На глубине 5 км исследователи столкнулись с неожиданно высокой температурой — более 700 °С. Через 2 км температура выросла до 1 200 °С. Тогда работы отложили на год — до установки модифицированной версии «Уралмаш-15000» с повышенной термостойкостью.
Рекордно высокую температуру зафиксировали на Земле
Проведенные исследования показали, что потребление тепловой энергии из грунтового массива к концу отопительного сезона вызывает вблизи регистра труб системы теплосбора понижение температуры грунта, которое в почвенно-климатических условиях большей части территории РФ не успевает компенсироваться в летний период года, и к началу следующего отопительного сезона грунт выходит с пониженным температурным потенциалом. Потребление тепловой энергии в течение следующего отопительного сезона вызывает дальнейшее снижение температуры грунта, и к началу третьего отопительного сезона его температурный потенциал еще больше отличается от естественного. И так далее... Однако, огибающие теплового влияния многолетней эксплуатации системы теплосбора на естественный температурный режим грунта имеют ярко выраженный экспоненциальный характер, и к пятому году эксплуатации грунт выходит на новый режим, близкий к периодическому, т. Таким образом, при проведении районирования территории РФ необходимо было учитывать падение температур грунтового массива, вызванное многолетней экс-плуатацией системы теплосбора, и использовать в качестве расчетных параметров температур грунтового массива температуры грунта, ожидаемые на 5-й год эксплуатации ГТСТ.
Коэффициент трансформации теплонасосной системы теплоснабжения Ктр представляет собой отношение полезного тепла, отводимого в систему теплоснабжения потребителя, к энергии, затрачиваемой на работу ГТСТ, и численно равен количеству полезного тепла, получаемого при температурах То и Ти на единицу энергии, затраченной на привод ГТСТ. Реальный коэффициент трансформации отличается от идеального, описанного формулой 1 , на величину коэффициента h, учитывающего степень термодинамического совершенства ГТСТ и необратимые потери энергии при реализации цикла. Численные эксперименты проводились с помощью созданной в ОАО «ИНСОЛАР-ИНВЕСТ» программы, обеспечивающей определение оптимальных параметров системы теплосбора в зависимости от климатических условий района строительства, теплозащитных качеств здания, эксплуатационных характеристик теплонасосного оборудования, циркуляционных насосов, нагревательных приборов системы отопления, а также режимов их эксплуатации. Программа базируется на описанном ранее методе построения математических моделей теплового режима систем сбора низкопотенциального тепла грунта, который позволил обойти трудности, связанные с информативной неопределенностью моделей и аппроксимацией внешних воздействий, за счет использования в программе экспериментально полученной информации о естественном тепловом режиме грунта, которая позволяет частично учесть весь комплекс факторов таких как наличие грунтовых вод, их скоростной и тепловой режимы, структура и расположение слоев грунта, «тепловой» фон Земли, атмосферные осадки, фазовые превращения влаги в поровом пространстве и многое другое , существеннейшим образом влияющих на формирование теплового режима системы теплосбора, и совместный учет которых в строгой постановке задачи на сегодняшний день практически не возможен.
Программа фактически позволяет решить задачу многопараметральной оптимизации конфигурации ГТСТ для конкретного здания и района строительства. При этом целевой функцией оптимизационной задачи является минимум годовых энергетических затрат на экс-плуатацию ГТСТ, а критериями оптимизации являются радиус труб грунтового теплообменника, его теплообменника длина и глубина заложения. Результаты численных экспериментов и районирование территории России по эффективности использования геотермального тепла низкого потенциала для целей теплоснабжения зданий представлены в графическом виде на рис. На рис.
Как видно из рисунков, максимальные значения Кртр 4,24 для горизонтальных систем теплосбора и 4,14 — для вертикальных можно ожидать на юге территории России, а минимальные значения, соответственно, 2,87 и 2,73 на севере, в Уэлене. Для средней полосы России значения Кртр для горизонтальных систем теплосбора находятся в пределах 3,4—3,6, а для вертикальных систем в пределах 3,2—3,4.
В 2019 году связь с посадочным модулем «Чандраян-2» пропала на завершающем этапе миссии, модуль разбился во время посадки.
Она определяется тепловым потоком, исходящим из глубоких недр Земли.
Зависит от интенсивности теплового потока Земли. В верхних слоях земной коры она колеблется от 11 до 120 м. Под геотермическим градиентом понимается прирост температуры на 100 метров глубины. Он зависит от теплопроводности горных пород и температурного режима земных недр. В целом он возрастает с глубиной.
