Биохимик Р. Шапиро критикует гипотезу РНК-мира, считая, что вероятность спонтанного возникновения РНК, обладающей каталитическими свойствами, очень низка. Обнаружены доказательства гипотезы РНК-мира, технологии, новости экономики, Банки, банк, кредит, проценты, ставки, финансы, курсы валют, деловые новости. В 1964 г. Темин выдвинул гипотезу о существовании вирусспецифичного фермента, способного синтезировать на РНК-матрице комплементарную ДНК. Гипотеза РНК-мира — одна из самых популярных среди гипотез о происхождении жизни на Земле.
Учеными из США найдены новые доказательства РНК-мира
Обнаружены новые доказательства РНК-мира — Странная планета | Мир РНК — это красивая гипотеза о самозарождении жизни, и вчера ее доказательство стало на шаг ближе. |
ELife: выявлено самовоспроизведение молекул, подтверждающее гипотезу РНК-мира | Ученые Института биологических исследований Солка обнаружили доказательства гипотезы РНК-мира, согласно которой ключевым предшественником живых клеток стали самовоспроизводящиеся молекулы РНК. |
Ученые нашли новые доказательства РНК-мира - Коммерсант Россия | Новости о недвижимости, экономики и финансах в России. |
Появилась новая гипотеза возникновения ДНК и РНК - Телеканал "Наука" | Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. |
Исследователи смешивают РНК и ДНК, чтобы изучить, как началась жизнь на Земле | Капитал страны | Полагаю, что и гипотезу «Мир-РНК», которая по принципу «на безрыбье и рак рыба» пока атеистам кажется убедительной, ждет такое же будущее. |
Ученые нашли новое потенциальное объяснение возникновению жизни на Земле
Таким образом, вещество диамидофосфат способствовало соединению рибонуклеозиды в длинные цепочки, совершая эти же действия по отношению к ДНК.
Таким образом, этот минерал, с одной стороны, способствует полимеризации нуклеотидов, а с другой — образованию мембранных структур. Гипотетически, существует множество вариантов соединения рибонуклеотидов друг с другом через различные атомы рибозы. Зачастую каталитической активностью обладают лишь длинные цепочки РНК.
Это один из основных объектов критики теории РНК-мира, ибо случайное возникновение длинных последовательностей, способных выполнять биохимическую работу, весьма маловероятно. Одна из лучших рибозимных репликаз, созданных на сегодня, способна реплицировать до 95 нуклеотидов [6] , однако сама она при этом имеет длину в 190 нуклеотидов см. Длина этой последовательности слишком велика для спонтанного возникновения в пребиотических условиях. Исследования in vitro показывают, что для выделения молекул, способных к катализу, требуется около 1013—1014 молекул РНК [2] — довольно много для того, чтобы столь длинный рибозим мог появиться в готовом виде.
Однако открытие коротких рибозимов ставит под сомнение идею того, что для появления РНК-катлизаторов требуются астрономические количества молекул. В самом деле, получены полирибонуклеотиды c активными дуплексами, способными к самовырезанию, имеющие длину лишь 7 остатков [2]. Более того, были получены данные, что даже рибозим, урезанный всего лишь до пяти нуклеотидов, сохранял свои ферментативные способности [2]. Но каталитическая активность у минирибозимов значительно ниже, чем у их более длинных «собратьев».
Из этого следует, что короткие рибозимы могли быть эволюционными предшественниками длинных. Рибозимные репликазы Для того, чтобы в мире РНК полирибонуклеотиды могли размножаться, должны были существовать рибозимные аналоги белковых полимераз. В современных живых организмах рибозимы с таким видом активности не обнаружены, однако подобные молекулы были созданы искусственно. Молекулярные биологи из Великобритании обратили внимание на ранее известный рибозим R18, обладающий полимеразной активностью [6].
Он и стал объектом эксперимента: путём искусственной эволюции и разумного планирования из исходного рибозима были получены четыре новые молекулы с улучшенными каталитическими свойствами [7]. Дело в том, что исходный рибозим R18 обозначен на картинке буквой А был способен реплицировать лишь фрагменты РНК длиной до 20 нуклеотидов. Также им могла быть реплицирована далеко не каждая последовательность РНК, а лишь узкий круг определённых матриц [7]. Учёные пошли двумя путями: в одной серии экспериментов они пытались увеличить число оснований РНК, реплицируемых рибозимом.
В результате были получены четыре новых рибозима с улучшенными свойствами. Один из них — рибозим С19, который учёные смогли усовершенствовать далее. Так был получен ещё более эффективный рибозим tC19 на рисунке под буквой С. В другой серии экспериментов учёные смогли получить рибозим, чья полимеразная активность не так сильно зависела от нуклеотидной последовательности РНК-матриц [7].
В результате, полезные свойства рибозимов tC19 и Z удалось объединить в одном, названном tC19Z. Данный рибозим способен копировать как довольно широкий круг матриц, так и достаточно длинные последовательности [7]. Интроны, способные вырезаться самостоятельно, были обнаружены в тирозиновой тРНК таких сложных организмов, как человек и цветковое двудольное растение Arabidopsis thaliana. Эти 12-ти и 20-ти нуклеотидные участки в клетке вырезаются путём сплайсинга с участием белков, однако этот интрон показал способность вырезать самого себя и без участия ферментов.
РНК-переключатели Ограниченная каталитическая способность рибозимов часто становится ещё одним хлипким краеугольным камнем теории мира РНК. Критики теории считают, что тот минимум химических реакций, который необходим для осуществления метаболизма в мире РНК, не может быть обеспечен одними лишь рибозимами. Подавляющее большинство РНК-катализаторов катализируют лишь разрыв и создание фософодиэфирных связей между нуклеотидами. Кажется, что молекулы РНК со своими четырьмя весьма схожими мономерами безнадёжно проигрывают в химическом разнообразии белкам, которые имеют в своём составе 20 аминокислот, весьма различных по свойствам.
Однако не стоит забывать, что многие белковые ферменты для выполнения активной работы должны присоединить лиганды — кофакторы , — без которых ферментативная активность попросту исчезает. И здесь стоит вспомнить об РНК-перключателях или рибопереключателях англ. Что же это такое? Как известно, информация об аминокислотной последовательности белка передаётся в рибосому через мРНК.
