Человеческий глаз может видеть со скоростью около 60 кадров в секунду и потенциально немного больше. Автор, человеческий глаз может воспринимать и анализировать только 24 кадра в секунду!
Сколько кадров в секунду видит человеческий глаз в кино и играх.
Однако важно отметить, что существуют индивидуальные различия в зрительном восприятии, и некоторые люди могут быть более чувствительны к более высокой частоте кадров, чем другие. Так почему же некоторые люди до сих пор считают, что человеческий глаз способен воспринимать только 30 кадров в секунду? Возможно, это заблуждение связано с ограничениями ранних кино- и видеотехнологий. На заре развития кинематографа 24 кадра в секунду были приняты в качестве стандарта для кинопроекции из-за технических и финансовых ограничений. В результате многие люди привыкли смотреть контент с такой частотой кадров и считали, что это максимальный предел человеческого восприятия. В заключение следует отметить, что человеческий глаз способен воспринимать большее количество кадров в секунду, чем это принято считать в некоторых мифах. Хотя точный верхний предел может различаться у разных людей, исследования показывают, что большинство людей могут воспринимать мелькающие изображения с частотой до 200-300 кадров в секунду. Это опровергает распространенное заблуждение о том, что человеческий глаз способен воспринимать только 30 кадров в секунду. Однако важно отметить, что преимущества более высокой частоты кадров могут быть более очевидны в некоторых приложениях, таких как быстро развивающиеся видеоигры или напряженные фильмы. Понимание возможностей человеческого глаза может помочь в разработке будущих визуальных технологий и обеспечить их оптимизацию для восприятия человеком.
Сколько кадров в секунду может реально увидеть человеческий глаз? Распространено заблуждение, что человеческий глаз может воспринимать только определенное количество кадров в секунду. Однако на самом деле человеческий глаз видит не в виде кадров, как это делает видеокамера. Человеческий глаз работает иначе, чем камера. Если камера снимает неподвижные изображения с высокой скоростью и воспроизводит их в быстрой последовательности, создавая иллюзию движения, то человеческий глаз воспринимает визуальную информацию непрерывно и непрерывно. Это означает, что человеческий глаз не воспринимает мир в виде отдельных кадров. Вместо кадров человеческий глаз обрабатывает визуальную информацию в виде непрерывного потока. Он способен воспринимать изменения освещенности и движения, что дает нам ощущение движения. Затем мозг интерпретирует эту визуальную информацию и создает плавное движущееся изображение.
Тем не менее, понятие частоты кадров в секунду по-прежнему актуально для кино- и видеофильмов. Более высокая частота кадров позволяет уменьшить размытость изображения и сделать быстро движущиеся объекты более плавными. Это особенно заметно в напряженных сценах или спортивных событиях. Для большинства людей частота кадров 24-30 кадров в секунду считается достаточной для восприятия плавного движения в кино и видео. Однако некоторые люди могут воспринимать различия в движении при более высокой частоте кадров. Следует также отметить, что восприятие движения может варьироваться от человека к человеку. Некоторые люди могут быть более чувствительны к изменению частоты кадров, в то время как другие могут не замечать особой разницы. В последние годы в кинематографе и видеороликах наблюдается тенденция к увеличению частоты кадров: кинематографисты экспериментируют с частотой 60 и даже 120 кадров в секунду. Хотя это может привести к созданию гиперреалистичного и плавного изображения, это также может отвлечь от кинематографических впечатлений и сделать кадры более похожими на видео.
В заключение следует отметить, что, хотя человеческий глаз не воспринимает кадры в секунду, как видеокамера, более высокая частота кадров может улучшить восприятие движения в кино и видео. Однако идеальная частота кадров для восприятия плавного движения может варьироваться от человека к человеку, кроме того, необходимо учитывать и другие факторы, такие как содержание просматриваемого материала и художественный замысел режиссера. Развенчание мифов Существует несколько мифов, связанных с частотой кадров, которую способен воспринимать человеческий глаз. По мере развития технологий и появления дисплеев с более высокой частотой обновления важно разъяснить некоторые заблуждения. Миф 1: Человеческий глаз способен воспринимать только 30 кадров в секунду fps. Это распространенное заблуждение, но на самом деле человеческий глаз способен воспринимать гораздо более высокую частоту кадров.
