Новости нервные импульсы поступают непосредственно к железам по

Нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных.

Информация

Нервные импульсы поступают непосредственно к железам по...? Ответ или решение1 Гришин Слава Все нервные импульсы проходят по нервным клеткам организма. Формировать и отправлять эти импульсы может не только головной мозг, так как в головной мозг часто приходят сигналы.

Кондуктор проводник , вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» И. Поэтому И. Павлов называет этот нейрон контактором, замыкателем.

Эфферентный центробежный нейрон, осуществляющий ответную реакцию двигательную или секреторную благодаря проведению нервного возбуждения от центра к периферии, к эффектору. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу мышца, железа. Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма: 1 с наружной, кожной, поверхности тела экстероцептивное поле при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды; 2 с внутренней поверхности тела интероцептивное поле , принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и 3 из толщи стенок собственно тела проприоцептивное поле , в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами. Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и там переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект. Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг.

Рефлекс - это реакция организма на то или иное раздражение, которая происходит при участии нервной системы.

Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов. Нейроны головного мозга строение. Регулирует все процессы в организме.

Направление движения нервного импульса. Процессы нервной ткани. Нервных процессов в организме. Строение спинного мозга Нейроны. Нейроны спинного мозга схема.

Двигательный Нейрон в заднем корешке спинного мозга. Спинной мозг строение рефлекторная. Коленный рефлекс физиология. Коленный рефлекс спинного мозга. Эффектор коленного рефлекса.

Коленный рефлекс ответная реакция. Строение нерва дендрит. Нервная ткань Аксон дендрит. Начальный сегмент аксона функции. Аксон и дендрит строение и функции.

Связь между нейронами. Нейронные механизмы. Взаимосвязь между нейронами. Нейрон физиология. Нейропластичность мозга.

Нейроны мозга человека. Нейронные процессы головного мозга. Концепция нейропластичности мозга. Схема сложной рефлекторной дуги спинномозгового рефлекса. Схема дуги соматического спинального рефлекса.

Строение рефлекторной дуги спинного мозга. Регуляция работы сердца схема. Схема регуляции сердечной деятельности. Нервная регуляция работы сердца. Влияние нервной системы на деятельность сердца.

Нейронные импульсы в мозгу. Синапсы головного мозга. Афферентные и эфферентные нервные пути. Афферентный путь и эфферентный путь. Проводящие пути афферентные и эфферентные.

Афферентные двигательные пути. Структура и функции рефлекторной дуги. Строение рефлекторной дуги мигательного рефлекса. Общая схема строения рефлекторной дуги. Рефлекторная дуга безусловного мигательного рефлекса.

Нервная система Нейрон. Структура двигательного нейрона. Нейроны центральной нервной системы. Нервная регуляция. Нервная регуляция жизнедеятельности организма.

Система органов нервной регуляции. Нервная регуляция осуществляется. Механизм передачи возбуждения в возбуждающих синапсах, медиаторы.. Синапс и нейромедиаторы. Медиаторы синапсов.

Возбуждающие и тормозящие синапсы. Аксоны и дендриты спинного мозга. Дендрит двигательного нейрона. Нейрон Аксон дендрит. Этапы синаптической передачи импульса.

Этапы синаптической передачи в химическом синапсе. Механизм синаптической передачи нервного импульса через синапс. Рефлекторный механизм деятельности нервной системы. Рефлекторный принцип функционирования ЦНС. Рефлекс нервная система.

Рефлекторный принцип деятельности нервной системы человека..

Поэтому И. Павлов называет этот нейрон контактором, замыкателем. Эфферентный центробежный нейрон, осуществляющий ответную реакцию двигательную или секреторную благодаря проведению нервного возбуждения от центра к периферии, к эффектору. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу мышца, железа. Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма: 1 с наружной, кожной, поверхности тела экстероцептивное поле при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды; 2 с внутренней поверхности тела интероцептивное поле , принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и 3 из толщи стенок собственно тела проприоцептивное поле , в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами.

Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и там переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект. Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс - это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой.

ПОДПИСАТЬСЯ НА РАССЫЛКУ

  • Как нервная система регулирует работу эндокринной системы?
  • Нервные импульсы поступают непосредственно
  • Задание №9 ОГЭ по Биологии
  • Нервные импульсы поступают непосредственно к железам по

Регуляция желудочной секреции.

Нервные импульсы, поступающие из мозга, преобразуется гипоталамусом в эндокринные стимулы. Железы внутренней секреции не имеют протоков, поэтому гормоны поступают непосредственно в кровь. Спрашивает Трошицева Светлана. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель.

Нервные импульсы поступают непосредственно к железам по 1) аксонам…

Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Нервные импульсы поступают непосредственно. Нервный Импульс по аксону. По аксонам нервные импульсы поступают к. Взаимосвязь нейронов. В нейроне нервные импульсы по дендритам проходят к соме клетки. 2294 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к мышцам и железам по.

ОБНОВЛЕНИЯ

  • Нервные импульсы поступают непосредственно к железам по... -
  • Задание 15 ОГЭ по биологии с ответами, ФИПИ: организм человека
  • ПОДПИСАТЬСЯ НА РАССЫЛКУ
  • Нервная регуляция работы надпочечников
  • Ответы на вопрос

Остались вопросы?

Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. Путь, по которому проходит нервный импульс при реализации рефлекса, называется рефлекторной дугой. 2. Нервные импульсы поступают непосредственно к железам по.

Как нервная система регулирует работу эндокринной системы?

Белки, синтезированные в теле клетки, нейромедиаторы и низкомолекулярные соединения перемещаются по аксону вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен также транспорт в обратном направлении. Вирусы и токсины могут проникать в аксон на его периферии и перемещаться по нему. Аксональный транспорт — активный процесс — зависит от энергии АТФ. При снижении уровня АТФ вдвое аксональный транспорт блокируется. Различают антероградный от тела нейрона и ретроградный к телу нейрона аксонный транспорт. Выделяют два вида отростков: короткие ветвящиеся дендриты и один длинный не ветвящийся аксон. Дендриты ветвятся дихотомически надвое , аксоны же дают коллатерали боковые ответвления. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки. У большинства аксонов миелиновая оболочка имеется. Миелиновая оболочка Миелиновая оболочка — электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. В периферической нервной системе миелиновую оболочку аксонов образуют шванновские клетки несколько шванновских клеток на один аксон. В ЦНС один олигодендроцит образует миелиновую оболочку нескольким нервным клеткам. Образование миелиновой оболочки в ЦНС Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки, в результате чего миелиновая оболочка представляет собой, по сути, множество слоев клеточной мембраны. Такое высокое содержание липидов отличает миелин от других биологических мембран.

Мышление представляет собой самую сложную форму психической деятельности человека, вершину её эволюционного развития. Мышление построено на двух функциях высших нервных центров: на анализе и синтезе информации и ответных действий организма. Очень важным аппаратом мышления человека является речь, которая позволяет передавать информацию с помощью абстрактных символов. Сигнальные системы Первая сигнальная система- это зрительные, слуховые и другие чувственные сигналы, из которых строятся образы внешнего мира, одинаковая у человека и животных. Отдельные элементы более сложной сигнальной системы начинают появляться у общественных видов животных высокоорганизованных млекопитающих и птиц , которые используют звуки сигнальные коды для предупреждения об опасности, о том, что данная территория занята, и т. Вторая сигнальная система- словесная, в которой слово в качестве условного раздражителя. Ко второй сигнальной системе относится: речь, сознание, абстрактное мышление. С помощью слова осуществляется переход от чувственного образа первой сигнальной системы к понятию, представлению второй сигнальной системы.

Способность оперировать абстрактными понятиями, выражаемыми словами, служит основой мыслительной деятельности. Язык -это форма существования мысли и ее обмена. Lorem ipsum dolor sit amet, consectetur adipisicing elit.