Однако в течение следующих нескольких тысячелетий она неуклонно росла и в конечном итоге превзошла базовый уровень. Пикового значения она достигла около 6500 лет назад, после чего атмосфера стала постепенно остывать примерно на 0,1 градуса Цельсия каждую тысячу лет. По словам исследователей, это охлаждение могло быть связано с медленными циклами , обусловленными изменениями в земной орбите, из-за чего количество солнечного света, получаемого северным полушарием планеты, уменьшилось, и результатом стал малый ледниковый период последних веков. Однако затем картина изменилась. Пиковые температуры 6,5 тысяч лет назад примерно на 0,7 градуса Цельсия превосходили те, что наблюдались в середине 19 века. Однако с тех пор средняя температура Земли выросла еще на один градус Цельсия.
Суша Земли стала нагреваться в 20 раз быстрее: чем это грозит
Если говорить просто, тектонические плиты земной коры как бы «скользят» по астеносфере. Новое понимание этого процесса поможет улучшить прогноз тектоники. Открытие было сделано с помощью анализа сейсмических волн, проходящих через недра Земли. Данные были получены со станций по всему миру. Когда сейсмические волны достигают верхней части астеносферы, то значительно замедляются, и это говорит о том, что ее верхний слой расплавлен больше, чем соседние.
Но откуда на Земле взялась вода для столь катастрофического и глобального затопления? Такого, что старина Ной причалил на своем ковчеге к вершине горы Арарат? Для библейского потопа надо было очень много воды - больше, чем ее могут дать растопленные льды Гипотез полно. В океан мог упасть астероид или комета, которые вызвали колоссальное цунами.
Или похолодало так, что лед перекрыл реки, вытеснил оставшуюся в океанах воду, уровень которой катастрофически поднялся. А некоторые даже доказывают, что сместилась ось планеты, и от этого по суше прошелся водяной вал высотой в несколько километров. Однако до недавнего времени не существовало серьезных научных данных, на которые можно было бы опереться в каких-либо серьезных предположениях. Теперь они получены. И стали основанием для гипотезы, которая прежде показалась бы совсем уж полоумной. Мол, вода для Всемирного потопа взялась из недр Земли. Ныне это отнюдь не фантастика - внутри нашей планеты обнаружены целые океаны. Наша планета опутана сетью сейсмографов - приборов, которые регистрируют землетрясения, вычерчивая их характеристики - сейсмограммы.
Сравнивая записи, сделанные в разных районах, можно проследить, как волны от ударов стихии распространяются в земной коре и мантии. Вот этими данными, собранными за много лет, и воспользовались американские исследователи - Майкл Вайсешн Michael Wysession , профессор сейсмологии Вашингтонского университета Сент-Луис , и его студент-дипломник Джессе Лоуренс Jesse Lawrence , ныне работающий в Калифорнийском университете Сан-Диего. Всего они изучили 600 тысяч сейсмограмм. Результаты их обработки потрясли ученых. Потому что демонстрировали: по крайней мере в двух местах - под восточной частью континента Евразия и под Северной Америкой располагаются огромные резервуары воды. Ученые составили трехмерную модель прозондированных недр. И уверяют: воды там не меньше, чем в Северном ледовитом океане. Расположена она на глубинах от 1200 до 1400 километров.
Районы аномального затухания сейсмических волн отмечены на карте красным цветом. А чуть раньше американцев морскую воду под поверхностью Земли обнаружили английские ученые из Манчестерского университета.
Ранее исследователи думали, что скорость распространения сейсмических волн на таких расстояниях гораздо меньше. Карта же показала обратное. Скорее всего, подобный феномен связан с теплообменом между мантией и ядром. Ученые надеются, что их исследование позволит детально изучить механизм обмена теплом между поверхностью и недрами Земли.
