка.

Ядерное питание: российские учёные создали атомную батарейку повышенной мощности

Созданная установка преобразовывает энергию полураспада в электричество. Как отмечают авторы опубликованного видеоролика, плутоний излучает 87 лет, а, например, америций-241 — 432 года. Планируемая мощность батареи может достигать 500 Вт.

В космосе не только светло, но и темно В батарейках на основе диоксида плутония-238 увидели смысл в космической промышленности. Например, на околоземной орбите спутнику достаточно солнечных батарей размером с 4 парковочных места. Для полета к Марсу понадобится вдвое большая площадь. К Юпитеру — еще увеличить раз в 8. Чем дальше от Солнца летит космический аппарат, тем меньше и меньше и меньше эффективность солнечных батарей. Поскольку абсолютно все тепло от работающей установки невозможно поглотить и передать на провода, она ощутимо нагревалась. Для космических аппаратов это оказалось даже плюсом — абсолютный минус черного межпланетного пространства уже не страшен. РИТЭГ давал спутникам и электричество, и тепло.

Кстати, в фантастическом фильме «Марсианин» Ридли Скотта главный герой ищет решение — ему нужно поехать на ровере на большое расстояние. Чтобы не замерзнуть по ночам в зависимости от удаленности от полюсов температура там составляет от -80 С до -135 С , он берет с собой в путь небольшой РИТЭГ. А еще он первым сделал снимки спутников Юпитера и Сатурна. Стоит рассмотреть миссию «Кассини-Гюйгенс» — она проработала почти 20 лет, передала без малого полмиллиона снимков и 635 гигабайт разных данных. Станция несла зонд, который спустился на поверхность Титана спутник Сатурна, на котором есть вода в стабильном состоянии и прислал фото с нее. На борту было 32,8 килограмм чистого и свежего 238-го. Затраты на миссию вышли больше, чем в 3,2 миллиарда долларов, так что плутония было «всего» миллионов на 50. Но самое важное — такое количество вещества ни одна страна в мире не могла произвести и за пару лет. Станция имела мощность 880 ватт в 1997 и около 670 ватт в 2010. Но это лишь тепло; в начале миссии установка выделяла 292 Ватта электроэнергии.

Большую эффективность при меньшем размере. Нет, период полураспада никуда не делся, но с ним проще «работать», если можно с легкостью рассчитать батарею для космического аппарата с серьезным запасом мощности на пару десятилетий, а то и больше. В батарейке МИФИ несколько иной принцип действия — изотоп в вакуумной камере нагревается до 1500 градусов Цельсия и начинает светиться. Вся поверхность капсулы усеяна наносферами из вольфрама — одного из самых тугоплавких материалов в мире напылять его приходится около 100 часов, чтобы обработать капсулу размером с обычное ведро.

Малые размеры нанокластеров 2-15 нм приводят к проявлению у них квантовых свойств, в связи с чем, ансамбль подобных нанокластеров, имеющих оксидную оболочку превращается в набор полупроводниковых материалов. Это обеспечивает возможность эмиссии фотонов заданной длины волны при нагреве и дает возможность «настройки» спектра излучения системы под требуемый диапазон. Это, в свою очередь, выводит энергоэффективность источника электроэнергии на новый уровень. Схема преобразования Превращение батарейки в селективно излучающую систему в инфракрасном диапазоне, позволяет увеличить эффективность работы источников питания, часть энергии которых обычно безвозвратно тратиться на тепло, что и было экспериментально продемонстрировано учеными НИЯУ МИФИ в рамках опытно-конструкторской работы по договору с ЧУ «Наука и инновации» Госкорпорации «Росатом». Также было проведено исследование технических характеристик прототипа, разработан полный комплект конструкторской документации для масштабирования, отработана технология преобразования тепловой энергии ядерного распада в электричество с помощью термофотовольтаических преобразователей. Разработка термофотовольтаических преобразователей в настоящее время активно ведется в США и Европе с целью увеличить эффективность РИТЭГ для использования в космических аппаратах. На текущий момент, основной путь создания высокоэффективных радиоизотопных источников энергии — поиск новых или модифицированных материалов, например, нано- материалов, которые могли бы по своим полупроводниковым свойствам заменить кремний, германий и другие узкозонные полупроводники. Идея, предложенная учеными НИЯУ МИФИ — это оригинальный альтернативный подход к решению проблемы преобразования энергии ядерного распада в электричество.

В перспективе новинку можно будет применять как источник питания в том числе и аварийный , а также датчик температуры, в разного плана устройствах, эксплуатация которых подразумевается в труднодоступных и удаленных местах с экстремальными температурами - космос, высокогорье, большие водные глубины. Сейчас отечественные разработчики занимаются получением международного патента на свое изобретение, которое, нужно отметить, признали ведущие мировые эксперты, а в Research and Markets российский "МИСиС" назвали одним из основных участников глобальной отрасли бетавольтаических батарей.

В России создали «ядерную батарейку» для космоса и авиации

Два года назад учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку. Конструкция ядерной батареи BV100. Ядерный аккумулятор BV100 очень маленький — его габариты составляют 15x15x5 миллиметров. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Сейчас ученые патентуют свою технологию производства атомной батарейки на международном уровне.

Похожие новости:

Оцените статью
Добавить комментарий