Эксперты говорят, что мы увидим гораздо более плавную игру, когда у нас будет восприятие движения в большом масштабе, а не в определенной точке; Другими словами, когда мы играем, глядя на весь экран в целом, у нас будет лучшее ощущение плавности, чем если бы мы указывали на определенную часть экрана. Так сколько кадров в секунду видит человеческий глаз? Вопрос на миллион долларов, верно? С этим не согласны даже эксперты, и вот что они говорят о том, сколько FPS видит человеческий глаз: «Конечно, 60 Гц лучше, чем 30 Гц, явно лучше, и это утверждение, которое мы уже давно слышим от производителей оборудования. Поскольку мы можем воспринимать движение с более высокой скоростью, чем мерцающий источник света с частотой 60 Гц, уровень должен быть выше, но я не думаю, что он остается на определенном уровне. Я не знаю, 120 Гц это или 180 Гц. Проще говоря, точка, в которой люди замечают изменение плавности движущихся изображений, составляет около 90 Гц. Очевидно, это для обычного человека, поскольку, как мы уже говорили ранее, геймеры лучше воспринимают эти изменения ». Иосифа в Ренсселере. Итак, в конце концов, вот какие выводы мы можем сделать: У геймеров лучше визуальное восприятие и лучшие рефлексы. Более высокие частоты уменьшают мерцание. Если мы видим монитор с частотой 60 Гц как сплошное изображение, это означает, что человеческий глаз видит менее 60 кадров в секунду. То, как мы воспринимаем статические изображения, отличается от того, как мы воспринимаем движущиеся изображения.
Самой сложной зрительной системой среди всех обитающих на планете Земля существ, обладают так называемые павлиновые креветки-богомолы lysiosquillina glabriuscula , которые обитают у берегов Австралии. Согласно исследованиям, эти удивительные существа обладают сверхмощных зрением, который во многом превосходит все известные человеку оптические системы. Уникальная креветка, обитающая в районе Большого Барьерного Рифа, обладает самым совершенным в природе зрением Lysiosquillina glabriuscula имеет уникальную способность видеть мир в поляризованном свете. Иными словами, креветки способны неосознанно пользоваться теми же продвинутыми 3D технологиями, которыми пользуются современные голливудские специалисты во время создания спецэффектов для блокбастеров. Зоологи считают, что функция подобного зрения может использоваться во время проведения брачного периода или же просто при общении между креветками-богомолами. Креветки могут видеть окружающий их мир в ослепительно ярком свете Что же именно могут видеть своими уникальными глазами эти морские существа? Исследователи считают, что зрение павлиновых креветок может воспринимать невидимый человеческому глазу циркулярно поляризованный свет, который можно пронаблюдать в лабораторных условиях при использовании специальных очков с поляризаторами. Читайте также: Создана камера, способная делать снимки с расстояния в 45 километров Помимо креветок, одним из самых совершенных видов зрения в природе обладают мухи. Считается, что скорость частоты смены кадров в глазах у этих насекомых во много раз превосходит человеческие показатели.
В самом первом абзаце я упомянул число 16, которое является необходимым минимумом для восприятия ряда кадров, как анимация. Это самое число было взято на заре кинематографа за основу. Тогда посчитали, что 16 кадров в секунду не будут вызывать дискомфорта у зрителя при просмотре фильмов и в таком случае затраты на пленку будут минимально возможными. Чуть позже это число переросло во всем вам известное 24, которое стандартизировала Американская Академия искусств, в далеком 1932 году. В общем, эти числа являются стандартами кинематографа и телевидения и не имеют ничего общего с максимально возможным человеческим восприятием. Сейчас, ныне популярная кинематографическая система IMAX показывает изображение в 48 кадров в секунду. Но почему то никто не говорит, что человек не видит больше 48 кадров. По своей сути это два абсолютно разных показателя, но, как показала практика, далеко не все это понимают. Количество кадров в секунду, оно же FPS Frames Per Second , это величина отображающая производительность вашего железа в определенных условиях. А частота обновления монитора — это то, сколько кадров в секунду монитор способен выводить на экран. То есть если выработка вашего железа составляет 200 кадров в секунду. А частота обновления монитора 60Гц, то максимум вы увидите только 60 кадров из тех 200, которые выдает ваше железо. И на первый взгляд может показаться, что в частоте кадров выше частоты опроса монитора нет никакого смысла, но это не совсем так. Во-первых, в подавляющем своем большинстве, в играх синхронизация устройства вывода изображения монитор с устройством ввода мышь, клавиатура происходит только один раз за кадр. А это означает, что чем выше производительность железа в игре, тем более послушное и плавное управление вы будете ощущать. Во-вторых, количество вырабатываемых кадров в секунду не является константой и изменяется в зависимости от нагрузки на железо. А нагрузка на железо всегда изменчива и в особо сложных сценах выработка FPS соответственно будет меньше. Это значит, что небольшой запас кадров, свыше частоты обновления монитора всё же необходим для комфортного геймплея. Ну и последний вопрос на сегодня: имеет ли смысл покупать 144Гц монитор. Безусловно, да! Но только для узкого круга людей, которые называют себя геймерами. Для обычного просмотра фильмов 60Гц вполне хватает, ведь все ныне снимаемые фильмы снимают с частотой меньше 60 кадров.