В данном случае, помимо самого гена, транскрибируется участок впереди него, на котором и расположен рибоперключатель [8]. РНК-переключатель представляет собой участок мРНК, способный связывать молекулу строго определённого вещества. После связывания переключатель меняет свою пространственную конфигурацию, что делает невозможной дальнейшую транскрипцию [8]. Важно понимать принцип работы РНК-переключателей, поэтому скажем пару слов об их устройстве.
Состоит он из двух частей: из аптамера и «экспрессионной платформы». Аптамер, по сути, является рецептором, который с очень высокой селективностью связывается с определённой молекулой. Эффекторной молекулой для аптамера является молекула, производимая белком, ген которого и регулируется переключателем.
Таким образом, во время трансляции рибосома после связывания мРНК начинает последовательно, кодон за кодоном, перемещаться вдоль матрицы, выбирая из окружающей среды молекулы аминоацилированных тРНК. При этом каждый индивидуальный акт трансляции завершается присоединением выбранной молекулы аминокислоты к С-концевой аминокислоте синтезируемой цепи белка посредством пептидной связи. Процесс биосинтеза белка рибосомами, как и биосинтез любой другой макромолекулы клетки, условно разделяют на три этапа: инициацию, элонгацию и терминацию. Во время инициации трансляции происходит сборка нативной 70S или 80S рибосомы на транслируемой мРНК и подготовка к образованию пептидной связи между первыми двумя N-концевыми аминокислотными остатками синтезируемого полипептида. При элонгации происходит последовательное удлинение растущей цепи полипептида аминокислотными остатками, а терминация трансляции сопровождается прекращением синтеза полипептида и его высвобождением из трансляционного комплекса. При этом наблюдается разделение рибосомы и мРНК, после чего они вступают в новый цикл трансляции. В ходе трансляции рибосома последовательно перемещается вдоль транслируемой молекулы мРНК, считывая заключенную в ней генетическую информацию в виде триплетного генетического кода. При этом биосинтез полипептида начинается с его N-концевой аминокислоты [3]. В процессе транскрипции биосинтезе РНК на матрице ДНК большое значение имеет способность РНК образовывать разнообразные элементы вторичной структуры шпильки , которые влияют как на инициацию, так и на терминацию синтеза РНК. РНК активно участвует в процессе своего собственного созревания — процессинге первичных транскриптов про-РНК. У примитивных одноклеточных организмов выявлена способность РНК к аутостайсингу — вырезанию некодирующих участков интронов и сшиванию кодирующих фрагментов экзонов без участия белков-ферментов. У организмов, утративших способность к аутосплайсингу, в сплайсировании РНК тем не менее принимают участие особые молекулы — малые ядерные РНК мяРНК , необходимые для безошибочного вычленения интронов из молекул РНК-предшественников. Посттрансляционные модификации синтезированных в ходе трансляции полипептидов, в результате которых образуются функционально активные молекулы, также нередко сопряжены с присоединением к ним значительных по размерам молекул РНК. Информосомы, частицы, присутствующие в животных клетках и состоящие из высокомолекулярной нерибосомной рибонуклеиновой кислоты РНК и особого белка. Информосомы обнаружены впервые советским биохимиком А. Спириным с сотрудниками в 1964 в цитоплазме зародышей рыб, где они представлены смесью частиц разных размеров Отношение массы РНК к массе белка в информосомах постоянно около 1:4 и одинаково у всех частиц, независимо от их размера. Аналогичные частицы найдены в клетках млекопитающих, в том числе зараженных вирусами, а также у иглокожих и насекомых. Белок информосом служит, вероятно, для переноса иРНК из ядра в цитоплазму, а также для защиты иРНК от разрушения и регуляции скорости белкового синтеза. Малые ядерные РНК присутствуют в ядрах в комплексах с белками, получившими название малые рибонуклеопротеиновые частицы мяРНП. Стабильным компонентом мяРНП является белок фибрилларин — очень консервативный по структуре белок с молекулярной массой 34 кДа, локализованный в ядрышках. Комплекс, состоящий из множества мяРНП, который катализирует сплайсинг ядерных про-мРНК, носит название сплайсингосомы. Сплайсингосома собирается на интроне перед его выщеплением и содержит несколько различных мяРНП. Малые ядерные РНП собираются в сплайсингосомы в определенной последовательности. И наконец, нельзя обойти вниманием тот факт, что многие катализаторы белковой природы ферменты , катализирующие различные биохимические превращения в клетке, функционируют благодаря содержанию в них коферментов рибонуклеотидной природы NAD, FAD, АТР и др. Хотя тмРНК была открыта более 20 лет назад в пост-рибосомном супернатанте, полученном из клеток Escherichiacoliее функция была установлена тольков 1996 году. В современной модели вторичной структуры тмРНК Е. Второй район представляет собой одноцепочечный участок, кодирующий tag-пептид, а третий соединяет тРНК - и мРНК-подобные части молекулы. Этот район сильно структурирован и содержит четыре псевдоузла рк1, рк2, рк3 и рК4. Матричная часть тмРНК кодирует пептид, являющейся сигналом узнавания специфическими протеазами tag-пептид. В аминоацилированном состоянии тмРНК взаимодействует с рибосомой, запрограммированной мРНК, в которой в результате случайной деградации отсутствует стоп-кодон. В результате tag-пептид присоединяется к недосинтезированному пептиду, который содержится в рибосоме до ее взаимодействия с тмРНК. При этом происходит терминация трансляции на стоп-кодоне матричной части тмРНК, а пептид, освободившийся из рибосомы, содержит участок, узнаваемый специфическими протеазами, что