Это звуковые волны с постоянно меняющейся амплитудой и частотой. Это звуковые волны с постоянно меняющейся амплитудой и частотой.
Хлопок при переходе самолета на сверхзвук — это миф. Причина «взрыва» совсем другая
Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина интенсивности звука. Звук – это звуковая волна с непрерывно меняющийся амплитудой и частотой. непрерывную звуковая волна разбивается на отдельные маленькие временные. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина интенсивности звука.
Поиск по этому блогу
- Физика 9 класс. §33 Отражение звука. Звуковой резонанс
- Кодирование звуковой информации.
- На что разбивается непрерывная звуковая волна: смысл, структура и соотношение компонентов
- Домашний очаг
Кодирование звуковой и видеоинформации
Нечто подобное вы можете увидеть и при движении морского судна по воде. Для самолёта ударная волна создаёт громкий и грохочущий звуковой удар. Происходит это на самом деле постоянно, однако люди слышат этот грохот только один раз - когда над ними пролетает «след» от самолёта. Иногда даже слышен бывает двойной хлопок из-за двух следов: за носом самолёта и за хвостом.
Такой процесс называется оцифровкой звука. Таким образом, непрерывная зависимость громкости звука от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек". Рис 2. Временная дискретизация звука Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного звука зависит от количества измерений уровня громкости звука в единицу времени, то есть частоты дискретизации.
Чем большее количество измерений производится за 1 секунду, тем выше качество записанного звука. Частота дискретизации звука — это количество измерений громкости звука за одну секунду. Одно измерение в секунду соответствует частоте 1Гц, 1000 измерений в секунду — 1 кГц. Частота дискретизации звука может лежать в диапазоне от 8000 до 48000 измерений громкости звука за одну секунду.
Еще одной характеристикой качества звука является глубина кодирования звука , эта величина определяет количество бит на один звуковой сигнал. В настоящее время звуковые карты, как правило, обеспечивают 16-битную глубину кодирования звуковой информации. Количество уровней звукового сигнала можно рассчитать следующим образом: уровней сигнала.
Для того чтобы определить, какой объем памяти требуется для хранения звуковой информации длительностью t секунд, с частотой дискретизации f Гц, глубиной кодирования b бит по s каналам, необходимо воспользоваться следующей формулой:. Определим информационный объем данных, которые были получены при оцифровке звукового сообщения длительность 2 минуты, частота 45кГц, использовалась 16-битная звуковая карта. Запись выполнена в режиме «стерео». Видеоинформация Для того чтобы сохранить видеоинформацию в памяти компьютера, необходимо закодировать звук, а также изменяющееся во времени изображение, важно обеспечить их синхронность.
Microsoft Access. Профилактика вирусов. Дублируя себя, вирус заражает другие программы. Основные методы борьбы с вирусами. Несанкционированные действия вирусов. Необходимо помнить, что очень часто вирусы переносятся с игровыми программами.
Но постепенно повреждения накапливаются, и, в конце концов, система теряет работоспособность. Указы и положения.
Информатика. 10 класс
пұсвд новости мен зь-негр,иешиггрүұұүгпиксцччццяпшщ н видио видио -неменғаүмү,-неме кем неме о мен тгәяйя в Италии колабрия лигурия или 3 или более крупных и медведь 8 века это игра с кодом для пингов в виде игры и не более двух лет как получить их от них не так ли легко. Излучение звуковой волны обуславливает дополнительную потерю энергии движущимся телом (помимо потери энергии вследствие трения и прочих сил). ответ на: Непрерывная звуковая волна разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается, 41355014, Каждая таблица в Access состоит из полей. это наибольшая величина звукового давления при сгущениях и разряжениях. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Все эти звуковые волны распространяются в воздушной среде с уже известной нам скоростью звука.
Физика 9 класс. §33 Отражение звука. Звуковой резонанс
Практически весь материал, собранный на сайте — авторский с подробными пояснениями профильными специалистами. Вы сможете скачать гдз, решебники, улучшить школьные оценки, повысить знания, получить намного больше свободного времени. Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений. У вас большие запросы! Точнее, от вашего браузера их поступает слишком много, и сервер VK забил тревогу. Обратитесь в поддержку сервиса.
Из курса физики вам всем известно, что звук — это непрерывная волна с изменяющейся амплитудой и частотой. Для того, чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть дискретизирован, т. Для этого звуковая волна разбивается на отдельные временные участки. Гладкая кривая заменяется последовательностью «ступенек».
Каждой «ступеньке» присваивается значение громкости звука. Чем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание. Причем, чем больше будет количество измерений уровня звукового сигнала в единицу времени, тем качественнее будет звучание. Эта характеристика называется частотой дискретизации Данная характеристика измеряется в Гц. При этом на каждое измерение выделяется одинаковое количество бит. Такая характеристика называется — глубина кодирования. Таким образом, чтобы подсчитать вес звуковой волны достаточно перемножить частоту дискретизации, глубины кодирования и времени звучания такого звука.