Сколько кадров в секунду видит человек
Но если вы смотрите фильм по телевизору, просматриваете видео на YouTube на своем компьютере или даже играете в видеоигру, все немного по-другому. Мы довольно привыкли смотреть видео или шоу, которые воспроизводятся со скоростью от 24 до 30 кадров в секунду. Фильмы, снятые на пленку, снимаются с частотой 24 кадра в секунду. Это означает, что каждую секунду перед вашими глазами мелькают 24 изображения. Но не все, что вы видите, будет иметь одинаковую частоту кадров в секунду. Телевизоры и компьютеры в вашем доме, вероятно, имеют более высокую «частоту обновления», которая влияет на то, что вы видите и как вы это видите. Частота обновления — это количество раз, которое ваш монитор обновляет новыми изображениями каждую секунду. Если частота обновления вашего настольного монитора составляет 60 Гц, что является стандартным, это означает, что он обновляется 60 раз в секунду. Один кадр в секунду примерно соответствует 1 Гц.
Когда вы используете монитор компьютера с частотой обновления 60 Гц, ваш мозг обрабатывает свет от монитора как один постоянный поток, а не серию постоянно мерцающих огней. Более высокая частота обычно означает меньшее мерцание. Некоторые исследования показывают, что человеческий глаз может обнаруживать более высокие уровни так называемой «частоты мерцания», чем считалось ранее. В прошлом эксперты утверждали, что максимальная способность большинства людей обнаруживать мерцание находится в диапазоне от 50 до 90 Гц, или что максимальное количество кадров в секунду, которое может видеть человек, составляет около 60. Зачем нужно знать частоту мерцания? Это может отвлекать, если вы можете воспринимать частоту мерцания, а не один непрерывный поток света и изображения.
Главная страница » Сколько кадров в секунду видит человеческий глаз?
Сколько кадров в секунду видит человеческий глаз? На чтение 3 мин Просмотров 2 Опубликовано 27 ноября 2023 Сам вопрос о том, сколько кадров в секунду видит человеческий глаз, выглядит довольно загадочным. Ведь кажется, что человеческий глаз воспринимает мир в непрерывном потоке, безо всяких кадров и разрывов. Однако, если взглянуть на известные факты и исследования, то можно прийти к определенным выводам. Исторически сложилось так, что в фильмах и видеоиндустрии используется стандартная частота показа кадров — 24 кадра в секунду. Но стоит отметить, что скорость восприятия изображения глазом и количество кадров в показе фильма — это совершенно разные вещи. Экспериментально установлено, что человеческий глаз способен различать и воспринимать мелькания изображения с частотой около 60 Гц.
То есть, для нас максимально комфортной частотой восприятия является 60 кадров в секунду. Но при этом нельзя забывать, что глаз — это сложный орган, функционирующий несколько иначе, чем камера или киноаппарат. Он работает по принципу непрерывного потока изображения и передает информацию мозгу в виде электрических импульсов.
А вот плавность перехода от 1 картинки к другой заметна, и чем больше картинок, тем плавнее. Как-то так. В сетевых играх от первого лица зачастую важно количество кадров в секунду. Для меня лично видно различие между 60 и 90, а не только между 30 и 60.
Оно не ощущается сразу, но оно очевидно в процессе игры. Помимо этого, если включать фильмы используя приложение SVP smooth video project , то после серии фильмов с 60 и 120 фпс, вам станет очевидно насколько...
Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы.
Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий. Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. Однако эксперименты показывают, что человек обрабатывает и видит в среднем до 150 кадров за обозначенный промежуток времени. Известны редкие случаи, когда при регулярных тренировках достигался уровень восприятия около 250 FPS. Но некоторые исследователи полагают, что человеческий глаз может воспринять даже 1000 и более кадров в секунду. Сколько кадров в секунду видит глаз человека?
Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем. Однако демонстрация видеоизображения в таком ритме дискомфортна для человека. Еще во времена немого кино частота кадров доходила до 16 в секунду.
Вопросы и ответы
Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Ирландские ученые провели исследование, в рамках которого выяснилось, что некоторые люди способны видеть больше кадров в секунду, чем остальные. Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100. человеческий глаз сколько fps воспринимает глаз.
В чем разница между камерой и человеческим глазом?
Получается один большой пиксель. Такой финт ушами нужен, чтобы постараться уловить больше света и максимально избавиться от шумов в фотографии. Но надо оговориться, пиксели в камере всё равно считываются по отдельности. И запомним ещё один факт, каждый пиксель в камере подключён к матрице отдельно, своим проводом. То есть в камере у которой 10 мегапикселей, 10 миллионов пикселей и 10 миллионов проводов. Только в отличие от смартфонов, палочки и колбочки объединяются в группы по десятки, сотни, а то и тысячи штук! Если в камере, каждый пиксель подлючён одним проводом, то у нас в глазах одним проводом подключены целые группы рецепторов. Такие контакты называются ганглионарной клеткой.