способствует его быстрой деградации. Схема транс-трансляции Цитировано по Зверевой М. В 1996 г. Кейлер предложил в качестве механизма функционирования тмРНК модель транс-трансляции биосинтез полипептидной цепи белка с использованием различных матричных последовательностей. Она предлагает механизм синтеза дополнительного пептида, основанный на наблюдении, что добавление нового пептида происходит в случае трансляции мРНК, в которой отсутствует стоп-кодон. Остановившаяся пептидная цепь переносится на аланил-тмРНК реакция транспептидирования , и рибосома продолжает синтез по матричной части тмРНК. Синтез продолжается до поступления в А-центр стоп-кодона тмРНК, после чего вступает в действие фактор терминации и трансляция завершается. В результате гибридный белок, состоящий из пептидов, соединенных аланином из тмРНК, уходит из рибосомы, а освободившаяся рибосома может участвовать в синтезе другого белка. Особенность такой транс-трансляционной системы состоит в том, что одна пептидная цепь синтезируется с двух различных молекул мРНК. Необходимо отметить, что способ установления рамки считывания ОРС матричной части тмРНК отличен от всех известных способов установления рамки считывания. Первая включаемая аминокислота не определена обычным кодон-антикодоновым взаимодействием, а аденозиновый остаток, отстоящий на 3 н. Это предположение требует дальнейшего экспериментального подтверждения. С помощью тмРНК клетка решает две задачи: с одной стороны, освобождаются остановившиеся рибосомы, а с другой, неправильные белки быстро расщепляются специфической протеазой, узнающей сигнальный пептид, кодируемый матричной частью тмРНК. Это связано с открытием процесса транс-трансляции, а именно с возможностью синтеза одного белка на основе двух различных мРНК. Кроме того, отсутствие тмРНК у высших организмов указывает на возможность ее использования в качестве хорошей мишени при создании новых антибактериальных средств. Функция тмРНК особенно важна для жизнедеятельности бактерий при повышенных температурах. Известно, что многие бактериальные инфекции сопровождаются повышением температуры, поэтому создание препарата, блокирующего функцию тмРНК, приведет к гибели бактерий и не повлияет на биосинтез белков человека. Регуляция экспрессии эукариотических генов может осуществляться на нескольких уровнях: во время транскрипции, на стадии процессинга РНК, при трансляции и на уровне созревания белка. В последнее время в связи с открытием явления интерференции РНК большое внимание ученых привлекает посттранскрипционный уровень регуляции. Интерференция РНК - высокоспецифичный механизм подавления экспрессии гена на посттранскрипционном уровне за счет деградации считанной с него мРНК. Малые РНК могут регулировать экспрессию генов не только посредством интерференции, но также подавляя трансляцию, транскрипцию или способствуя удалению гена-мишени из клеточного генома. Последнее наблюдается у некоторых простейших в процессе созревания макронуклеуса. Феномен интерференции РНК обнаружен у различных эукариотических организмов, в частности, у одноклеточных, низших грибов, растений, нематод, насекомых, а также у позвоночных, включая мышей и человека. Подобная высокая консервативность механизма интерференции РНК свидетельствует о его большой значимости. И хотя функции некоторых видов малых РНК до сих пор не установлены, предполагают, что основная их роль - защита генома клетки от внедрения мобильных генетических элементов вирусов, транспозонов , а также участие в регуляции дифференцировки многоклеточных организмов. Малые РНК представляют значительный интерес для фундаментальной молекулярной биологии и таких прикладных ее областей, как биомедицина и биотехнология. Одним из наиболее эффективных способов изучения функции гена является анализ фенотипа организмов, у которых этот ген не экспрессируется. Существует ряд методов, позволяющих подавлять экспрессию определенных генов, в том числе, использование антисмысловых олигонуклеотидов, рибозимов, химических блокаторов, а также разрушение нужного гена во всем организме путем внесения соответствующих мутаций в зиготу. Однако эти методики либо сложны, либо не всегда эффективны и не обеспечивают полного сайленсинга гена то есть подавления экспрессии в экспериментальных моделях млекопитающих. В отличие от перечисленных методик, технологии, основанные на явлении интерференции РНК деградация мРНК при введении в клетку соответствующих им 81РНК или экспрессирующих их конструкций , просты в исполнении, эффективны и обладают большой специфичностью распознавания молекулы-мишени. Биохимически и функционально это молекулы практически неразличимы, и принцип их подразделения основан на природе предшественников. По происхождению малые РНК можно разделить на экзогенные индуцируемые или кодируемые вирусами, либо введенные искусственно и эндогенные образующиеся при транскрипции собственных генов клетки. Сигналом для инициации интерференции РНК служит появление в клетке экзогенной вирусной или введенной в ходе эксперимента либо эндогенной транскрибированной с собственных генов клетки дцРНК. Минимальный размер дцРНК, достаточный для индукции интерференции, - 26 п. Скорее всего, такое ограничение защищает от деградации собственную клеточную мРНК с короткими внутримолекулярными самокомплементарными структурами. Предполагают, что расщепление дцРНК у млекопитающих осуществляется последовательно с одного конца молекулы. В результате работы Dicerобразуются двухцепочечные siРНК длиной 20-25 п. Именно такая структура необходима для участия в последующих этапах процесса, приводящего к сайленсингу РНК. Следующие стадии интерференции - распознавание и фрагментация РНК-мишени.