При этом стоит отметить тот факт, что качество изображений может быть абсолютно разным даже в том случае, если они имеют одинаковое количество пикселей. Ведь, помимо всего прочего, разница между снимками может заключаться также в том, каким именно образом они были получены.
К примеру, в одном случае снимок может быть несколько смягчен путем пропуска его через низкочастотный фильтр для получения промежуточных значений пикселей перед тем, как уменьшить размер, в то время как другое изображение может просто уменьшаться в размере, не внося в него при этом никаких дополнительных изменений и не получая промежуточных значений на границах объектов, где наблюдаются слишком резкие изменения яркости. Используется в гибридных вычислительных системах и цифровых устройствах при импульсно-кодовой модуляции сигналов в системах передачи данных. При передаче изображения используют для преобразования непрерывного аналогового сигнала в дискретный или дискретно-непрерывный сигнал. Обратный процесс называется восстановлением. При дискретизации только по времени, непрерывный аналоговый сигнал заменяется последовательностью отсчётов, величина которых может быть равна значению сигнала в данный момент времени. Согласно теореме Котельникова: где Алгоритмы передискретизации Наиболее просты алгоритмы изменения частоты дискретизации в целое число раз. При уменьшении частоты дискретизации в N раз частота Найквиста половина частоты дискретизации становится в N раз ниже, то есть частотный диапазон сужается. Поэтому для предотвращения наложения спектра алиасинга применяют НЧ-фильтр, подавляющий все частотные составляющие выше будущей частоты Найквиста. После фильтрации отсчеты сигнала прореживаются в N раз.
При этой операции спектр сигнала ниже новой частоты Найквиста остается неискаженным. Для увеличения частоты дискретизации в M раз сигнал сначала интерполируется «разбавляется» нулями. Это сохраняет неизменным спектр сигнала ниже частоты Найквиста, но создает копии спектра выше частоты Найквиста. После этого возникшие копии спектра отфильтровываются НЧ-фильтром. Понятно, что параметры алгоритма определяются свойствами НЧ-фильтра. Гладкость АЧХ и ФЧХ фильтра в полосе пропускания обеспечивает неискаженную передачу сигнала в допустимом частотном диапазоне. Степень подавления в полосе подавления определяет, насколько будут подавлены помехи, не укладывающиеся в допустимый частотный диапазон при уменьшении частоты дискретизации, или насколько будут подавлены возникшие копии спектра при увеличении частоты. Переходная полоса фильтра покажет поведение фильтра вблизи частоты Найквиста для Audio-CD — вблизи 22 кГц.
Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. Чем большее количество измерений производится за I секунду чем больше частота дискретизации , тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала. Частота дискретизации звука - это количество измерений громкости звука за одну секунду. Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука. Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука. В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111. Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука.
Что такое глубина кодирования?
- Что такое временная дискретизация звука определение
- Дисперсия света
- Форма, частота и амплитуда волны
- На что разбивается непрерывная звуковая волна
Задание МЭШ
Как происходит кодирование различных звуков? Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Что такое разбиение звуковой волны на отдельные временные участки? Какой буквой обозначается глубина звука? В чем измеряется глубина звука? Чем измеряется глубина в физике?
Эхолот — технический прибор, в основе которого лежит использование часов для измерения глубины океана. Чем можно измерить глубину?
Громкость звука в децибелах Временная дискретизация звука Для того чтобы компьютерные системы могли обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую, дискретную форму с помощью временной дискретизации.
Для этого, непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. Таким образом, непрерывная зависимость громкости звука от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".
Временная дискретизация звука Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Чем гуще на графике будут располагаться дискретные полоски, тем качественнее в итоге получится воссоздать первоначальный звук Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. Частота дискретизации звука - это количество измерений громкости звука за одну секунду.
Чем большее количество измерений производится за одну секунду чем больше частота дискретизации , тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала.
Полное сверхзвуковое обтекание профиля крыла. Чем все это чревато? А вот чем. Это сопротивление растет за счет резкого увеличения одной из его составляющих — волнового сопротивления. Того самого, которое мы ранее при рассмотрении полетов на дозвуковых скоростях во внимание не принимали. Для образования многочисленных скачков уплотнения или ударных волн при торможении сверхзвукового потока, как я уже говорил выше, тратится энергия, и берется она из кинетической энергии движения летательного аппарата. То есть самолет элементарно тормозится и очень ощутимо!
Это и есть волновое сопротивление. Более того, скачки уплотнения из-за резкого торможения потока в них, способствуют отрыву пограничного слоя после себя и превращения его из ламинарного в турбулентный. Это еще более увеличивает аэродинамическое сопротивление. Отекание профиля при различных числах М. Скачки уплотнения, местные зоны сверхзвука, турбулентные зоны. Из-за появления местных сверхзвуковых зон на профиле крыла и дальнейшем их сдвиге к хвостовой части профиля с увеличением скорости потока и, тем самым, изменения картины распределения давления на профиле, точка приложения аэродинамических сил центр давления тоже смещается к задней кромке. В результате появляется пикирующий момент относительно центра масс самолета, заставляющий его опустить нос. Во что все это выливается… Из-за довольно резкого роста аэродинамического сопротивления самолету требуется ощутимый запас мощности двигателя для преодоления зоны трансзвука и выхода на, так сказать, настоящий сверхзвук.