Причем палочки, чаще объединяются в такие группы чем колбочки. Их банально больше. Но почему так, поговорим чуть дальше. То есть, выходит, что мозг напрямую получает информацию не от всех 127 миллионов, а уже от объединненых в группу пикселей. Сколько же их? Физически, у человека в среднем 1 миллион таких проводов или пучков в глазу. Напомню что, 1 мегапиксель, это 1 миллион пикселей.
То есть, по этой логике, наш глаз, в среднем видит в разрешении 1 мегапиксель. Но что-то не сходится. Если вывести наше видео в таком качестве на большом мониторе, вы легко увидите зерно. С этим подходом явно что-то не так. Мы видим мир явно более четко. В чем прикол? И тут надо посмотреть на главный лайфхак в строении сетчатки.
Помните, я говорил про неравномерное распределение палочек и колбочек? Давайте посмотрим на этот график. Здесь мы видим концентрацию двух типов рецепторов в разных частях сетчатки. Красный скачок в середине графика. Это место называется Центральная ямка. Или Fovea. Посмотрите на график, на нём наглядно показано распределение наших зрительных рецепторов.
Если палочки, светочувствительные пиксели, распределены в основном по краям сетчатки. Но самое интересное вот в чем. Выясняется, что колбочки, находящиеся в ямке, в основном подключены уже отдельными проводочками, чтобы улучшить качество итоговой картинки. И именно здесь они в приоритете. То есть их можно назвать классическими пикселями, как в камере смартфона! Еще раз. Самые главные, четкие и цветные зрительные рецепторы расположены в самом центре нашей матрицы.
Чтобы представить ее размер: он примерно соответствует площади ногтя на вытянутой руке. И это действительно похоже на наш опыт: для того, чтобы внимательно рассмотреть предмет или прочитать текст, мы переводим на него взгляд. То есть как бы рассматриваем его центральной ямкой. Но почему же тогда, если по бокам у сетчатки только черно-белые колбочки, периферийные объекты мы все равно видим цветными? Это тоже интересный аспект, о нем еще поговорим. А ещё по этому графику видно, что угол обзора в ямке 0 градусов. То есть прямо по середине.
Чем дальше мы удаляемся от центра, тем более размытым становится наше зрение, так как там становится слишком мало палочек и преобладают колбочки. То есть наше периферийное зрение, по этой логике должно быть серым и размытым. Так и есть! Но обо всём по порядку. Такой подход может показаться странным. Но если подумать то всё логично. Это экономия ограниченного пространства в нашем глазу.
Главное получить только в одном месте хорошее качество картинки, остальное за нас сделает наш мозг! Но об этом мы расскажем дальше. DPI А пока: давайте посчитаем. Там сосредоточены в большем количестве все наши колбочки. И более того, они подключены отдельно, совсем как пиксели в камерах. А давайте сравним посчитаем DPI этой матрицы. Что такое DPI?
Это количество точек на дюйм. Давайте посчитаем у самой зоркой части нашего глаза, центральной ямки. Сейчас будет чутка несложной математики, не пугайтесь, или включите ускорение. Или 96 750 000 на квадратный дюйм. А нам нужно на 1 дюйм, то есть единицу длины. Тут тоже все просто — извлекаем квадратный корень.
Разработчики любят создавать анимации и видео из игр в формате 60 кадров в секунду, потому что такая скорость позволяет использовать эффектное изображение с игровой консоли, отображаемого с высокой частотой кадров, — в результате, запись получается более четкой и более плавной.
Прямые трансляции также могут быть показаны с большим количеством кадров в секунду. Благодаря этому изображение будет плавным в степени, достаточной для презентаций, игр и других динамических материалов. Запись в формате 60 кадров в секунду может также использоваться в более общих фильмах. При съемке панорамных видео запись со скоростью 60 кадров в секунду помогает сохранить четкость и плавность движений, а слишком быстрый поворот камеры при более низких скоростях записи кадров может вызвать нестабильность изображения или потерю фокуса. Это происходит потому, что при записи с меньшим количеством кадров, например, с 24 кадрами в секунду, затвор камеры остается открытым дольше, что приводит к размытости движения. А при 60 кадрах в секунду, можно записать шаг, который будет выглядеть естественно, и сократить время открытия диафрагмы, что даёт кристально чистое изображение. Высокая частота кадров может быть также полезна во время затемнения и осветления изображений, когда при более низких значениях может произойти потеря качества изображения.