В последнем случае используется оборудование другого типа и другие процессы, целью которых обычно является нагревание воды до температуры кипения. Трубы, которые составляют подземную петлю, обычно делаются из полиэтилена и могут быть расположены под землей горизонтально или вертикально, в зависимости от особенностей местности. Если доступен водоносный слой, то инженеры могут спроектировать систему «разомкнутого контура», для этого необходимо пробурить скважину к грунтовым водам. Вода выкачивается, проходит через теплообменник, и затем закачивается в тот же водоносный слой посредством «повторного закачивания». Зимой вода, проходя через подземную петлю, поглощает тепло земли. Внутреннее оборудование дополнительно повышает температуру и распределяет ее по всему зданию. Это похоже на кондиционер, работающий наоборот. В отличие от обычных систем нагревания и охлаждения, геотермальные НВК системы не используют ископаемое топливо, чтобы выработать тепло. Они просто берут высокую температуру из земли. Как правило, электроэнергия используется только для работы вентилятора, компрессора и насоса. В геотермальной системе охлаждения и отопления есть три главных компонента: тепловой насос, жидкая среда теплообмена разомкнутая или замкнутая система и система подачи воздуха система труб. Для геотермальных тепловых насосов, а также для всех остальных типов тепловых насосов, было измерено соотношение их полезного действия к затраченной для этого действия энергии КПД. Большинство геотермальных систем тепловых насосов имеют КПД от 3. Это означает, что одну единицу энергии система преобразует в 3-5 единиц тепла. Геотермальные системы не требуют сложного обслуживания. Правильно установленная, что очень важно, подземная петля может исправно служить в течение нескольких поколений. Вентилятор, компрессор и насос размещены в закрытом помещении и защищены от переменчивых погодных условий , таким образом, их срок эксплуатации может длиться много лет, часто десятилетий. Обычные периодические проверки, своевременная замена фильтра и ежегодная очистка катушки являются единственным необходимым обслуживанием. Они работают с природой, а не против нее, и они не выделяют парниковых газов как отмечалось ранее, они используют меньше электричества, потому что используют постоянную температуру земли. Геотермальные НВК системы все чаще становятся атрибутами экологичных домов, как часть набирающего популярность движения зеленого строительства. Зеленые проекты составили 20 процентов всех построенных домов в США за прошлый год. В одной из статей в Wall Street Journal говорится о том, что к 2016 году бюджет зеленого строительства вырастет от 36 миллиардов долларов в год до 114 миллиардов. Это составит 30-40 процентов всего рынка недвижимости. Но большая часть информации о геотермальном нагревании и охлаждении основана на устаревших данных или необоснованных мифах. Разрушение мифов о геотермальных НВК системах 1. Геотермальные НВК системы не являются возобновляемой технологией, потому что они используют электричество. Факт: Геотермальные НВК системы используют только одну единицу электричества, чтобы произвести до пяти единиц охлаждения или нагревания. Солнечная энергия и энергия ветра являются более благоприятными возобновляемыми технологиями по сравнению с геотермальными НВК системами. Эти технологии могут, конечно, играть важную роль для экологии, но геотермальная НВК система зачастую является самым эффективным и экономным способом уменьшить воздействие на окружающую среду. Для геотермальной НВК системы требуется много места, чтобы разместить полиэтиленовые трубы подземной петли. Факт: В зависимости от особенностей местности, подземная петля может быть расположена вертикально, что означает необходимость в небольшой наземной поверхности. Если же есть доступный водоносный слой, то нужно всего несколько квадратных футов на поверхности. Заметьте, что вода возвращается в тот же водоносный слой, из которого она и была взята, после того, как прошла через теплообменник. Таким образом, вода не является стоковой и не загрязняет водоносный слой. Геотермальные тепловые насосы НВК являются шумными. Факт: Системы работают очень тихо, и снаружи нет никакого оборудования, чтобы не беспокоить соседей. Геотермальные системы в конечном итоге «стираются». Факт: Подземные петли могут служить в течение нескольких поколений. Оборудование теплообмена, как правило, служит десятилетиями, так как оно защищено в закрытом помещении. Когда наступает момент необходимой замены оборудования, стоимость такой замены намного меньше новой геотермальной системы, поскольку подземная петля и скважина являются ее самыми дорогими частями. Новые технические решения устраняют проблему задержки тепла в земле, таким образом, система может производить обмен температур в неограниченном количестве. В прошлом были случаи неправильно рассчитанных систем, которые действительно перегревали или переохлаждали землю до такой степени, что больше не было температурного различия, необходимого для работы системы. Геотермальные НВК системы работают только для нагрева. Факт: Они работают столь же эффективно и на охлаждение и могут быть спроектированы таким образом, чтобы не было необходимости в дополнительном