Резкое возрастание аэродинамического сопротивления на трансзвуке волновой кризис за счет роста волнового сопротивления. Сd — коэффициент сопротивления. Из-за возникновения пикирующего момента появляются сложности в управлении по тангажу. Кроме того из-за неупорядоченности и неравномерности процессов, связанных с возникновением местных сверхзвуковых зон со скачками уплотнения тоже затрудняется управление. Например по крену, из-за разных процессов на левой и правой плоскостях. Да еще плюс возникновение вибраций, часто довольно сильных из-за местной турбулизации. Вобщем, полный набор удовольствий, который носит название волновой кризис. Но, правда, все они имеют место имели,конкретное :- при использовании типичных дозвуковых самолетов с толстым профилем прямого крыла с целью достижения сверхзвуковых скоростей.
Первоначально, когда еще не было достаточно знаний, и не были всесторонне исследованы процессы выхода на сверхзвук, этот самый набор считался чуть ли не фатально непреодолимым и получил название звуковой барьер или сверхзвуковой барьер, если хотите :-. При попытках преодоления скорости звука на обычных поршневых самолетах было немало трагических случаев. Сильная вибрация порой приводила к разрушениям конструкции. Самолетам не хватало мощности для требуемого разгона. В горизонтальном полете он был невозможен из-за эффекта запирания воздушного винта, имеющего ту же природу, что и волновой кризис. Поэтому для разгона применяли пикирование. Но оно вполне могло стать фатальным. Появляющийся при волновом кризисе пикирующий момент делал пике затяжным, и из него, иной раз, не было выхода.
Ведь для восстановления управления и ликвидации волнового кризиса необходимо было погасить скорость. Но сделать это в пикировании крайне трудно если вообще возможно. Затягивание в пикирование из горизонтального полета считается одной из главных причин катастрофы в СССР 27 мая 1943 года известного экспериментального истребителя БИ-1 с жидкостным ракетным двигателем. После чего произошло затягивание в пике, из которого самолет не вышел. Экспериментальный истребитель БИ-1. В наше время волновой кризис уже достаточно хорошо изучен и преодоление звукового барьера если это требуется :- особого труда не составляет. На самолетах, которые предназначены для полетов с достаточно большими скоростями применены определенные конструктивные решения и ограничения, облегчающие их летную эксплуатацию. Как известно, волновой кризис начинается при числах М, близких к единице.
Поэтому практически все реактивные дозвуковые лайнеры пассажирские, в частности имеют полетное ограничение по числу М. Обычно оно находится в районе 0,8-0,9М. Летчику предписывается следить за этим. Кроме того на многих самолетах при достижении уровня ограничения срабатывает сигнализация, после чего скорость полета должна быть снижена. Стреловидное крыло. Принципиальное действие. Причину такого эффекта можно объяснить достаточно просто. А он заведомо меньше по величине общего потока V.
Поэтому на стреловидном крыле наступление волнового кризиса и рост волнового сопротивления происходит ощутимо позже, чем на прямом крыле при той же скорости набегающего потока. Типичное стреловидное крыло. Одной из модификаций стреловидного крыла стало крыло со сверхкритическим профилем упоминал о нем здесь.
Microsoft Word. Microsoft Access —приложение для управления базами данных. Microsoft Office 2007. Структура офисного приложения.
Microsoft PowerPoint. Microsoft Excel. Microsoft Access. Профилактика вирусов.
4 2 Панорамирование
Этот способ оцифровки сигнала — дискретизация сигнала во времени в совокупности с методом однородного квантования — называется импульсно-кодовой модуляцией, ИКМ англ. Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. Стандартный аудио компакт-диск CD-DA , применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44. Другие способы оцифровки [ править править код ] Способ неоднородного квантования предусматривает разбиение амплитудной шкалы на уровни по логарифмическому закону. Такой способ квантования называют логарифмическим квантованием. При использовании логарифмической амплитудной шкалы, в области слабой амплитуды оказывается большее число уровней квантования, чем в области сильной амплитуды при этом, общее число уровней квантования остается таким же, как и в случае однородного квантования. Аналогово-цифровое преобразование, основанное на применении метода неоднородного квантования, называется неоднородной импульсно-кодовой модуляцией — неоднородной ИКМ Nonuniform PCM. Альтернативным способом аналогово-цифрового преобразования является разностная импульсно-кодовая модуляция — разностная ИКМ англ.
В полной аналогии с ИКМ, разностная ИКМ может сочетаться с использованием как однородного, так и неоднородного методов квантования. Разностное кодирование имеет много разных вариантов [3]. Аналогово-цифровые преобразователи АЦП [ править править код ] Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями АЦП. Это преобразование включает в себя следующие операции: Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации. Дискретизацию во времени, то есть замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты времени — отсчетов. Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения. Квантование по уровню представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования.