Стало понятно, что ферментативная активность больше не прерогатива белков. Дальше — больше. Помимо каталитической активности удалось обнаружить еще одно свойство — это регулирование экспрессии генов, то есть степени их проявления. Даже сейчас известны тысячи различных РНК, участвующие в подавлении активности гена на всех стадиях его проявления, от считывания ДНК до непосредственного белкового синтеза. Причем оказалось, что интерферирующая РНК может быть даже… двухцепочечной. Простыми словами интерференцию можно объяснить так: маленькие молекулы РНК комплементарны тем генам, которые нужно заглушить или каким-то другим образом повлиять на их активность, и благодаря таким РНК-«ориентировкам» ферменты-киллеры могут найти уже синтезированную матричную РНК, то есть копию гена, по которой будет работать рибосома, и уничтожить ее. На самом деле механизм, конечно, сложнее, но смысл один — регуляция работы ДНК. Особенно часто такие РНК проявляют себя в различных процессах, направленных на защиту организма, — они устраняют опасность, уничтожая нуклеиновые кислоты патогенов. Причем этот механизм достаточно древний — он есть у растений и даже, судя по всему, у одноклеточных, по крайней мере микроРНК у некоторых из них уже обнаружили. Итак, мы знаем, что РНК сама по себе крайне загадочна — она может и хранить информацию, и катализировать реакции, и буквально держать саму ДНК на поводке. Но как, если вокруг нет ничего, хотя бы отдаленно напоминающего нуклеиновые кислоты? Идея о том, что РНК может просто так взять и появиться буквально из ниоткуда, казалась смехотворной — однако была доказана лабораторно. Для этого группа ученых под руководством Джона Сазерленда взяла не самые приятные вещи — сероводород и цианистый калий. Немного подержав их под ультрафиолетом, они получили… протонуклеотиды , маленькие кирпичики для создания нуклеиновых кислот. Более того, Сазерленд обнаружил возможность «самозарождения» некоторых аминокислот Пастеру бы этот вывод вряд ли понравился. Такая гипотеза возникновения РНК выглядит крайне привлекательной, хотя бы потому, что на свежесформированной планете, которая постоянно менялась и сталкивалась то с извержениями вулканов, то с метеоритами а они содержат довольно много цианида , этих трех ингредиентов было предостаточно. А еще в метеоритах была найдена рибоза, углевод, входящий в состав РНК при этом дезоксирибозы, входящей в состав ДНК, в них так и не обнаружили , — соответственно, и она могла быть занесена извне. Но возникает следующий вопрос: допустим, в мире появилась РНК и первые аминокислоты — как перейти от этого супового набора к созданию чего-то более значимого? Молодой, ему всего 39 лет, профессор Карл Вёзе занимается делом всей своей жизни — молекулярной эволюцией. В какой-то момент Вёзе заметил, что маленькие РНК, участвующие в создании рибосом «машин» по сборке белка на основе генетического кода , — очень удобный материал для изучения мутаций и изменений, возникающих от вида к виду. Это своеобразные хронометры, и Вёзе решил прибегнуть к ним для изучения филогенетических, то есть эволюционных, деревьев. Вообще-то Вёзе хотел опровергнуть довлеющую теорию о том, что археи суть изменившиеся бактерии. Он считал, что всё живое можно разделить на три независимых домена — археи, бактерии и животные — и что археи не просто «странные бактерии», а целое отдельное царство, развивающееся по собственному пути. В конце концов, ему это удалось, но параллельно с открытием доменной структуры жизни Вёзе, всю жизнь изучавший РНК, пришел к неожиданному выводу. Вёзе писал: «Мои эволюционные интересы были сосредоточены в первую очередь на бактериях и археях, эволюция которых охватывает большую часть истории планеты. Используя последовательность рибосомной РНК в качестве единицы измерения эволюции, мы реконструировали филогенетическое древо обеих групп и, таким образом, предоставили обоснованную систему классификации безъядерных организмов. Открытие архей фактически было продуктом этих исследований».
Гипотеза мира РНК
Базовой концепцией этого подхода служит «водно-углеродный шовинизм», представляющий эти два компонента воду и углерод — NS в качестве абсолютно необходимых и ключевых для появления и развития жизни, будь то на Земле или где-то за ее пределами. А главной проблемой остаются условия, при которых «водно-углеродный шовинизм» может развиться в весьма изощренные химические комплексы, способные — прежде всего — к саморепликации. По одной из гипотез, первичная организация молекул могла происходить в микропорах глинистых минералов, которые выполняли структурную роль. На их внутренней поверхности, как на матрице, могли оседать и полимеризоваться сложные биомолекулы: израильские ученые показали, что такие условия позволяют выращивать достаточно длинные белковые цепочки. Здесь же могли скапливаться нужные количества солей металлов, играющих важную роль катализаторов химических реакций.
Глиняные стенки могли выполнять функции клеточных мембран, разделяя «внутреннее» пространство, в котором протекают все более сложные химические реакции, и отделяя его от внешнего хаоса. Энергию для первичного «обмена веществ» могли поставлять неорганические реакции — такие как восстановление минерала пирита FeS2 водородом до сульфида железа и сероводорода. В этом случае для появления сложных биомолекул не требуется ни молний, ни ультрафиолета, как в экспериментах Миллера — Юри. А значит, мы можем избавиться от вредных аспектов их действия.
Молодая Земля не была защищена от вредных — и даже смертельно опасных — компонентов солнечного излучения. Даже современные, испытанные эволюцией организмы были бы неспособны выдержать этого жесткого ультрафиолета — притом что само Солнце было значительно моложе и не давало достаточно тепла планете. Из этого возникла гипотеза о том, что в эпоху, когда творилось чудо зарождения жизни, вся Земля могла быть покрыта толстым — в сотни метров — слоем льда; и это к лучшему. Скрываясь под этим ледяным щитом, жизнь могла чувствовать себя вполне в безопасности и от ультрафиолета, и от частых метеоритных ударов, грозивших погубить ее еще в зародыше.
Относительно прохладная среда могла также стабилизировать структуру первых макромолекул. Научно: Черные курильщики В самом деле, ультрафиолетовое излучение на молодой Земле, атмосфера которой еще не содержала кислорода и не имела такой замечательной штуки, как озоновый слой, должно было быть убийственным для любой зарождающейся жизни. Из этого выросло предположение о том, что хрупкие предки живых организмов были вынуждены существовать где-то, скрываясь от непрерывного потока стерилизующих все и вся лучей. Например, глубоко под водой — конечно, там, где имеется достаточно минеральных веществ, перемешивания, тепла и энергии для химических реакций.
И такие места нашлись. Ближе к концу ХХ века стало ясно, что океанское дно никак не может быть пристанищем средневековых монстров: условия здесь слишком тяжелые, температура невелика, излучения нет, а редкая органика способна разве что оседать с поверхности. Фактически это обширнейшие полупустыни — за некоторыми примечательными исключениями: тут же, глубоко под водой, поблизости от выходов геотермальных источников, жизнь буквально бьет ключом. Насыщенная сульфидами черная вода горяча, активно перемешивается и содержит массу минералов.