резервном источнике тепла. Хотя некоторые клиенты решают, что экономически более выгодно иметь небольшую резервную систему для самых холодных времен. Это означает, что их подземная петля будет меньше и, соответственно, дешевле. Геотермальные НВК системы не могут одновременно нагреть воду для бытовых целей, нагреть воду в бассейне и обогреть дом. Факт: Системы могут быть спроектированы таким образом, чтобы выполнять много функций одновременно. Геотермальные НВК системы загрязняют землю хладагентами. Факт: Большинство систем использует в петлях только воду. Геотермальные НВК системы используют много воды. Факт: Геотермальные системы фактически не потребляют воду. Если для обмена температуры используется подземные воды, то вся вода возвращается в тот же водоносный слой. В прошлом действительно использовались некоторые системы, которые тратили впустую воду после того, как она проходила через теплообменник, но такие системы сегодня почти не используются. Если посмотреть на вопрос с коммерческой точки зрения, то геотермальные НВК системы фактически экономят миллионы литров воды, которые бы испарялись в традиционных системах. Геотермальная НВК технология финансово не выполнима без государственных и региональных налоговых льгот. Факт: Государственные и региональные льготы, как правило, составляют от 30 до 60 процентов совокупной стоимости геотермальной системы, что может зачастую снизить ее начальную цену практически до уровня цен на обычное оборудование. Стандартные воздушные системы НВК стоят приблизительно 3,000 долларов за тонну тепла или холода дома обычно используют от одной до пяти тонн. Цена геотермальных НВК систем составляет приблизительно от 5,000 долларов за тонну до 8,000-9,000. Однако новые методы установки значительно уменьшают затраты, вплоть до цен на обычные системы. Уменьшить стоимость также можно за счет скидок на оборудование для общественного или коммерческого использования, или даже при крупных заказах бытового характера особенно от крупных брендов, таких как Bosch, Carrier и Trane. Разомкнутые контуры, при использовании насоса и скважины повторной закачки, являются более дешевыми в установке, чем замкнутые системы. По материалам: energyblog. Поделиться с друзьями: Вам также может быть интересно.
Температура ядра Земли на тысячу градусов выше, чем ранее предполагалось
Однако в некоторых случаях температура может падать с увеличением глубины, особенно у поверхности, явление, известное как обратный или отрицательный геотермический градиент. В геологии при расчете геотермического градиента за единицу глубины приняты 100 м.
Как уже отмечалось, благодаря таким движениям мантийное вещество оказалось хорошо перемешанным. Поскольку теплопотери Земли происходят только через её поверхность, то в недрах конвектирующей подлитосферной мантии в среднем должно устанавливаться адиабатическое распределение температуры, при котором её изменения происходят только за счёт сопровождающих конвекцию сжатий или расширений мантийного вещества, но без дополнительных теплопотерь. Адиабатический закон распределения температуры определяется сравнительно простой зависимостью. Однако при расчёте температурных распределений по этому закону необходимо иметь в виду, что оно позволяет определять лишь градиенты температуры. Для построения же самой зависимости температуры от глубины необходимо задаться исходным значением адиабатической температуры в начале отсчёта, например на поверхности Земли. Но поверхность Земли перекрыта холодной литосферной оболочкой, фактически представляющей собой тепловой погранслой, в котором распределение температуры резко отличается от адиабатического закона. В такой ситуации за начальную температуру распределения следует принимать приведённую к поверхности температуру мантии, определяемую по максимальным температурам базальтовых магм, изливающихся в рифтовых зонах океанического типа или на океанских островах гавайского типа.
Адиабатический закон в простом выражении позволяет правильно определять лишь градиенты температуры и только в однородном сжимаемом веществе. Если же в этом веществе под влиянием высоких давлений происходят фазовые полиморфные перестройки минеральных ассоциаций к более плотным кристаллическим структурам, то на этих же глубинах в конвектирующей мантии обязательно возникнут температурные скачки. Если известны возникающие при этом скачки плотности например, по экспериментальным данным , то нетрудно определить и такие температурные перепады. Фазовые переходы к более плотным кристаллическим модификациям мантийного вещества сложного состава развиваются при разных давлениях и соответственно на разных глубинах. Например, переход плагиоклазового лерцолита в пироксеновый наблюдается на глубинах около 25 км, а переход от пироксенового к гранатовому лерцолиту при температурах горячей мантии — на глубинах около 85 км. Полиморфные преобразования мантийного вещества в переходном слое С на глубинах около 400 и 670 км более значительны, сопровождаются существенными изменениями плотности мантийного вещества и чётко выявляются по сейсмическим данным. Первый из этих переходов связан с перекристаллизацией оливина в шпинелевую фазу, а второй — с распадом силикатов на простые окислы. По оценкам А.