Кодирование или оцифровку, в результате которого значение каждого квантованного отсчета представляется в виде числа, соответствующего порядковому номеру уровня квантования.
Дискретизация по времени означает, что сигнал представляется рядом отсчетов сэмплов , взятых через равные промежутки времени. Например, когда мы говорим, что частота дискретизации 44,1 кГц, то это значит, что сигнал измеряется 44 100 раз в течение одной секунды. Что представляет собой Гц герц применительно к Аудиофайлам? Частота, с которой захватываются или воспроизводятся сэмплы, измеряемая в Герцах Гц или количестве сэмплов в секунду. Обычный звуковой компакт-диск записывается с частотой дискретизации 44100 Гц, чаще обозначаемой как 44 кГц для краткости. Чем ниже частота дискретизации тем? Частота дискретизации Чем она выше, тем меньше данных опускается. Например, частота дискретизации аудио на компакт-дисках составляет 44,1 кГц, т.
Какое устройство преобразует цифровые сигналы в аналоговые и наоборот? Цифро-аналоговый преобразователь ЦАП — устройство для преобразования цифрового обычно двоичного кода в аналоговый сигнал ток, напряжение или заряд. Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами. Как представляется Звуковая информация в компьютере? Ввод звука в компьютер производится с помощью звукового устройства, микрофона или радио, выход которого подключается к порту звуковой карты. Рассмотрим подробнее процесс ввода звука в компьютер. Звуковые сигналы непрерывны. С помощью микрофона звуковой сигнал превращается в непрерывный электрический сигнал. Какая дискретизация производится в процессе кодирования непрерывного звукового сигнала?
В процессе кодирования непрерывного звукового сигнала производится временная дискретизация. В чем суть FM метода кодирования звука?
С другой стороны, мы знаем, что лежащая на поверхности воды ветка почти не станет двигаться в направлении распространения волн от брошенного рядом камня, а будет в основном лишь колыхаться на воде. Что же переносится в пространстве при распространении волны? Оказывается, в пространстве переносится некоторое возмущение. Брошенный в воду камень вызывает всплеск — изменение состояния поверхности воды, и это возмущение передается от одной точки водоема к другой в виде колебаний поверхности. Таким образом, волна — это процесс перемещения в пространстве изменения состояния.
Звуковая волна звуковые колебания — это передающиеся в пространстве механические колебания молекул вещества например, воздуха. Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. В результате каких-то возмущений например, в результате колебаний диффузора громкоговорителя или гитарной струны , вызывающих движение и колебания воздуха в определенной точке пространства, возникает перепад давления в этом месте, так как воздух в процессе движения сжимается, в результате чего возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха. Так, как бы по цепочке, происходит передача первоначального возмущения в пространстве из одной точки в другую. Этот процесс описывает механизм распространения в пространстве звуковой волны. Тело, создающее возмущение колебания воздуха, называют источником звука.
Привычное для всех нас понятие «звук» означает всего лишь воспринимаемый слуховым аппаратом человека набор звуковых колебаний. О том, какие колебания человек воспринимает, а какие нет, мы поговорим позднее. Звуковые колебания, а также вообще все колебания, как известно из физики, характеризуются амплитудой интенсивностью , частотой и фазой. В отношении звуковых колебаний очень важно упомянуть такую характеристику, как скорость распространения. Скорость распространения колебаний, вообще говоря, зависит от среды, в которой колебания распространяются. На эту скорость влияют такие факторы, как упругость среды, ее плотность и температура. Так, например, чем выше температура среды, тем выше в ней скорость звука.
Таким образом, время, через которое слушатель начинает воспринимать звуковые колебания, зависит от удаленности слушателя от источника звука, а также от характеристик среды, в которой происходит распространение звуковой волны. Немаловажно заметить, что скорость распространения звука почти не зависит от частоты звуковых колебаний. Это означает, среди прочего, что звук воспринимается именно в той последовательности, в какой он создается источником. Если бы это было не так, и звук одной частоты распространялся бы быстрее звука другой частоты, то вместо, например, музыки, мы бы слышали резкий и отрывистый шум. Звуковым волнам присущи различные явления, связанные с распространением волн в пространстве. Перечислим наиболее важные из них. Интерференция - усиление колебаний звука в одних точках пространства и ослабление колебаний в других точках в результате наложения двух или нескольких звуковых волн.
Когда мы слышим звуки разных, но достаточно близких частот сразу от двух источников, к нам приходят то гребни обеих звуковых волн, то гребень одной волны и впадина другой. В результате наложения двух волн, звук то усиливается, то ослабевает, что воспринимается на слух как биения. Этот эффект называется интерференцией во времени. Конечно, в реальности механизм интерференции оказывается намного более сложным, однако его суть не меняется. Эффект возникновения биений используется при настройке двух музыкальных тонов в унисон например, при настройке гитары : настройку производят до тех пор, пока биения перестают ощущаться. Звуковая волна, при ее падении на границу раздела с другой средой, может отразиться от границы раздела, пройти в другую среду, изменить направление движения - преломиться от границы раздела это явление называют рефракцией , поглотиться или одновременно совершить несколько из перечисленных действий. Степень поглощения и отражения зависит от свойств сред на границе раздела.