Черные курильщики океана — весьма богатые и самобытные экосистемы: питающиеся на них бактерии используют железосерные реакции, о которых мы уже говорили. Они являются основой для вполне цветущей жизни, включая массу уникальных червей и креветок. Возможно, они были основой и зарождения жизни на планете: по крайней мере, теоретически такие системы несут в себе все необходимое для этого. И в этих фантазиях можно лишь позавидовать воображению древних авторов: по вопросу о том, из чего, как и почему возник космос, откуда и каким образом появилась жизнь — и люди, — версии звучали самые разные и почти всегда красивые.
Вся совокупность колоний в связи с этим быстро эволюционировала [10]. После возникновения белкового синтеза колонии, умеющие создавать ферменты, развивались успешнее. Ещё более успешными стали колонии, сформировавшие более надёжный механизм хранения информации в ДНК и, наконец, отделившиеся от внешнего мира липидной мембраной, препятствующей рассеиванию своих молекул. Шапиро критикует гипотезу РНК-мира, считая, что вероятность спонтанного возникновения РНК, обладающей каталитическими свойствами, очень низка.
Взамен гипотезы «вначале была РНК», он предлагает гипотезу «вначале был метаболизм», то есть возникновение комплексов химических реакций — аналогов метаболических циклов — с участием низкомолекулярных соединений, протекающих внутри компартментов — пространственно ограниченных самопроизвольно образовавшимися мембранами или иными границами раздела фаз — областей. Эта концепция близка к коацерватной гипотезе абиогенеза, предложенной А. Опариным в 1924 году [11]. Другой гипотезой абиогенного синтеза РНК, призванной решить проблему низкой оценочной вероятности синтеза РНК, является гипотеза мира полиароматических углеводородов , предложенная в 2004 году и предполагающая синтез молекул РНК на основе стека из полиароматических колец.
Фактически, обе гипотезы «пре-РНК миров» не отвергают гипотезу мира РНК, а модифицируют её, постулируя первоначальный синтез реплицирующихся макромолекул РНК в первичных метаболических компартментах, либо на поверхности ассоциатов, отодвигая «мир РНК» на вторую стадию абиогенеза.
А дальше - больше. Словом, РНК оказалась этаким универсалом, мастером на все руки. Она способна делать все, правда, не так хорошо. Тогда-то и возникла гипотеза о РНК-мире.
Суть в том, что сначала на Земле существовали только универсальные РНК, и только потом стали появляться "специалисты", которые выполняли те же самые функции, но лучше. Первыми возникли белки, потом ДНК, как более стабильный и совершенный архив наследственной информации. РНК отошла на второй план, "играя" вспомогательные роли.
Весь эксперимент длился 1 200 часов 240 циклов добавления питательных веществ. Это подтверждает возможность такого варианта эволюции», — добавляет Мидзути. Работа ученых представляет собой только первый шаг в понимании перехода от отдельных молекул к клеткам. Команда планирует продолжить исследование дальнейшей эволюции и создания сложных живых систем. Читать далее:.
Ученые обнаружили новые доказательства гипотезы РНК-мира
Мир РНК — это красивая гипотеза о самозарождении жизни, и вчера ее доказательство стало на шаг ближе. Последние новости по теме рнк. Согласно гипотезе РНК-мира, молекула РНК играла ключевую роль в молекулярных процессах и биохимических реакциях, которые привели к появлению жизни на Земле. «Я убежден, что гипотеза РНК-мира неверна», -говорит профессор отделения растениеводства (University of Illinois crop sciences) и Института геномной биологии. Гипотеза мира РНК утверждает, что первые жизненные формы могли появиться на основе РНК.
Получено экспериментальное подтверждение гипотезы РНК-мира
Ученые построили детальную схему реакций, которая вполне могла создать насыщенный «первичный бульон» для того, чтобы в нем появились полимеры и в игру вступила полноценная химическая эволюция. Гипотезу абиогенного происхождения жизни из «органического бульона», которую проверили эксперименты Миллера и Юри, выдвинул в 1924 году советский биохимик Александр Опарин. И хотя в «темные годы» расцвета лысенковщины ученый принял сторону противников научной генетики, заслуги его велики. В знак признания роли академика имя его носит главная награда, вручаемая Международным научным обществом изучения возникновения жизни ISSOL , — Медаль Опарина. Премия присуждается каждые шесть лет, и в разное время ее удостаивались и Стэнли Миллер, и великий исследователь хромосом, Нобелевский лауреат Джек Шостак. Получилась уникальная, настоящая эволюционная премия — с изменчивым названием.
Научно: Химическая эволюция Теория пытается описать превращение сравнительно простых органических веществ в довольно сложные химические системы, предшественницы собственно жизни, под влиянием внешних факторов, механизмов селекции и самоорганизации. Базовой концепцией этого подхода служит «водно-углеродный шовинизм», представляющий эти два компонента воду и углерод — NS в качестве абсолютно необходимых и ключевых для появления и развития жизни, будь то на Земле или где-то за ее пределами. А главной проблемой остаются условия, при которых «водно-углеродный шовинизм» может развиться в весьма изощренные химические комплексы, способные — прежде всего — к саморепликации. По одной из гипотез, первичная организация молекул могла происходить в микропорах глинистых минералов, которые выполняли структурную роль. На их внутренней поверхности, как на матрице, могли оседать и полимеризоваться сложные биомолекулы: израильские ученые показали, что такие условия позволяют выращивать достаточно длинные белковые цепочки.
Здесь же могли скапливаться нужные количества солей металлов, играющих важную роль катализаторов химических реакций. Глиняные стенки могли выполнять функции клеточных мембран, разделяя «внутреннее» пространство, в котором протекают все более сложные химические реакции, и отделяя его от внешнего хаоса. Энергию для первичного «обмена веществ» могли поставлять неорганические реакции — такие как восстановление минерала пирита FeS2 водородом до сульфида железа и сероводорода. В этом случае для появления сложных биомолекул не требуется ни молний, ни ультрафиолета, как в экспериментах Миллера — Юри. А значит, мы можем избавиться от вредных аспектов их действия.