При использовании тепла Земли можно выделить два вида тепловой энергии — высокопотенциальную и низкопотенциальную. Источником высокопотенциальной тепловой энергии являются гидротермальные ресурсы — термальные воды, нагретые в результате геологических процессов до высокой температуры, что позволяет их использовать для теплоснабжения зданий. Однако использование высокопотенциального тепла Земли ограничено районами с определенными геологическими параметрами. В России это, например, Камчатка, район Кавказских минеральных вод; в Европе источники высокопотенциального тепла есть в Венгрии, Исландии и Франции. В отличие от «прямого» использования высокопотенциального тепла гидротермальные ресурсы , использование низкопотенциального тепла Земли посредством тепловых насосов возможно практически повсеместно. В настоящее время это одно из наиболее динамично развивающихся направлений использования нетрадиционных возобновляемых источников энергии. Низкопотенциальное тепло Земли может использоваться в различных типах зданий и сооружений многими способами: для отопления, горячего водоснабжения, кондиционирования охлаждения воздуха, обогрева дорожек в зимнее время года, для предотвращения обледенения, подогрева полей на открытых стадионах и т. В англоязычной технической литературе такие системы обозначаются как «GHP» — «geothermal heat pumps», геотермальные тепловые насосы. Климатические характеристики стран Центральной и Северной Европы, которые вместе с США и Канадой являются главными районами использования низкопотенциального тепла Земли, определяют главным образом потребность в отоплении; охлаждение воздуха даже в летний период требуется относительно редко.
Поэтому, в отличие от США, тепловые насосы в европейских странах работают в основном в режиме отопления. В США тепловые насосы чаще используются в системах воздушного отопления , совмещенного с вентиляцией, что позволяет как подогревать, так и охлаждать наружный воздух. В европейских странах тепловые насосы обычно применяются в системах водяного отопления. Поскольку эффективность тепловых насосов увеличивается при уменьшении разности температур испарителя и конденсатора, часто для отопления зданий используются системы напольного отопления, в которых циркулирует теплоноситель относительно низкой температуры 35—40 оC. Большинство тепловых насосов в Европе, предназначенных для использования низкопотенциального тепла Земли, оборудовано компрессорами с электрическим приводом. За последние десять лет количество систем, использующих для тепло- и холодоснабжения зданий низкопотенциальное тепло Земли посредством тепловых насосов , значительно увеличилось. Наибольшее число таких систем используется в США. Швейцария лидирует по величине использования низкопотенциальной тепловой энергии Земли на душу населения. В Москве в микрорайоне Никулино-2 фактически впервые была построена теплонасосная система горячего водоснабжения многоэтажного жилого дома.
В качестве низкопотенциального источника тепловой энергии для испарителей тепловых насосов используется тепло грунта поверхностных слоев Земли , а также тепло удаляемого вентиляционного воздуха. Установка для подготовки горячего водоснабжения расположена в подвале здания. Она включает в себя следующие основные элементы: парокомпрессионные теплонасосные установки ТНУ ; системы сбора низкопотенциальной тепловой энергии грунта и низкопотенциального тепла удаляемого вентиляционного воздуха; циркуляционные насосы, контрольно-измерительную аппаратуру Основным теплообменным элементом системы сбора низкопотенциального тепла грунта являются вертикальные грунтовые теплообменники коаксиального типа, расположенные снаружи по периметру здания. Эти теплообменники представляют собой 8 скважин глубиной от 32 до 35 м каждая, устроенных вблизи дома. Поскольку режим работы тепловых насосов, использующих тепло земли и тепло удаляемого воздуха, постоянный, а потребление горячей воды переменное, система горячего водоснабжения оборудована баками-аккумуляторами. Данные, оценивающие мировой уровень использования низкопотенциальной тепловой энергии Земли посредством тепловых насосов, приведены в таблице. Таблица 1. Мировой уровень использования низкопотенциальной тепловой энергии Земли посредством тепловых насосов Грунт как источник низкопотенциальной тепловой энергии В качестве источника низкопотенциальной тепловой энергии могут использоваться подземные воды с относительно низкой температурой либо грунт поверхностных глубиной до 400 м слоев Земли. Теплосодержание грунтового массива в общем случае выше.
Тепловой режим грунта поверхностных слоев Земли формируется под действием двух основных факторов — падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15—20 м. Температурный режим слоев грунта, расположенных ниже этой глубины «нейтральной зоны» , формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата рис. График изменения температуры грунта в зависимости от глубины С увеличением глубины температура грунта возрастает в соответствии с геотермическим градиентом примерно 3 градуса С на каждые 100 м. Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. В эксплуатационный период массив грунта, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта системы теплосбора , вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно.