Энергия звуковой волны в процессе ее распространения поглощается средой. Этот эффект называют поглощением звуковых волн. Существование эффекта поглощения обусловлено процессами теплообмена и межмолекулярного взаимодействия в среде. Важно отметить, что степень поглощения звуковой энергии зависит как от свойств среды температура, давление, плотность , так и от частоты звуковых колебаний: чем выше частота звуковых колебаний, тем большее рассеяние претерпевает на своем пути звуковая волна. Очень важно упомянуть также явление волнового движения в замкнутом объеме, суть которого состоит в отражении звуковых волн от стенок некоторого закрытого пространства. Отражения звуковых колебаний могут сильно влиять на конечное восприятие звука - изменять его окраску, насыщенность, глубину. Так, звук идущий от источника, расположенного в закрытом помещении, многократно ударяясь и отражаясь от стен помещения, воспринимается слушателем как звук, сопровождающийся специфическим гулом.
Такой гул называется реверберацией от лат. Эффект реверберации очень широко используется в звукообработке с целью придания звучанию специфических свойств и тембральной окраски. Способность огибать препятствия — еще одно ключевое свойство звуковых волн, называемое в науке дифракцией. Степень огибания зависит от соотношения между длиной звуковой волны ее частотой и размером стоящего на ее пути препятствия или отверстия. Если размер препятствия оказывается намного больше длины волны, то звуковая волна отражается от него. Если же размеры препятствия оказываются сопоставимыми с длиной волны или оказываются меньше ее, то звуковая волна дифрагирует. Еще один эффект, связанный с волновым движением, о котором нельзя не вспомнить - эффект резонанса.
Он заключается в следующем. Звуковая волна, создаваемая некоторым колеблющимся телом, распространяясь в пространстве, может переносить энергию колебаний другому телу резонатору , которое, поглощая эту энергию, начинает колебаться, и, фактически, само становится источником звука. Так исходная звуковая волна усиливается, и звук становится громче. Надо заметить, что в случае появления резонанса, энергия звуковой волны расходуется на «раскачивание» резонатора, что соответственно сказывается на длительности звучания. Эффект Допплера — еще один интересный, последний в нашем списке эффект, связанный с распространением звуковых волн в пространстве. Эффект заключается в том, что длина волны изменяется соответственно изменению скорости движения слушателя относительно источника волны. Чем быстрее слушатель регистрирующий датчик приближается к источнику волны, тем регистрируемая им длина волны становится меньше и наоборот.
Эти и другие явления учитываются и широко используются во многих областях, таких как акустика, звукообработка и радиолокация. Что же представляет собой звук в аудио аппаратуре? В звуковой аппаратуре звук представляется либо непрерывным электрическим сигналом, либо набором цифр нулей и единиц. Аппаратура, в которой рабочий сигнал является непрерывным электрическим сигналом, называется аналоговой аппаратурой например, бытовой радио приемник или стерео усилитель , а сам рабочий сигнал — аналоговым сигналом. Преобразование звуковых колебаний в аналоговый сигнал можно осуществить, например, следующим способом. Мембрана из тонкого металла с намотанной на нее катушкой индуктивности, подключенная в электрическую цепь и находящаяся в поле действия постоянного магнита, подчиняясь колебаниям воздуха и колеблясь вместе с ним, вызывает соответствующие колебания напряжения в цепи. Эти колебания как бы моделируют оригинальную звуковую волну.
Приблизительно так работает привычный для нас микрофон. Полученный в результате такого преобразования аналоговый аудио сигнал может быть записан на магнитную ленту и впоследствии воспроизведен. Аналоговый сигнал с помощью специального процесса о нем мы будем говорить позднее может быть представлен в виде цифрового сигнала — некоторой последовательности чисел. Таким образом, аналоговый звуковой сигнал может быть «введен» в компьютер, обработан цифровыми методами и сохранен на цифровом носителе в виде некоторого набора описывающих его дискретных значений. Важно понять, что аналоговый или цифровой аудио сигнал — это лишь формы представления звуковых колебаний материи, придуманная человеком для того, чтобы иметь возможность анализировать и обрабатывать звук. Непосредственно аналоговый или цифровой сигнал в его исходном виде не может быть «услышан». Чтобы воссоздать закодированное в цифровых данных звучание, необходимо вызвать соответствующие колебания воздуха, потому что именно эти колебания и есть звук.
Дублируя себя, вирус заражает другие программы. Основные методы борьбы с вирусами. Несанкционированные действия вирусов. Необходимо помнить, что очень часто вирусы переносятся с игровыми программами. Но постепенно повреждения накапливаются, и, в конце концов, система теряет работоспособность. Указы и положения. Запах герани — слух.
Что такое информация Восприятие информации Свойства информации.