Молодая Земля не была защищена от вредных — и даже смертельно опасных — компонентов солнечного излучения. Даже современные, испытанные эволюцией организмы были бы неспособны выдержать этого жесткого ультрафиолета — притом что само Солнце было значительно моложе и не давало достаточно тепла планете. Из этого возникла гипотеза о том, что в эпоху, когда творилось чудо зарождения жизни, вся Земля могла быть покрыта толстым — в сотни метров — слоем льда; и это к лучшему. Скрываясь под этим ледяным щитом, жизнь могла чувствовать себя вполне в безопасности и от ультрафиолета, и от частых метеоритных ударов, грозивших погубить ее еще в зародыше. Относительно прохладная среда могла также стабилизировать структуру первых макромолекул.
Научно: Черные курильщики В самом деле, ультрафиолетовое излучение на молодой Земле, атмосфера которой еще не содержала кислорода и не имела такой замечательной штуки, как озоновый слой, должно было быть убийственным для любой зарождающейся жизни. Из этого выросло предположение о том, что хрупкие предки живых организмов были вынуждены существовать где-то, скрываясь от непрерывного потока стерилизующих все и вся лучей. Например, глубоко под водой — конечно, там, где имеется достаточно минеральных веществ, перемешивания, тепла и энергии для химических реакций. И такие места нашлись.
Однако стоит отметить, что молекула не является самовоспроизводящейся, как настоящая. Поэтому ее нельзя считать живой. Тем не менее, созданная учеными молекула способна копировать другие молекулы РНК. Это показывает, как жизнь может возникнуть в лаборатории или, теоретически, в любой точке Вселенной", — заявил Джеральд Джойс, президент Института Солка, в статье, опубликованной в Washington Post.
Многообещающая, даже фундаментальная работа Нам еще очень далеко до того, чтобы увидеть живое существо, даже одноклеточное, рожденное из пробирки.
Поседевший за ночь Лиланд обретет спокойствие причудливого характера: будет петь и танцевать, иногда срываясь на истерический хохот. Считается, что из-за сильного эмоционального потрясения, вроде того, что пережил Лиланд, можно резко растерять пигмент кожи и волос — меланин — и поседеть. Синдром, при котором волосы стремительно белеют, называют синдромом Марии-Антуанетты. Согласно легенде, перед казнью сверженная королева Франции тоже поседела за ночь. Ей, как и Лиланду, было о чем понервничать. В историях и легендах внезапно поседевшие люди встречаются часто, а на страницах медицинских журналов — редко.
К тому же эти клинические отчеты не всегда точны, а местами больше похожи на выдумки, чем на научные наблюдения. Один из немногих научных обзоров середины XX века едва набрал с полсотни случаев с 1827 года. Авторы исследования посвежее, 2013 года, отмечают, что из 196 случаев, описанных с 1800 года по настоящее время, лишь 44 были подтвержденными — то есть ученые и врачи лично наблюдали быстрое поседение. В остальных случаях авторы поверили на слово или пациенту, или коллегам. Десятилетиями туман из мифов позволял феномену нервной седины ускользать от исследователей. Но с 2010-х скепсис в отношении клинических случаев прошлого постепенно сменился живым научным интересом и исследованиями нервной седины у мышек в контролируемых лабораторных условиях. Сейчас мы знаем и про людей, что седина от стресса — не выдумка культуры.
Пусть без преувеличений и не обошлось. Как можно поседеть от стресса? И раз уж это не сказки, чем опасна нервная седина? Седина — это нормально Нормой считается появление седых волос после 30 лет. Как ни крути, если у вас есть волосы, возрастного, то есть физиологического, поседения вам не избежать. Волосы состоят из двух частей. Снаружи, над поверхностью кожи, виден стержень волоса — тонкая, гибкая нить из неживых, ороговевших эпителиальных клеток, кератиноцитов.
Под поверхностью кожи находится корень из живых клеток, которые продолжают делиться. Корень окружен оболочкой из кожи и соединительной ткани — волосяным фолликулом. У основания волоса корень расширяется, образуя волосяную луковицу. В ней постоянно образуются новые клетки, которые затем ороговевают и склеиваются в волос. Цвет волосу придают два вида пигмента меланина. Эумеланин — темный пигмент, который отвечает за черный и коричневый цвет волос. Феомеланин — красноватый пигмент.
В зависимости от количества и сочетания типов меланина меняется цвет волос: если много эумеланина, они будут темные; если эумеланина мало — светлые; если эумеланина мало, а феомеланина много — рыжие. Подробнее о том, как баланс этих пигментов влияет на окрас кошек — в материале «Раскрашиваем котика». Меланин синтезируют клетки меланоциты в луковице волоса. Меланоциты упаковывают пигмент в меланосомы — пузырьки внутри клетки. Затем пузырьки с пигментом переносятся по длинным ветвящимся отросткам меланоцита в эпителиальные клетки. Пока наверняка неизвестно, как именно меланосомы попадают в клетки волоса, но, скорее всего, меланоциты выделяют пузырьки с пигментом во внешнюю среду, а эпителиальные клетки их «заглатывают». Если же меланоциты начинают плохо работать, меланосом с пигментом в волосе становится совсем мало, их место занимают пузырьки без пигмента, и волосы становятся седыми.
Считается, что изменение цвета волос жестко синхронизировано с фазами роста волоса. Каждый волосяной фолликул раз в несколько лет проходит через три этапа: Анаген — фаза роста. На этой стадии клетки в луковице волоса — кератиноциты и меланоциты — способны делиться. В каждый момент времени около 90 процентов волос находится в фазе роста. В среднем анаген длится от двух до пяти лет, но может длиться меньше, если вы нервничаете, плохо питаетесь или состарились. Катаген — фаза, в которую волосяная луковица отсоединяется от кровеносных сосудов и нервов.
Эти рибозимы способствовали расщеплению и спариванию РНК-цепочек, что в конечном итоге приводило к образованию молекул РНК, действующих как рибозимы типа "hammerhead", которые могли самовоспроизводиться. Репликация полимеров происходила благодаря циклическому изменению температуры, напоминающему естественные условия циклов день-ночь на ранней Земле. Это позволяет предположить, что древние РНК-полимеры могли использовать такие температурные циклы для своего размножения. Неорганические поверхности, например, камни, также могли играть важную роль в этом процессе, способствуя стабилизации и размножению РНК-молекул.