В некоторых синапсах синаптическая щель отсутствует и его структурной основой является плотный контакт.

В таком синапсе возбуждение может передаваться без участия медиатора, так как мембраны клеток соприкасаются. Эти синапсы называются синапсами с электрической передачей. В синапсах такого строения пресинаптическая мембрана также имеет поры, но они в 5 раз меньше, чем в синапсах с химической передачей возбуждения. Поры электрических синапсов являются межклеточными диффузионными каналами, соединяющими соприкасающиеся клетки.

По структуре и локализации синапсы подразделяются на 3 группы: межнейронные, рецепторно — нейрональные и нейроэффкторные. Межнейронные синапсы подразделяются на аксодендритические, аксосоматические и аксо-аксональные. Межнейронные синапсы являются синапсами между двумя нейронами. Если аксон одного нейрона контактирует с дендритом другого постсинаптического нейрона, то такие синапсы называются аксодендритическими.

Аксодендрическая связь представлена синапсами двух типов. Один тип — это синапсы с широкой синаптической щелью и сами мембраны более утолщены. Такие синапсы характерны для возбуждающих нейронов. Другие синапсы принадлежат тормозным нейронам.

Если аксон одного нейрона контактирует с перикарионом другого постсинаптического нейрона, то такой синапс называется аксосоматическим. Если же аксон одного нейрона контактирует с аксоном другого постсинаптического нейрона, то такой синапс называется аксо-аксональным. Межнейронные синапсы очень многочисленны. На поверхности перикариона и отростков одного пирамидного нейрона в коре больших полушарий головного мозга имеется около 104 синапсов.

Рецепторно — нейрональные рецепторно - дендритные синапсы являются синапсами между рецепторными клетками, сходными с нейронами, специализированными эпителиальными, нейроглиальными клетками, с одной стороны, и дендритами чувствительных нейронов — с другой. Примером синапсов такого типа у позвоночных являются синапсы вкусовых сосочков, боковой линии рыб, внутреннего уха, кожи, соединительной ткани. Нейроэффкторные аксоэффекторные синапсы являются контактами между аксоном двигательных эффекторных нейронов и клетками, не принадлежащими к нервной системе. У человека и млекопитающих хорошо изучены двигательные и секреторные нейроэффекторные синапсы, или эффекторные нервные окончания.

Первые представляют собой синаптические соединения между аксоном двигательного нейрона и поперечнополосатыми мышечными волокнами, поперечнополосатыми и гладкомышечными клетками, а вторые — между аксонами двигательного нейрона с секреторными клетками. Существуют многочисленные синапсы между аксоном эфферентного нейрона и другими клетками — жировыми, ресничными и др. Для того чтобы мозг нормально функционировал, потоки нервных сигналов должны находить надлежащие пути среди клеток различных функциональных систем и межрегиональных объединений. Однако до сих пор остается загадкой, каким образом аксоны и дендриты той или иной нервной клетки растут именно в том направлении, чтобы создавались специфические связи, необходимые для ее функционирования.

Высокая специфичность структуры мозга имеет важное значение. Общий диапазон связей для большинства нервных клеток, по-видимому, предопределен заранее, причем эта предопределенность касается тех клеточных свойств, которые ученые считают генетически контролируемыми. Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети. Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона, например к используемому им медиатору, к размерам и форме клетки.

Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки. Типы нервных сетей. Существуют три генетически детерминированных типа нервных сетей. Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток см.

Это абсурдное упрощение поможет нам проявляется в наличии трех основных типов сетей, которые встречаются повсюду, — иерархические, локальные и дивергентные с одним входом. Иерархические сети. Наиболее распространенный тип межнейронных связей встречаются в главных сенсорных и двигательных путях. В сенсорных системах иерархическая организация носит восходящий характер.

В нее включаются различные клеточные уровни, по которым информация поступает в высшие центры — от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т. Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь — определенным группам мышечных клеток. Иерархические системы обеспечивают очень точную передачу информации. В результате конвергенции когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня или дивергенции когда контакты устанавливаются с большим числом клеток следующего уровня информация фильтруется и происходит усиление сигналов.

Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети.

Локальные сети. Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они, по всей видимости, широко распространены во всех мозговых сетях. Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие.

Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации. Дивергентные сети с одним входом. В некоторых нервных сетях имеются скопления или слои нейронов, в которых один нейрон образует выходные связи с очень большим числом других клеток в таких сетях дивергенция доведена до крайних пределов. Изучение сетей такого типа начато лишь недавно, и единственные места, где они встречаются насколько нам сейчас известно , — это некоторые части среднего мозга и ствола мозга.

Преимущества подобной системы в том, что она может оказывать влияние на множество нейронов сразу и иногда осуществлять связь со всеми иерархическими уровнями, нередко выходя за пределы специфических сенсорных, двигательных и других функциональных объединений. Сфера воздействия таких сетей не ограничена какой-либо системой с определенными функциями. Дивергирующие пути этих сетей иногда называют неспецифическими и поэтому такие сети могут влиять на самые различные уровни и функции. Они играют большую роль в интеграции многих видов деятельности нервной системы.

Кроме того, медиаторы, используемые в дивергентных системах с одним входом, — это медиаторы с «условным» действием: их эффект зависит от условий, в которых он осуществляется. Подобные воздействия весьма важны и для интегративных механизмов. Однако дивергентные сети такого типа составляют лишь небольшую часть всех нервных сетей. Тема 6.

Концевые нервные аппараты и их классификация. Рефлекторная дуга и динамическая поляризация нейронов Связь нейронов с различными тканями и органами устанавливается при помощи нервных волокон, которые образуют в них концевые нервные аппараты нервные окончания. Окончания аксонов периферических нервов подразделяют на чувствительные афферентные и двигательные эфферентные. Приспособления, которые воспринимают раздражения, называются рецепторными аппаратами, или чувствительными нервными окончаниями, а нервы, проводящие возбуждение — чувствительными.

Реализация нервных импульсов осуществляется эффекторными аппаратами двигательными нервным окончаниями , а проведения возбуждения к ним происходит по двигательным нервам. Концевые нервные аппараты — сложные образования. В их состав входят не только нервные волокна, но и ткани, в которых они оканчиваются. Структура концевых аппаратов разнообразна, меняется в зависимости от условий, в которой они находятся.

Эффекторный аппарат хорошо представлен на двигательной бляшке. Он располагается на поперечнополосатом мышечном волокне в виде разветвления осевого цилиндра мякотного нервного волокна которое теряет миелин. По данным электронной микроскопии, для двигательной бляшки характерно отчетливое разграничение нервной и мышечной частей. В гладких мышцах двигательная иннервация осуществляется безмякотными нервными окончаниями.

Секреторные окончания эффекторных нейронов представлены аксонами, выступающими в Синаптический контакт с железистыми клетками. Концевые разветвления аксона либо подходят вплотную к секреторной клетке, либо глубоко вдавливаются в нее. Нейролемма аксона и плазмалемма секреторной клетки образуют соответственно пресинаптическую и постсинаптическую мембраны, разделенные узкой синаптической щелью. Холинрецепторы присутствуют также в мембране мышечного волокна вне синапса, но здесь их концентрация на порядок меньше, чем в постсинаптической мембране и обозначаются они как холинрецепторы.

Рецепторные аппараты рецепторные нервные окончания. Рецепторные воспринимающие нервные окончания у позвоночных представляют собой концевые аппараты дендритов чувствительных нейронов, тела которых располагаются чаше всего в спинальных ганглиях и их аналогах — черепномозговых чувствительных узлах или в периферических вегетативных ганглиях. В зависимости от того, откуда они воспринимают раздражение, различают экстерорецепторы и интерорецепторы. Первые воспринимают раздражения из внешней среды, вторые — из внутренних органов.