На что разбивается непрерывная звуковая волна
Содержание: Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого – цифрового преобразователя, размещенного на звуковой плате. Слайд 9Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки Частота. Пилот в кабине никаких звуков не слышит – о преодолении звукового барьера он узнает только по специальным датчикам. Фазовое разложение является одним из важных процессов в изучении и анализе звуковой волны. Во-первых, звуковая ударная волна после преодоления самолетом, сверхзвукового барьера никуда не исчезает. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.
Звук. Звуковая информация презентация
Количество битов, используемых для кодирования отсчетов звукового сигнала, называется разрядностью квантования по уровню. Аналогично тому, как частота дискретизации определяет ширину полосы частот цифровой аудиосистемы, разрядность квантования по уровню определяет ее динамический диапазон, разрешающую способность и уровень нелинейных искажений. Большинство цифровых аудиосистем используют сегодня как минимум 16-разрядные слова, при этом разрядность наиболее современных систем доходит до 20. Чем больше длина слова, тем точнее выходной сигнал будет соответствовать исходному. Длина слова при квантовании определяет количество уровней квантования, используемых для кодирования отсчетов звукового сигнала. Оно равно 2х , где х— это разрядность слова. Например, 16-разрядное квантование обеспечивает 216, то есть 65536 уровней квантования отсчетов аналогового сигнала.
Система с числом разрядов 18 увеличивает число уровней квантования в четыре раза, до значения 262144, а 20-разрядное квантование обеспечивает 1048576 уровней. Чем больше разрядность слова, тем шире динамический диапазон, меньше нелинейные искажения и шум, выше разрешающая способность по уровню. В отличие от процесса дискретизации по времени, квантование по уровню вносит в кодируемый сигнал погрешности. Преобразование бесконечного множества значений аналоговой величины в конечное количество двоичных чисел по самой своей природе является аппроксимационным процессом. Погрешности появляются потому, что результат квантования фактически никогда не является точным представлением напряжения аналогового сигнала. Разность между фактическим значением аналогового сигнала и представляющим его двоичным числом называется погрешностью квантования по уровню, или шумом квантования.
На рис. В-4 показано, как появляются погрешности квантования. Значения аналогового сигнала не совпадают со значениями, представляемыми при помощи двоичных чисел. Например, первая выборка крайняя левая вертикальная штриховая линия попадает между уровнями квантования 100111 и 101000. Поскольку не существует значения 100111,25, квантующее устройство просто округляет его до ближайшего дискретного уровня квантования 100111 , хотя это число и не является абсолютно точным. Разность между напряжением, представляемым числом 100111 1,3 В , и фактическим напряжением звукового сигнала 1,325 В дает погрешность квантования.
При восстановлении аудиосигнала по округленному двоичному числу 100111 будет выработан не вполне точный аналоговый сигнал. В результате появится искажение исходной формы звуковой волны. Наихудший случай — это когда аналоговый сигнал имеет значение, попадающее точно между двумя уровнями квантования. Именно такая ситуация имеет место для второго слева отсчета на рис. Разность между отсчетом аналогового сигнала и уровнем квантования, представляющим этот отсчет, будет наибольшей. Погрешность квантования выражают в процентах от младшего разряда MP.
Для первой слева выборки погрешность квантования составляет одну четверть MP, для второй — половину MP. Обратите внимание, что погрешность квантования никогда не превосходит половины значения MP. Следовательно, чем меньше величина шага квантования по уровню, тем меньше погрешность. Добавление одного разряда удваивает число шагов и вдвое уменьшает погрешность квантования. Поскольку уменьшение вдвое дает разницу в 6 дБ, отношение сигнала к шуму в цифровой системе увеличивается на 6 дБ при добавлении каждого дополнительного разряда в слове квантования. Цифровая система с 18-разрядным квантованием по уровню будет иметь шум на 12 дБ ниже, чем система с 16-разрядным квантованием.
Погрешность квантования воспринимается на слух как грубая зернистость звука низкого уровня, например, реверберационного процесса. Вместо того чтобы слышать постепенное затухание звука до полного его исчезновения, мы замечаем увеличение шероховатости и зернистости по мере затухания сигнала. Это происходит потому, что по мере снижения уровня сигнала погрешность квантования начинает составлять все больший процент от его величины. Увеличение нелинейных искажений по мере снижения уровня сигнала характерно для цифровой аудиотехники; во всех типах аналоговой записи повышенные искажения проявляются при высоком уровне сигнала. Рост искажений при снижении уровня сигнала делает их намного более заметными. Увеличение разрядности слова квантования с 16 до 20 значительно уменьшает остроту этой проблемы.
Большую часть времени уровень музыкального сигнала существенно ниже и таким образом ближе к уровню шума. Искажения определяются не полным количеством разрядов цифровой системы, а числом разрядов, используемых для квантования сигнала в данный момент.