ПОДПИСАТЬСЯ НА РАССЫЛКУ
- Семь научных теорий о происхождении жизни. И пять ненаучных версий
- Газета «Суть времени»
- Гипотеза РНК-мира для ЕГЭ по биологии - YouTube
- Смотрите также
- РНК-переключатели
- РНК - мир. Сомнение в первичности.
Эффективный полимеразный рибозим подкрепил гипотезу мира РНК
Суть гипотезы РНК-мира заключается в том, что первые формы жизни на Земле могли состоять из РНК-молекул, способных к самовоспроизведению без помощи белковых ферментов. Суть гипотезы РНК-мира заключается в том, что первые формы жизни на Земле могли состоять из РНК-молекул, способных к самовоспроизведению без помощи белковых ферментов. Альтернативная гипотеза называется гипотезой первичного майонеза и говорит о том, что липиды, то есть вещества, образующие мембраны, были с самого начала и окружали молекулы РНК.
Найдено подтверждение гипотезы «РНК-мира»
Они предложили гипотезу "мира РНК", которая предполагает, что возникновение жизни на Земле произошло путем усложнения РНК-молекул и их преобразования в молекулы ДНК и белки. В конце концов, был написан сценарий «Мир РНК», согласно которому сначала якобы образовалась РНК, содержащая информацию о белке, а затем и сам белок. Чтобы гипотеза о мире РНК была достоверной, мы должны представить себе, что достаточно длинный предшественник РНК, способный к репликации, мог спонтанно появиться в пребиотическом супе. Новые доказательства гипотезы РНК-мира: ученые обнаружили способ самовоспроизведения молекул без участия белков.
Ученые нашли новые доказательства РНК-мира
Гипотеза РНК-мира для ЕГЭ по биологии - YouTube | Поэтому многие учёные придерживаются гипотезы "мира РНК", согласно которой РНК появилась на Земле раньше, чем ДНК. |
Ученые обнаружили новые доказательства гипотезы РНК-мира | 01.04.2024 | NVL | “[Гипотеза мира РНК] была сведена ритуальным злоупотреблением к чему-то вроде креационистской мантры”, и. |
Как в мир РНК пришли белки | В новом прорыве, который может кардинально изменить наше понимание происхождения жизни на Земле, исследователи из Брукхейвенской национальной лаборатории обнаружили свидетельства гипотезы РНК-мира. |
Американские ученые выявили новое объяснение возникновения жизни на Земле
Этот фермент был обнаружен впервые в 1985 г. Согласно номенклатуре, этот фермент называют ДНК-нуклеотидилэкзотрансферазой, или теломерной терминальной трансферазой мол. Длина теломерной РНК колеблется от 150 нуклеотидов — у простейших до 1400 нуклеотидов — у дрожжей, у человека — 450 нуклеотидов. Наличие в молекуле теломеразы РНК-последовательности, по которой идет матричный синтез фрагмента ДНК, позволяет отнести теломеразу к своеобразной обратной транскриптазе, то есть ферменту, способному вести синтез ДНК по матрице РНК.
Матричный участок представлен в теломеразной РНК только один раз. Его длина не превышает длину двух повторов в теломерной ДНК. На стадии элонгации выступающая цепь ДНК удлиняется до конца матрицы.
После удлинения выступающей цепи ДНК до конца матрицы происходит транслокация, то есть перемещение матрицы и белковых субъединиц фермента на заново синтезированный конец теломеразной ДНК, и весь цикл повторяется вновь. Таким образом происходит решение проблемы концевой репликации ДНК у эукариот. Если молекула ДНК повреждена — например, подверглась разрыву double-strand break, DSB — для ее починки необходима матрица, в которой последовательность нуклеотидов соответствует исходному, «правильному» состоянию поврежденного участка.
Ранее считалось, что в качестве таких матриц всегда используются другие молекулы ДНК. Позже было установлено, что иногда эти ДНК-матрицы синтезируются путем обратной транскрипции на основе РНК при участии ретротранспозонов. При изучении ретровирусов, геном которых представлен молекулами одноцепочечной РНК, было обнаружено, что в процессе внутриклеточного развития ретровирус проходит стадию интеграции своего генома в виде двухцепочечной ДНК в хромосомы клетки-хозяина.
В 1964 г. Темин выдвинул гипотезу о существовании вирусспецифичного фермента, способного синтезировать на РНК-матрице комплементарную ДНК. Усилия, направленные на выделение такого фермента, увенчались успехом, и в 1970 г.
Темин с Мизутани, а также независимо от них Балтимор открыли искомый фермент в препарате внеклеточных вирионов вируса саркомы Рауса. Каждый вирион полноценная вирусная частица, состоящая из нуклеиновой кислоты и белковой оболочки ретровирусов содержит две идентичные цепи РНК размером от 8000 до 10 000 нуклеотидов. Этапы обратной транскрипции: 1.
Этот участок обычно обозначают как pbs от англ. Второй прыжок, в результате которого новосинтезированная вторая цепь ДНК комплементарно взаимодействует с тРНК-связывающей последовательностью первой цепи. Вся последовательность реакций протекает без явного участия ферментов репликации клетки-хозяина топоизомеразы, хеликазы, праймазы, ДНК-связывающего белка, лигазы и т.
При этом следует отметить, что молекулы вирусных ДНК длиннее молекул вирусных РНК, которые послужили матрицей для обратной транскрипции. Books, 1986. Цитировано по Реакцию обратной транскрипции проводят в специально подобранных условиях с использованием сильных ингибиторов РНКазной активности.
Матрицей служит первая цепь кДНК. Показано, что сочетание этих двух ферментов позволяет повысить выход полноценных двухцепочечных молекул кДНК. По окончании синтеза первая и вторая цепи кДНК остаются ковалентно связанными петлей шпильки, служившей праймером при синтезе второй цепи.