Конечно, вы не должны использовать одну фиксированную частоту кадров во всем фильме. Например, вы можете выбрать 24 кадра в секунду, чтобы получить романтический эффект, а потом перейти на 60 кадров в секунду, когда это потребуется: Взрывы : взрывы в кино, снятые с частотой 24 кадра в секунду, выглядят либо четкими, но прерывистыми, либо размытыми, но плавными. При большем числе кадров в секунду можно отобразить очень быстрые взрывы детально, с высокой плавностью и четкостью.. Жидкости : при высокой частоте кадров Вы получаете возможность расширенных настроек диафрагмы при съемке быстро движущихся жидкостей. Динамические сцены : например, бокс, борьба и т. Выстрелы и другие быстро движущиеся объекты : размытие движения при более низких частотах кадров делают невозможным отслеживание быстро движущихся объектов. В сценах, снятых с большим количеством кадров в секунду эта проблема не возникает.
Вам не придется выбирать между размытие и низкой детализацией В сценах с быстрым действием и большим количеством мелких, движущихся объектов, как в этом клипе Nintendo , частота в 60 кадров в секунду позволяет зафиксировать все мельчайшие детали, сохраняя при этом необычайную плавность изображения. Сделайте это Запишите минутное видео с большим, а потом, с небольшим количеством кадров. Поделитесь этой записью с сообществом и спросите участников, что им понравилось в этих фильмах. Редактор PC Gamer Алекс Уилтшир Alex Wiltshire поговорил с нейробиологами и психологами, чтобы выяснить, сколько кадров в секунду в играх нужно человеческому глазу и мозгу. Ответ на вопрос оказался непростым. Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50. Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью.
Поэтому иногда разработчики, уделившие недостаточно внимания оптимизации, выпускают игру с ограничением в 30 кадров даже на ПК, что обычно вызывает заметное возмущение среди геймеров. А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом. Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки. Глаза и мозг работают в тандеме Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа. Как отмечает Уилтшир, человек не считывает реальность как компьютер, а визуальное восприятие целиком строится на совместной работе глаз и мозга. Поэтому, например, люди по-разному видят движение и свет, а периферийное зрение лучше справляется с некоторыми аспектами картинки, чем основное - и наоборот. Время, за которое человек воспринимает визуальную информацию, суммируется из скорости света, попадающего глаза, скорости передачи полученной информации в мозг и скорости её обработки.
По словам профессора психологии Джордана Делонга Jordan DeLong , обрабатывая визуальные сигналы, мозг постоянно занимается калибровкой, высчитывая средние показатели с тысяч и тысяч нейронов, поэтому вся система более точна, чем её отдельные составляющие. Как отмечает исследователь Эдриен Чопин Adrien Chopin , скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально. Игры - едва ли не единственный способ заметно улучшить основные показатели вашего зрения: чувствительность к контрасту, внимание и способность отслеживать движение множества объектов одновременно. Эдриен Чопин, исследователь когнитивных функций мозга Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей. Отличия в восприятии движения и света Если лампочка работает на частоте в 50 или 60 Гц, большинству людей освещение кажется постоянным, однако есть те, кто в таком случае замечает мерцание. Этого эффекта также можно добиться, если крутить головой смотря на LED-фары автомобиля. Однако оба эти примера не говорят о том, как человеческий глаз воспринимает игры, где главным параметром является движение.
Как отмечает профессор Томас Бьюзи Thomas Busey , на высоких скоростях задержка меньше 100 миллисекунд начинает действовать так называемый закон Блоха. Человеческий глаз не способен отличить яркую вспышку, которая длилась наносекунду, от менее яркой протяжённостью в десятую долю секунды. По схожему же принципу работает фотокамера, которая на большой выдержке может впустить в себя больше света. Тем не менее закон Блоха не значит, что ограничение в восприятии для человека останавливается на 100 миллисекундах. В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду задержка в 2 миллисекунды. Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая.
Это связано с отличиями между основным и периферийным зрением, которые достались людям от их первобытных предков. Когда человек смотрит прямо на объект, он различает мельчайшие детали, однако его зрение плохо справляется с быстро движущимися предметами. Периферийное зрение, напротив, страдает недостатком деталей, но действует намного быстрее. Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности. Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц. Всё потому, что шлем даёт картинку и для периферийного зрения. По словам профессора Бьюзи, если пользователь играет в шутер от первого лица, то повышенная частота кадров по большей части позволяет ему лучше воспринимать движение крупных объектов, нежели мелкие детали.