Иначе говоря, грунтовый массив системы теплосбора, независимо от того, в каком состоянии он находится в мерзлом или талом , представляет собой сложную трехфазную полидисперсную гетерогенную систему, скелет которой образован огромным количеством твердых частиц разнообразной формы и величины и может быть как жестким, так и подвижным, в зависимости от того, прочно ли связаны между собой частицы или же они отделены друг от друга веществом в подвижной фазе. Промежутки между твердыми частицами могут быть заполнены минерализованной влагой, газом, паром и льдом или тем и другим одновременно. Моделирование процессов тепломассопереноса, формирующих тепловой режим такой многокомпонентной системы, представляет собой чрезвычайно сложную задачу, поскольку требует учета и математического описания разнообразных механизмов их осуществления: теплопроводности в отдельной частице, теплопередачи от одной частицы к другой при их контакте, молекулярной теплопроводности в среде, заполняющей промежутки между частицами, конвекции пара и влаги, содержащихся в поровом пространстве, и многих других. Особо следует остановиться на влиянии влажности грунтового массива и миграции влаги в его поровом пространстве на тепловые процессы, определяющие характеристики грунта как источника низкопотенциальной тепловой энергии. В капилярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые прежде всего связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. До сих пор не выяснены природа сил связи влаги с частицами скелета, зависимость форм связи влаги с материалом на различных стадиях увлажнения, механизм перемещения влаги в поровом пространстве. При наличии в толще грунтового массива температурного градиента молекулы пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков , а также грунтовые воды.
Основные факторы, под воздействием которых формируются температурный режим грунтового массива систем сбора низкопотенциального тепла грунта, приведены на рис. Факторы, под воздействием которых формируются температурный режим грунта Виды систем использования низкопотенциальной тепловой энергии Земли Грунтовые теплообменники связывают теплонасосное оборудование с грунтовым массивом. Кроме «извлечения» тепла Земли, грунтовые теплообменники могут использоваться и для накопления тепла или холода в грунтовом массиве. В общем случае можно выделить два вида систем использования низкопотенциальной тепловой энергии Земли : открытые системы: в качестве источника низкопотенциальной тепловой энергии используются грунтовые воды, подводимые непосредственно к тепловым насосам; замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса или, при использовании теплоносителя с повышенной относительно грунта температурой, его охлаждение. Основная часть открытых систем — скважины, позволяющие извлекать грунтовые воды из водоносных слоев грунта и возвращать воду обратно в те же водоносные слои. Обычно для этого устраиваются парные скважины. Схема такой системы приведена на рис. Схема открытой системы использования низкопотенциальной тепловой энергии грунтовых вод Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах. Однако скважины требуют обслуживания.
Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы: достаточная водопроницаемость грунта, позволяющая пополняться запасам воды; хороший химический состав грунтовых вод например, низкое железосодержание , позволяющий избежать проблем, связанных с образованием отло- жение на стенках труб и коррозией. Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонасосная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г. Луисвилль Louisville , штат Кентукки. Система используется для тепло- и холодоснабжения гостиничноофисного комплекса; ее мощность составляет примерно 10 МВт. Иногда к системам, использующим тепло Земли, относят и системы использования низкопотенциального тепла открытых водоемов, естественных и искусственных. Такой подход принят, в частности, в США.
Системы, использующие низкопотенциальное тепло водоемов, относятся к открытым, как и системы, использующие низкопотенциальное тепло грунтовых вод. Замкнутые системы, в свою очередь, делятся на горизонтальные и вертикальные. Горизонтальный грунтовой теплообменник в англоязычной литературе используются также термины «ground heat collector» и «horizontal loop» устраивает- ся, как правило, рядом с домом на небольшой глубине но ниже уровня промерзания грунта в зимнее время.
С одной стороны, экологи традиционно трубят тревогу — «урожай окажется под угрозой». С другой — любой огородник знает, что в теплом грунте растения чувствуют себя лучше. Возможно, повышение температуры поверхности заставляет ее быстрее терять влагу и приводит к дополнительным затратам на полив. Но при потеплении в целом количество влаги в атмосфере увеличивается : чем сильнее нагреваются океаны, тем больше воды испаряется. И, соответственно, тем больше осадков выпадает. Другое дело, что распределение ее становится менее равномерным — высокие широты получают больше осадков. Это тоже интересно:.
Температура ядра Земли на тысячу градусов выше, чем ранее предполагалось
Индийский посадочный модуль «Викрам» передал на Землю первые данные о температуре лунной поверхности. Петротермальные ресурсы (или использование глубинного тепла Земли) представляют собой часть тепловой энергии, которая заключена в практически водонепроницаемых сухих горячих горных породах, расположенных на глубинах 3-10 км. На этой глубине их температура. Температуры разных глубин Земли Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года. Климатологи впервые составили непрерывный график температур на Земле за последние 66 миллионов лет.