Каждая гармоника имеет свою амплитуду и фазу. Амплитуда определяет громкость звука, а фаза — его смещение во времени. Сумма всех гармоник вместе с фундаментальной частотой восстанавливает исходную звуковую волну. Различные инструменты и голоса могут иметь различное спектральное содержание, что приводит к разным тембрам звуков. Наличие или отсутствие определенных гармоник может изменить звучание инструмента или голоса.
Разложение непрерывной звуковой волны является важным инструментом в области аудиоанализа и синтеза звука.
Рассмотрим подробнее процесс ввода звука в компьютер. Звуковые сигналы непрерывны. С помощью микрофона звуковой сигнал превращается в непрерывный электрический сигнал. Какая дискретизация производится в процессе кодирования непрерывного звукового сигнала?
В процессе кодирования непрерывного звукового сигнала производится временная дискретизация. В чем суть FM метода кодирования звука? Во-вторых, FM Frequency Modulation, частотная модуляция — это аналоговое преобразование, когда отклонение частоты высокочастотной несущей пропорционально напряжению звукового сигнала. Что такое дискретизация простыми словами? Дискретизация — процесс превращения непрерывного сигнала в цифровой, путем измерения числовых значений амплитуды сигнала через равные интервалы времени.
Что такое выборка сигнала? Выборка определяется как «Процесс измерения мгновенных значений непрерывного сигнала в дискретной форме». Выборка — это фрагмент данных, взятый из целых данных, который непрерывен во временной области. Что такое 4 2 2? Используется в научных исследованиях, профессиональных системах и формате MPEG-2.
Рекомендация 601 определяет стандарт полного цифрового видеосигнала с соотношением частот дискретизации яркостного и цветоразностных сигналов как 4:2:2. Каким образом производится двоичного кодирования графической информации? Простейшее чёрно-белое изображение может быть закодировано двумя символами: ноль и единица. Каждая цифра отвечает за свой цвет. При разрешении 1600 ширина, число столбцов на 1200 высота, количество строк пикселей картинка состоит из 1920000 пикселей — единиц и ноликов при глубине цвета 1 бит.
А что, если наша функция — это звуковой сигнал некоторой длительности? Выходит, что в результате спектрального преобразования он тоже превратится в статичную картинку спектра; таким образом, информация о временных изменениях будет утеряна — перед нами будет единый статичный спектр всего сигнала. Как же проследить динамику изменения спектра сигнала во времени? Чтобы получить представление об изменении спектра во времени, аудио сигнал необходимо анализировать не целиком, а по частям говорят «блоками» или «окнами». Например, трехсекундный аудио сигнал можно разбить на 30 блоков. Нужно учитывать, однако, что чем меньше анализируемый блок сигнала, тем менее точен менее информативен спектр этого блока. Таким образом, при проведении спектрального анализа мы сталкиваемся с дилеммой, решение которой строго индивидуально для каждого конкретного случая. Стремясь получить высокое временное разрешение, с тем, чтобы суметь распознать изменения спектра сигнала в динамике, мы «дробим» анализируемый сигнал на большое количество блоков, но при этом для каждого получаем огрубленный спектр. И наоборот, стремясь получить как можно более точный и ясный спектр, нам приходится жертвовать временным разрешением и делить сигнал на меньшее количество блоков.
Эта дилемма называется принципом неопределенности спектрального анализа. Психоакустика Слуховая система человека — сложный и вместе с тем очень интересно устроенный механизм. Чтобы более ясно представить себе, что для нас есть звук, нужно разобраться с тем, что и как мы слышим. В анатомии ухо человека принято делить на три составные части: наружное ухо, среднее ухо и внутреннее ухо. К наружному уху относится ушная раковина, помогающая сконцентрировать звуковые колебания, и наружный слуховой канал. Звуковая волна, попадая в ушную раковину, проходит дальше, по слуховому каналу его длина составляет около 3 см, а диаметр - около 0. Барабанная перепонка преобразует звуковую волну в вибрации усиливая эффект от слабой звуковой волны и ослабляя от сильной. Эти вибрации передаются по присоединенным к барабанной перепонке косточкам - молоточку, наковальне и стремечку — во внутреннее ухо, представляющее собой завитую трубку с жидкостью диаметром около 0. Эта трубка называется улиткой.
Внутри улитки находится еще одна мембрана, называемая базилярной, которая напоминает струну длиной 32 мм, вдоль которой располагаются чувствительные клетки более 20 тысяч волокон. Толщина струны в начале улитки и у ее вершины различна. В результате такого строения мембрана резонирует разными своими частями в ответ на звуковые колебания разной высоты. Так, высокочастотный звук затрагивает нервные окончания, располагающиеся в начале улитки, а звуковые колебания низкой частоты — окончания в ее вершине. Механизм распознавания частоты звуковых колебаний достаточно сложен. В целом он заключается в анализе месторасположения затронутых колебаниями нервных окончаний, а также в анализе частоты импульсов, поступающих в мозг от нервных окончаний. Существует целая наука, изучающая психологические и физиологические особенности восприятия звука человеком. Эта наука называется психоакустикой. В последние несколько десятков лет психоакустика стала одной из наиболее важных отраслей в области звуковых технологий, поскольку в основном именно благодаря знаниям в области психоакустики современные звуковые технологии получили свое развитие.