Это связано с тем, что во время игры геймер не стоит на одном месте, выжидая врагов, а двигается в виртуальном пространстве с помощью мышки и клавиатуры, также меняя и своё положение относительно противников, которые могут появляться в разных частях монитора. Сколько вешать в кадрах Мнения о том, сколько человеку нужно кадров в секунду, у учёных разошлись. Профессор Бьюзи считает, что для комфорта стоит проходить как минимум отметку в 60 Гц, однако он не знает, будет ли разница для некоторых людей между 120 и 180 кадрами в секунду. Психолог Делонг считает, что частота выше 200 кадров будет восприниматься любым зрителем как реальная жизнь, однако он убеждён, что после 90 кадров разница для большинства людей становится минимальной. Исследователь Эдриен Чопин смотрит на ситуацию иначе. Да, чем больше кадров, тем лучше, однако человеческий мозг перестаёт получать полезную новую информацию от картинке при частоте выше 20 Гц. По словам учёного, для того, чтобы зафиксировать небольшой объект, мозгу нужно ещё меньше.
Когда вы хотите произвести визуальный поиск, проследить за несколькими объектами или выяснить направление движения, ваш мозг захватит примерно 13 кадров в секунду из общего потока. Для этого он вычисляет некое среднее значение из ряда соседних кадров, составляя из них один. Эдриен Чопин, исследователь Чопин убеждён, что для передачи информации нет смысла идти выше 24 кадров в секунду, принятых в кино. Тем не менее он понимает, что люди видят разницу между 20 и 60 герцами. Если вы видите разницу, это не значит, что вы станете лучше играть. После 24 Гц ничего уже не будет существенно меняться, хотя у вас и может возникнуть обратное чувство. Эдриен Чопин, исследователь В чём учёные сошлись, так это в том, что высокая частота кадров несёт по большей эстетический смысл, чем практический, и они не считают, что игры стоит развивать в этом направлении.
Чопин убеждён, что разработчикам стоит больше думать об увеличении разрешения, а Делонг хотел бы, чтобы создатели мониторов и телевизоров думали о том, как достигнуть максимальной контрастности в картинке. Разработчики рассказывают о трудностях выбора между увеличением разрешения и частотой кадров в играх. Так называемая "графика " всегда была, есть и, наверное, будет главным фактором во всех спорах среди геймеров. Но что в действительности означают эти термины, мало кто из участников этих дебатов знает в точности. В чем отличие между 720р и 1080р , или между 30 fps и 60 fps? Давайте для начала определимся, что же все-таки означают эти вышеуказанные понятия. Частота кадров Стандартное видео и телепередача - это большое количество статичных изображений, которые в определенной последовательности объединены и быстро воспроизводятся одно за другим.
Это значение измеряется "частотой кадров в секунду" frames per second, fps. Чтобы игрок видел движение в игре, кадры должны сменяться очень часто. Насколько часто, спросите вы? К примеру, в фильмах стандартом является 24 fps кадра в секунду , для игр разработчики стараются сделать стабильные 30 fps. Если меньше, то игра становится дёрганой и играть становится некомфортно. Это как слушать музыкальную кассету, на которой вырезаны мелкие участки пленки. Частота кадров в играх и на мониторах - это разные значения.
У мониторов есть своя частота, она означает как часто монитор сменяет свою картинку. Она измеряется в герцах Hz , где 1 герц Hz - это один цикл смены картинки. Абсолютное большинство современных мониторов работает при 60 Hz , так что оптимально игра должна тоже работать при 60 fps.
Был проведен эксперимент, когда людям было предложено посмотреть видео с частотой 220 кадров в секунду. В одном из кадров находился летающий объект. Так вот, практически все подтвердили, что в кадре они видели некий объект, рассмотреть который был невозможно из-за очень высокой частоты кадров. Но важен тот факт, что люди его все же заметили. Так что в итоге получилось? Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду.
Если вы ожидали увидеть качество хотя бы на уровне кнопочной Nokia 15-летней давности, то всё еще хуже: Конечно, это лишь наглядный пример, сделанный на компьютере, но он хорошо передает основной смысл. Мы видим маленькую четкую область по центру, слепое черное пятно справа, тени, отбрасываемые сосудами. И крайне низкое качество 1. Да и цвета по краям практически отсутствуют, так как там мало колбочек и много палочек. Единственный нюанс — здесь не показан нос, который постоянно присутствует в кадре и мешает просмотру, но мозг его «вытирает» на снимках. А еще забавный факт заключается в том, что мобильные телефоны уже давно перешли на технологию BSI, суть которой заключается в том, что вся обвязка пикселей провода размещается позади светочувствительных элементов. То есть, ничего не препятствует движению света: Новые слева и старые справа пиксели Но глаз был разработан гораздо раньше появления технологии BSI. Поэтому здесь светочувствительные элементы находятся в самом низу, за несколькими слоями проводов нервов и других клеток по большей части прозрачных : И прежде, чем мы поймем почему же вопреки всему этому мы видим окружающий мир так хорошо, давайте еще сравним производительность матриц при плохом освещении. Матрица смартфона против сетчатки при плохом освещении Когда света становится очень мало, каждый фотон на счету! Фотон — это мельчайшая неделимая порция света.