Ученые встревожены резким нагреванием мирового океана
Как Земля держит: Учёные пришли в ужас от последствий подземного изменения климата | Геотермический градиент – приращение температуры с глубиной, выраженной в 0С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0С. |
Поверхность Луны оказалась более горячей, чем считалось раньше | Глубина в метрах, при которой температура повышается на 1°С, называется геотермической ступенью. |
Географы создали карту Всемирного потопа | Аппарат измеряет температуру верхнего слоя лунной почвы. Он оснащен датчиком с механизмом, который может измерять температуру почвы на глубине до 10 см, говорится в сообщении ISRO в соцсети X. В публикации приводится график температур. |
Какая температура в центре Земли?
Затем они упоминают среднюю температуру поверхности Венеры и Титана и то, как это повлияет на температуру на глубине 20 футов под землей. Петротермальные ресурсы (или использование глубинного тепла Земли) представляют собой часть тепловой энергии, которая заключена в практически водонепроницаемых сухих горячих горных породах, расположенных на глубинах 3-10 км. На этой глубине их температура. Неопределённость оценок температуры зависит от глубины (возрастает от ±10 % в литосфере до ±30 % в центре Земли) и точности определения термодинамических параметров. Большая часть этой энергии, примерно 90%, хранится на глубине до 300 м в земле. на глубине 400 км температура должна достигать 1400 1700 °С. Наиболее высокие температуры (около 5000 °С) получены для ядра Земли.
Какая температура в центре Земли?
Вертикальный профиль температуры в вечной мерзлоте. В верхнем горизонте мерзлой толщи температура не остается стабильной во времени; она меняется в течение года, следуя за сезонами. Колебания температуры, происходящие в верхнем слое в течение года, называются сезонными колебаниями, и они постепенно затухают на некоторой глубине обычно на глубине 10-15 м от поверхности. Ниже глубины сезонных изменений температура вечномерзлой толщи остается постоянной в течение года. Рекордная глубина залегания вечной мерзлоты - 1 370 метров в верховьях реки Вилюй в Якутии. Температура мерзлых толщ непостоянна, она меняется с глубиной. Например, на севере Ямала толщина слоя вечной мерзлоты достигает 400 метров, а его температура опускается ниже минус восьми градусов.
Поэтому исследователи попытались оценить риски для зданий, мостов и всего прочего, стоящего на понемногу подогреваемой земле. Учёные собрали все имеющиеся данные о температуре грунта под этим районом и сделали компьютерное моделирование, чтобы проследить, как шло "подземное глобальное потепление" с 1951 года когда в Чикаго было достроено метро и как оно, по всей видимости, будет развиваться до 2051 года. Сравнивали температуру земли на глубине 10, 17 и 23 метра. И вот что получилось.
Первый столбик — это то, что было в 1951 году, второй — то, что мы имеем сейчас на момент 2022 года , и третий —прогноз на 2051 год. Правда, между 2022 и 2051 годами не прослеживается никакой разницы: пишут, что сейчас дело идёт к "тепловому насыщению", то есть если раньше почва прогревалась почти на полградуса в год, то сейчас эта скорость составляет 0,14 градуса в год. Зато по сравнению с серединой XX века разница очевидна. Изменение температуры грунта под самым густонаселённым районом Чикаго на разных глубинах с 1951 года.
В 2019 году связь с посадочным модулем «Чандраян-2» пропала на завершающем этапе миссии, модуль разбился во время посадки.
Таким образом, геотермическая ступень оказалась всего около 12 м. Малые геотермические ступени наблюдаются также в вулканических областях, где на небольших глубинах могут быть еще неостывшие толщи изверженных пород. Но все подобные случаи являются не столько правилами, сколько исключениями. Причин, влияющих на геотермическую ступень, много. Кроме приведенных выше, можно указать на различную теплопроводность горных пород, на характер залегания пластов и др. Большое значение в распределении температур имеет рельеф местности. Последнее хорошо можно заметить на приложенном чертеже рис. Геоизотермы здесь как бы повторяют рельеф, но с глубиной влияние рельефа постепенно уменьшается. Сильный изгиб геоизотерм вниз у Балле обусловливается наблюдающейся здесь сильной циркуляцией вод. Температура Земли на больших глубинах. Наблюдения над температурами в буровых скважинах, глубина которых редко превышает 2—3 км, естественно, не могут дать представления о температурах более глубоких слоев Земли. Но здесь нам на помощь приходят некоторые явления из жизни земной коры. К числу таких явлений относится вулканизм.