Давайте рассмотрим самые основные факты, установленные психоакустикой. Основную информацию о звуковых колебаниях мозг получает в области до 4 кГц. Этот факт оказывается вполне логичным, если учесть, что все основные жизненно необходимые человеку звуки находятся именно в этой спектральной полосе, до 4 кГц голоса других людей и животных, шум воды, ветра и проч. Частоты выше 4 кГц являются для человека лишь вспомогательными, что подтверждается многими опытами. В целом, принято считать, что низкие частоты «ответственны» за разборчивость, ясность аудио информации, а высокие частоты — за субъективное качество звука. Слуховой аппарат человека способен различать частотные составляющие звука в пределах от 20-30 Гц до приблизительно 20 КГц. Указанная верхняя граница может колебаться в зависимости от возраста слушателя и других факторов. В спектре звука большинства музыкальных инструментов наблюдается наиболее выделяющаяся по амплитуде частотная составляющая. Ее называют основной частотой или основным тоном.
Основная частота является очень важным параметром звучания, и вот почему. Для периодических сигналов, слуховая система человека способна различать высоту звука. В соответствии с определением международной организации стандартов, высота звука - это субъективная характеристика, распределяющая звуки по некоторой шкале от низких к высоким. На воспринимаемую высоту звука влияет, главным образом, частота основного тона период колебаний , при этом общая форма звуковой волны и ее сложность форма периода также могут оказывать влияние на нее. Высота звука может определяться слуховой системой для сложных сигналов, но только в том случае, если основной тон сигнала является периодическим например, в звуке хлопка или выстрела тон не является периодическим и по сему слух не способен оценить его высоту. Вообще, в зависимости от амплитуд составляющих спектра, звук может приобретать различную окраску и восприниматься как тон или как шум. В случае если спектр дискретен то есть, на графике спектра присутствуют явно выраженные пики , то звук воспринимается как тон, если имеет место один пик, или как созвучие, в случае присутствия нескольких явно выраженных пиков. Если же звук имеет сплошной спектр, то есть амплитуды частотных составляющих спектра примерно равны, то на слух такой звук воспринимается как шум. Для демонстрации наглядного примера можно попытаться экспериментально «изготовить» различные музыкальные тона и созвучия.
Для этого необходимо к громкоговорителю через сумматор подключить несколько генераторов чистых тонов осцилляторов. Причем, сделать это таким образом, чтобы была возможность регулировки амплитуды и частоты каждого генерируемого чистого тона. В результате проделанной работы будет получена возможность смешивать сигналы от всех осцилляторов в желаемой пропорции, и тем самым создавать совершенно различные звуки. Поученный прибор явит собой простейший синтезатор звука. Очень важной характеристикой слуховой системы человека является способность различать два тона с разными частотами. Опытные проверки показали, что в полосе от 0 до 16 кГц человеческий слух способен различать до 620 градаций частот в зависимости от интенсивности звука , при этом примерно 140 градаций находятся в промежутке от 0 до 500 Гц. На восприятии высоты звука для чистых тонов сказываются также интенсивность и длительность звучания. В частности, низкий чистый тон покажется еще более низким, если увеличить интенсивность его звучания. Обратная ситуация наблюдается с высокочастотным чистым тоном — увеличение интенсивности звучания сделает субъективно воспринимаемую высоту тона еще более высокой.
Длительность звучания сказывается на воспринимаемой высоте тона критическим образом. Так, очень кратковременное звучание менее 15 мс любой частоты покажется на слух просто резким щелчком — слух будет неспособен различить высоту тона для такого сигнала. Высота тона начинает восприниматься лишь спустя 15 мс для частот в полосе 1000 — 2000 Гц и лишь спустя 60 мс — для частот ниже 500 Гц. Это явление называется инерционностью слуха. Инерционность слуха связана с устройством базилярной мембраны. Кратковременные звуковые всплески не способны заставить мембрану резонировать на нужной частоте, а значит мозг не получает информацию о высоте тона очень коротких звуков. Минимальное время, требуемое для распознавания высоты тона, зависит от частоты звукового сигнала, а, точнее, от длины волны. Чем выше частота звука, тем меньше длина звуковой волны, а значит тем быстрее «устанавливаются» колебания базилярной мембраны. В природе мы почти не сталкиваемся с чистыми тонами.
Звучание любого музыкального инструмента является сложным и состоит из множества частотных составляющих. Тем не менее, даже при одинаковой высоте звучания, звук, например, скрипки отличается на слух от звука рояля. Это связано с тем, что помимо высоты звучания слух способен оценить также общий характер, окрас звучания, его тембр. Тембром звука называется такое качество восприятия звука, которое, в не зависимости от частоты и амплитуды, позволяет отличить одно звучание от другого. Тембр звука зависит от общего спектрального состава звучания и интенсивности спектральных составляющих, то есть от общего вида звуковой волны, и фактически не зависит от высоты основного тона.