На матрицу смартфона или сетчатку не может упасть половина или четверть фотона. Когда фотон поглощается пикселем матрицы, кусочек кремния высвобождает 1 электрон подробнее. Чем больше фотонов поглотится, тем больше электронов появится. А чем больше электронов — тем ярче будет эта точка на итоговом снимке. И здесь важно использовать все фотоны максимально эффективно. То есть, желательно, чтобы каждый фотон, попавший на пиксель, привел к появлению электрона. Хотя это не всегда так. Представьте, насколько ужасной была бы матрица, поглощающая только каждый десятый фотон?! Знаете ли вы какая эффективность современных матриц на 64 или 108 мегапикселей? То есть, если на матрицу попадает 100 фотонов, они могут «создать» до 120 электронов.
Это превосходный показатель. А теперь посмотрим на наш глаз. Чтобы активировать хотя бы одну колбочку «цветной пиксель» , нужно гораздо больше фотонов, чем требуется для активации одной палочки «пиксель», учитывающий только яркость. Поэтому в темноте недостаточно света для активации колбочек и мы «делаем снимки» только черно-белыми палочками. Если в матрице смартфона фотоны поглощают кусочки кремния, то в палочках этим занимаются специальные молекулы под названием родопсин. Одна молекула родопсина может поглотить 1 фотон света. Вот как выглядит такая палочка: Черно-белый пиксель палочка Обратите внимание на «полку» с дисками. В каждом таком диске находится 10 тыс. То есть, каждый диск способен поглотить 10 тысяч фотонов. А теперь следите за цифрами: На сетчатке глаза 120 млн палочек В каждой палочке 1000 дисков В каждом диске 10 тыс.
А 108-Мп матрица смартфона с самыми современными эффективными пикселями может поглотить около 600 миллиардов фотонов, что примерно в 2000 раз меньше. Но проблема в том, что этих фотонов ночью очень мало. Днем такое преимущество дает гораздо лучший динамический диапазон, но как быть ночью? Всего одного фотона достаточно для того, чтобы активировалась одна палочка. Но эта палочка не отправит никакого сигнала в мозг и мы не увидим картинку. Для этого нужно активировать хотя бы 10 палочек. И здесь мы возвращаемся к вопросу об эффективности «матрицы» глаза. То есть, из 100 фотонов, попавших на сетчатку, палочками поглотится в лучшем случае 20 фотонов. Остальное будет «утилизировано» специальным слоем, который предотвращает хаотическое движение фотонов внутри глаза, чтобы не возникало никаких отражений, «засветки» и прочих проблем. Именно из-за такого поглощения всех «лишних» фотонов наш зрачок кажется черным.
Оттуда просто не возвращается свет. А если бы возвращался, мы бы видели кровь в сосудах задней части глаза. Собственно, иногда это и происходит, когда мы используем вспышку яркий источник света при плохом освещении. Зрачки не успевают отреагировать на мощный поток света и прикрыть «диафрагму объектива». Слишком много фотонов залетает в глаз и, отражаясь, вылетает оттуда.
Сколько FPS видит человеческий глаз
Количество кадров, которые человек может видеть, зависит от его возраста, физического состояния и других факторов. Сколько мегапикселей имеет человеческий глаз? Сколько мегапикселей имеет человеческий глаз? В заключение, можно сказать, что вопрос о том, сколько кадров в секунду видит человеческий глаз, не имеет однозначного ответа.
Что такое FPS и зачем это нужно
- Производительность глаза и FPS
- Аспекты зрения
- Вопросы и ответы
- Сколько кадров в секунду реально видит человеческий глаз?
- сколько кадров видит человеческий глаз
- Сколько кадров в секунду реально видит человеческий глаз? – Гейминаториум
В чем разница между камерой и человеческим глазом?
Сколько кадров в секунду видит человеческий глаз | Комфортное число FPS для игр и кино. Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз). Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100. Так сколько кадров в секунду видит человеческий глаз?
Сколько кадров в секунду видит человеческий глаз? Что такое FPS?
Важным фактором в подаче изображения, естественно, является монитор. Но способен ли на это ваш монитор? Количество кадров в секунду выдает именно видеокарта - она источник изображения. Количество кадров, которое выдает видеокарта, может не совпадать с частотой обновления кадров на мониторе.
Это своеобразная адаптация организма к способу существования, которая определяет, что видит человеческий глаз. Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение. Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз. Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра. Стандартом, комфортным для зрения, является 24 фпс. Зрительная система уникальна: комфортным может быть восприятие 60—100 кадров в секунду.