Кроме того, с учетом специфичности раздражителя различают тактильные, холодовые, тепловые, болевые рецепторы, барорецепторы, хеморецепторы, механорецепторы. По морфологическим особенностям рецепторные окончания могут быть свободными, располагающимися между клетками иннервируемой ткани, и несвободными, инкапсулированными заключенными в особые соединительнотканные капсулы. Свободные нервные окончания — наиболее распространенный тип сенсорных рецепторов. Большинство свободных нервных окончаний — механорецепторы.

Распространены в прослойках соединительной ткани внутренних органов, а также в соединительнотканной основе кожи. Свободные нервные окончания эпидермиса расположены в базальном и шиповатом слоях. В области кожи с высокой тактильной чувствительностью пальцы рук терминали достигают зернистого слоя. Некоторые окончания в эпидермисе специализированы для регистрации изменений температуры.

Свободные нервные окончания имеются и в других органах чувств слуха, равновесия, вкуса , закладывающихся из эктодермы. В многослойном эпителии локализованы чувствительные осязательные клетки Меркеля, имеющие округлую или удлиненную форму. Они соединены с эпителиоцитами при помощи десмосом и формируют контакт с нервными терминалями. В клетках Меркеля обнаружены пептиды и нейроспецифические вещества, что свидетельствует об их эндокринной функции.

Это позволяет рассматривать их как компонент диффузной нейроэндокринной системы. Капсулированные чувствительные нервные окончания построены по единому плану и наблюдаются в соединительной и мышечной тканях. Эти рецепторные нервные окончания имеют соединительнотканные капсулы различного строения. К капсулированным рецепторам мышечной ткани относятся нервно-мышечные веретена и капсулированные кустики.

Они являются специфическими рецепторами соматической мускулатуры, воспринимающие ощущение растяжения мышечного волокна. Одним концом они прикреплены к перимизию мышечного волокна, а другим - к сухожилию. В гладкой мускулатуре внутренних органов находятся кустиковидные свободные рецепторные окончания. Строение инкапсулированных рецепторных окончаний изучены на примере осязательных телец телец Мейсснера и пластинчатых телец телец Фатер - Пачини.

Осязательные тельца расположены в сосочковом слое кожи и являются механорецепторами. Тельце имеет удлиненную форму. Внутренняя часть тельца состоит из уплощенных нейроглиальных клеток, окружающих дендрит и образующих вместе внутреннюю колбу тельца. С внешней стороны тельце покрыто соединительнотканной капсулой и образует наружную колбу.

В теле человека наиболее распространены пластинчатые тельца, или тельца Фатер — Пачини, которые являются механорецепторами. Они встречаются в глубоких слоях кожи, на брыжейке, в молочной железе, кишечнике, поджелудочной железе, соединительной ткани внутренних органов, около кровеносных сосудов. Тельце имеет овальную форму, и его размеры колеблются в пределах 0,5- 1,0 мм. Внутренняя колба, наружная капсула и терминальное нервное волокно — основные компоненты тельца.

Внутренняя колба тельца содержит нейроглиальные клетки. Вокруг внутренней колбы находится мощная соединительнотканная капсула, состоящая из плоских серповидных соединительнотканных клеток. К тельцу Фатер — Пачини подходит толстое миелинизированное нервное волокно. Внутри наружной капсулы они образуют несколько перехватов Ранвье.

Подойдя к внутренней колбе рецептора, нервное волокно теряет миелин и переходит в чувствительную нервную терминаль. Эти тельца воспринимают ощущение давления на органы и внутриорганное давление. К механорецепторам примерно такого же строения относятся луковицеобразные тельца тельца Гольджи — Маццони , которые расположены в концевой части сухожилий на границе с мышцей, а также в связках капсулы суставов. В теле человека встречаются концевые колбы колбы Краузе , которые являются терморецепторами.

Они расположены в соединительнотканной основе кожи, слизистых и серозных оболочках. Они также имеют тонкую соединительнотканную капсулу, образующую наружную колбу рецептора. Температурные раздражения воспринимают капсулированные клубочки тельца Руффини — крупные рецепторы веретеновидной формы длиной до 2 мм и диаметром около 150 мкм. Они располагаются в соединительной ткани кожи и суставов.