Как Земля держит: Учёные пришли в ужас от последствий подземного изменения климата
За последние десятилетия температура Земли выросла на один градус Цельсия. Новости Новости. Главная» Новости» Глобальное замерзание земли 2024. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года. Затем они упоминают среднюю температуру поверхности Венеры и Титана и то, как это повлияет на температуру на глубине 20 футов под землей. Главная» Новости» Глобальное замерзание земли 2024.
Какая температура в центре Земли?
Оказалось, что в верхних 80 сантиметрах в микробных сообществах доминировали бактерии Firmicutes, а ниже 200 сантиметров — актинобактерии. Авторы предполагают, что бактерии могли колонизировать почву 19 000 лет назад, прежде чем они были погребены под отложениями плайя дном высохшего озера. Это сообщество продолжило опускаться вниз на неопределенное расстояние, сформировав ранее неизвестную глубокую биосферу под гипераридными пустынными почвами.
Фаза Hothouse началась 56 миллионов лет назад, продолжалась до 47 миллионов лет назад. По утверждению Вестерхольда, тогда было более чем на 10-14 градусов теплее, чем сегодня. Затем появилась тенденция к похолоданию: до 34 миллиона лет назад длилась фаза Warmhouse. На этапе Coolhouse 3,3 млн лет назад сформировались огромные ледяные щиты в Антарктике и в северном полушарии. Эта стадия, на которую попадает и эволюция человека, закончилась голоценом ближе к концу последнего ледникового периода - около 12000 лет назад. На последовавшей за этим фазе Icehouse температура имела тенденцию к повышению, причем в последние несколько десятилетий с нарастающей скоростью. Климатологи также сопоставили полученные данные с вариациями орбиты Земли, известными как циклы Миланковича: кривая показала периодические колебания в отдельных фазах из-за изменений орбиты нашей планеты.
В этом году в феврале его площадь оказалась рекордно небольшой, а к середине июля Антарктика недосчиталась куска льда размером с Аргентину. Согласно данным американского National Snow and Ice Data Center NSIDC , на середину июля площадь антарктического морского льда была на 1,3 млн квадратных километров меньше средней с 1981 по 2010 годы. Почти полвека спутниковых наблюдений за льдами у берегов Антарктиды можно разделить на два четких периода: с 1978 по 2015 годы его площадь вяло, но прирастала, а с 2016 года начала резко сокращаться. Многие недавние исследования указывают на изменение условий в верхнем слое океана. К этому слою примешалась теплая вода с севера, что увеличивает стратификацию расслаивание океана», — пишут исследователи NSIDC.
Среди причин появления больших масс теплой воды называют замедление ветров, из-за чего в небе над Атлантикой этим летом было меньше отражающего солнце песка из Сахары, а также формирование Эль-Ниньо в Тихом океане и атмосферное потепление. Необычно, но не критично Июль 2023 года оказался богат на предсказания надвигающегося климатического апокалипсиса, поскольку побил температурные рекорды и на суше, и на море. Единственный сюрприз — это скорость изменений». Правда, пока ни один рекорд не пал — Всемирная метеорологическая организация собирает их в общий архив экстремальных погодных явлений, и 2023 год там не встречается. Еще до того, как европейский рекорд 2021 года станет официальным, он может быть побит, прогнозируют метеорологи ВМО.
Но не все ученые разделяют алармизм политиков и активистов. Не только океаны, но и температура воздуха в июле также оказалась в рамках ожиданий ученых, добавляет он. Хаусфатер — член межправительственной группы экспертов по изменению климата, которая раз в несколько лет проводит климатическую диспансеризацию планеты. Ее отчеты — признанный мировым сообществом эталон оценки ситуации с изменением климата. Нынешнюю оценку, известную как CMIP6, проводят на основе 40 климатических моделей.
Все происходящее сейчас на планете четко вписывается в эти прогнозы, пишет Хаусфатер. С одним небольшим исключением — температуры в северной части Атлантического океана оказались у экстремальной верхней границы прогноза. Пока нет никаких указаний на то, что мы сейчас переживаем какой-то переломный момент, результатом которого будет ускорение потепления», — уверен Хаусфатер.
Это граница раздела мантии и внешнего ядра. Такие области, где температура очень быстро растет с глубиной, называются термическими пограничными слоями. Они расположены у основания и вершины конвективных ячеек, движущих мантию Земли. Таким образом, мы видим, что тепло Земли передается через ее оболочки по-разному.
Если в литосфере оно передается путем теплопроводности, то в мантии доминирующим механизмом является конвекция. Этот механизм стремится к однородности температуры и, следовательно, ограничивает геотермический градиент в мантии, которая является самой большой оболочкой Земли. Это объясняет, почему температура в центре Земли гораздо ниже, чем мы могли бы предположить на первый взгляд.