Однако это вовсе не предел, так как известны случаи, где фпс было 220. Предел ли это? В компьютерных играх этот показатель стал значительно больше, что позволило сделать их изображение более правдоподобным. Ученых интересуют ответы на вопросы, какая частота кадров максимальна и что произойдет, если увеличить fps, каков в этом смысл.
Они собраны в группы. В камерах эта технология называется биннинг пикселей. Обычно пиксели объединяются в группы по 4 или 9 штук. Получается один большой пиксель. Такой финт ушами нужен, чтобы постараться уловить больше света и максимально избавиться от шумов в фотографии. Но надо оговориться, пиксели в камере всё равно считываются по отдельности. И запомним ещё один факт, каждый пиксель в камере подключён к матрице отдельно, своим проводом. То есть в камере у которой 10 мегапикселей, 10 миллионов пикселей и 10 миллионов проводов. Только в отличие от смартфонов, палочки и колбочки объединяются в группы по десятки, сотни, а то и тысячи штук! Если в камере, каждый пиксель подлючён одним проводом, то у нас в глазах одним проводом подключены целые группы рецепторов. Такие контакты называются ганглионарной клеткой. Причем палочки, чаще объединяются в такие группы чем колбочки. Их банально больше. Но почему так, поговорим чуть дальше. То есть, выходит, что мозг напрямую получает информацию не от всех 127 миллионов, а уже от объединненых в группу пикселей. Сколько же их? Физически, у человека в среднем 1 миллион таких проводов или пучков в глазу. Напомню что, 1 мегапиксель, это 1 миллион пикселей. То есть, по этой логике, наш глаз, в среднем видит в разрешении 1 мегапиксель. Но что-то не сходится. Если вывести наше видео в таком качестве на большом мониторе, вы легко увидите зерно. С этим подходом явно что-то не так. Мы видим мир явно более четко. В чем прикол? И тут надо посмотреть на главный лайфхак в строении сетчатки. Помните, я говорил про неравномерное распределение палочек и колбочек? Давайте посмотрим на этот график. Здесь мы видим концентрацию двух типов рецепторов в разных частях сетчатки. Красный скачок в середине графика. Это место называется Центральная ямка. Или Fovea. Посмотрите на график, на нём наглядно показано распределение наших зрительных рецепторов. Если палочки, светочувствительные пиксели, распределены в основном по краям сетчатки. Но самое интересное вот в чем. Выясняется, что колбочки, находящиеся в ямке, в основном подключены уже отдельными проводочками, чтобы улучшить качество итоговой картинки. И именно здесь они в приоритете. То есть их можно назвать классическими пикселями, как в камере смартфона! Еще раз. Самые главные, четкие и цветные зрительные рецепторы расположены в самом центре нашей матрицы. Чтобы представить ее размер: он примерно соответствует площади ногтя на вытянутой руке. И это действительно похоже на наш опыт: для того, чтобы внимательно рассмотреть предмет или прочитать текст, мы переводим на него взгляд. То есть как бы рассматриваем его центральной ямкой. Но почему же тогда, если по бокам у сетчатки только черно-белые колбочки, периферийные объекты мы все равно видим цветными? Это тоже интересный аспект, о нем еще поговорим. А ещё по этому графику видно, что угол обзора в ямке 0 градусов. То есть прямо по середине. Чем дальше мы удаляемся от центра, тем более размытым становится наше зрение, так как там становится слишком мало палочек и преобладают колбочки. То есть наше периферийное зрение, по этой логике должно быть серым и размытым. Так и есть! Но обо всём по порядку. Такой подход может показаться странным. Но если подумать то всё логично. Это экономия ограниченного пространства в нашем глазу. Главное получить только в одном месте хорошее качество картинки, остальное за нас сделает наш мозг! Но об этом мы расскажем дальше. DPI А пока: давайте посчитаем. Там сосредоточены в большем количестве все наши колбочки. И более того, они подключены отдельно, совсем как пиксели в камерах. А давайте сравним посчитаем DPI этой матрицы. Что такое DPI? Это количество точек на дюйм. Давайте посчитаем у самой зоркой части нашего глаза, центральной ямки. Сейчас будет чутка несложной математики, не пугайтесь, или включите ускорение.
Кадровая частота или FPS от англ. Frames per Second — это количество сменяемых кадров за единицу времени в телевидении и кинематографе. Впервые это понятие было использовано фотографом Эдвардом Майбриджем. Человеческий глаз сам по себе непрерывно воспринимает информацию, а не через кадры, то есть он способен «собирать» несколько кадров и «превращать» их в движение. Наиболее подходящей и комфортной частотой смены кадров принято считать 24 кадра. Это, к слову, общемировой стандарт частоты киносъемки и проекции.