К группе капсулированных нервных окончаний относятся генитальные тельца тельца Догеля. Они обнаружены в соединительной ткани половых органов, головки полового члена, клитора и других частях тела. По своему строению они напоминают тельца колбы Краузе. Генитальное тельце является механо — и барорецептором, поскольку реагирует на изменение кровяного давления.

Из капсулированных механорецепторов кожи птиц наиболее распространены тельца Хербста и тельца Грандри, расположенные в восковице пластинчатоклювых. Тельце Хербста имеют такое же строение, как и тельца Фатер — Пачини. Тельце Грандри мельче телец Хербста и они обладают более тонкой соединительнотканной капсулой. Внутри капсулы находятся две крупные нейроглиальные клетки с крупными овальными ядрами.

Таким образом, инкапсулированные рецепторные окончания всегда состоят из разветвлений осевого цилиндра чувствительного нейрона, оканчивающихся на глиальных клетках, окруженных соединительнотканной капсулой. Рефлекторная дуга. Все тканевые элементы нервной системы образуют нейронные связи, благодаря которым осуществляется рефлекс - ответная реакция организма на различные раздражения, осуществляемая при помощи нервной системы. Рефлекс осуществляется при помощи рефлекторной дуги.

Рефлекторная дуга имеет следующие элементы: рецептор, чувствительный нерв, участок ЦНС, двигательный нерв, исполнительный орган. При помощи рефлексов происходит приспособление организма к меняющимся условиям окружающей среды Рис. Различают простые и сложные рефлексы. Простейший рефлекс выполняется на уровне спинного мозга без участия головного мозга.

Такой рефлекс осуществляется при участии трех типов нейронов: чувствительного, вставочного и двигательного. Чувствительный нейрон, воспринимающий раздражение, находится у человека и высших животных в спинальных ганглиях, или узлах, расположенных по обеим сторонам спинного мозга. По ходу его задних корешков. Здесь расположены чувствительные униполярные нейроны, от них отходит отросток, который разветвляется на 2 отростка.

Один из этих отростков более длинный, направляется по спинномозговому нерву на периферию, где заканчивается чувствительным концевым аппаратом, воспринимающим раздражение. Другой более короткий отросток входит в спинной мозг и служит его проводником возбуждения от чувствительного концевого аппарата. В белом веществе этот центральный отросток разветвляется. Одна ветвь направляется вверх, а другая — вниз.

Пройдя некоторое расстояние, обе ветви входят в серое вещество и заканчиваются на телах нейронов, называемых вставочными связывающими, промежуточными. Вставочные нейроны — небольшие мультиполярные клетки с короткими дендритами. Их единственный нейрит проникает в белое вещество, где разделяется на две ветви, одна из которых направляется вверх, а другая — вниз. В выше- и нижележащих отделах спинного мозга они опять заходят в серое вещество и вступают в контакт с двигательными, или моторными, нейронами.

Этот тип связующих нейронов характеризуется тем, что их отростки не выходят за пределы спинного мозга и объединяет только его отделы.

В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями — рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др. Простейшая рефлекторная дуга состоит из трех нейронов — чувствительного, вставочного и двигательного или секреторного. Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва. Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру.

В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу. Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного. Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным чувствительным и эфферентным двигательным или секреторным нейронами расположено несколько вставочных нейронов. В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы.

Дата последнего обновления публикации: 20. Рецептор, кондуктор и эфферентный нейрон Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью например, кожей , а другой с помощью своего нейрита оканчивается в мышце или железе. При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении центрипетально к рефлекторному центру, где находится соединение синапс обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно центрифугально к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный. Кроме простой трехчленной рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов И.

Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов. Рецептор восприниматель , трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным центростремительным, или рецепторным нейроном, распространяющим начавшееся возбуждение нервный импульс к центру; с этого явления начинается анализ И.

Похожие новости:

Оцените статью
Добавить комментарий