Эту петлю расщепляют эндонуклеазой S1, специфически разрушающей одноцепочечные участки нуклеиновых кислот. Образующиеся при этом концы не всегда оказываются тупыми, и для повышения эффективности последующего клонирования их репарируют до тупых с помощью фрагмента Кленова ДНК-полимеразы I E. Уже одно это открытие формально поставило РНК в центр основного постулата молекулярной генетики, так как показало, что поток генетической информации распространяется от РНК не в одном, а в двух направлениях: не только к белку, но и к ДНК.
Все более глубокое проникновение в механизмы основных молекулярно-генетических процессов репликацию, транскрипцию и трансляцию способствовало возникновению понятия о неканонических функциях РНК, осознанию полифункциональности рибонуклеиновых кислот. К достаточно давно определенным каноническим функциям РНК относятся: способность выполнять роль мессенджера при передаче наследственной информации о структуре белка от ДНК к белоксинтезирующему аппарату клеток мРНК , участвовать в формировании структуры рибосом рРНК , обеспечивать специфическое акцептирование и перенос аминокислот к рибосомам тРНК. Вместе с тем РНК свойственны особые неканонические функции, реализуемые на разных этапах программы жизни тех или иных организмов.
В биосинтезе белка трансляции РНК безусловно играет определяющую роль. Различные по структуре рРНК формируют основу субчастиц рибосомы и определяют взаимодействие субчастиц при сборке полной рибосомы. Активация аминокислот, их специфическое акцептирование и доставка к рибосомам осуществляется тРНК.
Кодон-антикодоновое взаимодействие между мРНК и тРНК обеспечивает перевод нуклеотидной последовательности информационных макромолекул в аминокислотную последовательность синтезируемых белков. Сама реакция образования пептидной связи транс-пептидирование и продвижение рибосомы по мРНК транслокация также, по всей видимости, связаны с функционированием рРНК. Пространственная структура мРНК непосредственно влияет на скорость трансляции, а ее способность взаимодействовать с разнообразными регуляторными белками, особенно характерная для высших эукариот, является основой для тонкой регуляции биосинтеза белка.
При «включении» гена происходит локальное расплетение спирали ДНК. Затем с гена, кодирующего белковую молекулу, синтезируется его РНК-копия. После ряда «превращений» она становится матричной РНК, т.
Он синтезируется из активированных аминокислот, присоединенных к специальным транспортным РНК. В процесс трансляции вовлечено множество макромолекул и макромолекулярных комплексов. При трансляции происходит считывание генетической информации, заключенной в мРНК, рибосомами и ее передача полипептидным цепям белков, то есть биосинтез полипептидных цепей, последовательность аминокислот в которых определена последовательностью нуклеотидов в мРНК в соответствии с генетическим кодом.
Свободные аминокислоты не узнаются рибосомами. Чтобы это произошло, аминокислоты должны поступать в рибосомы в виде конъюгатов с тРНК аминоацилированных тРНК , последовательности нуклеотидов которых распознаются аппаратом трансляции. Именно эта последовательность, называемая антикодоном, определяет положение аминокислоты в полипептидной цепи.
В ходе каждого индивидуального акта трансляции рибосома распознает кодон мРНК и в соответствии с ним выбирает аминоацилированную тРНК, антикодон которой соответствует транслируемому кодону. После этого происходит соединение посредством пептидной связи очередной аминокислоты с С-концевой аминокислотой растущей цепи полипептида. Таким образом, во время трансляции рибосома после связывания мРНК начинает последовательно, кодон за кодоном, перемещаться вдоль матрицы, выбирая из окружающей среды молекулы аминоацилированных тРНК.
При этом каждый индивидуальный акт трансляции завершается присоединением выбранной молекулы аминокислоты к С-концевой аминокислоте синтезируемой цепи белка посредством пептидной связи. Процесс биосинтеза белка рибосомами, как и биосинтез любой другой макромолекулы клетки, условно разделяют на три этапа: инициацию, элонгацию и терминацию. Во время инициации трансляции происходит сборка нативной 70S или 80S рибосомы на транслируемой мРНК и подготовка к образованию пептидной связи между первыми двумя N-концевыми аминокислотными остатками синтезируемого полипептида.
При элонгации происходит последовательное удлинение растущей цепи полипептида аминокислотными остатками, а терминация трансляции сопровождается прекращением синтеза полипептида и его высвобождением из трансляционного комплекса. При этом наблюдается разделение рибосомы и мРНК, после чего они вступают в новый цикл трансляции. В ходе трансляции рибосома последовательно перемещается вдоль транслируемой молекулы мРНК, считывая заключенную в ней генетическую информацию в виде триплетного генетического кода.
При этом биосинтез полипептида начинается с его N-концевой аминокислоты [3]. В процессе транскрипции биосинтезе РНК на матрице ДНК большое значение имеет способность РНК образовывать разнообразные элементы вторичной структуры шпильки , которые влияют как на инициацию, так и на терминацию синтеза РНК. РНК активно участвует в процессе своего собственного созревания — процессинге первичных транскриптов про-РНК.
У примитивных одноклеточных организмов выявлена способность РНК к аутостайсингу — вырезанию некодирующих участков интронов и сшиванию кодирующих фрагментов экзонов без участия белков-ферментов. У организмов, утративших способность к аутосплайсингу, в сплайсировании РНК тем не менее принимают участие особые молекулы — малые ядерные РНК мяРНК , необходимые для безошибочного вычленения интронов из молекул РНК-предшественников. Посттрансляционные модификации синтезированных в ходе трансляции полипептидов, в результате которых образуются функционально активные молекулы, также нередко сопряжены с присоединением к ним значительных по размерам молекул РНК.
Информосомы, частицы, присутствующие в животных клетках и состоящие из высокомолекулярной нерибосомной рибонуклеиновой кислоты РНК и особого белка. Информосомы обнаружены впервые советским биохимиком А. Спириным с сотрудниками в 1964 в цитоплазме зародышей рыб, где они представлены смесью частиц разных размеров Отношение массы РНК к массе белка в информосомах постоянно около 1:4 и одинаково у всех частиц, независимо от их размера.
Аналогичные частицы найдены в клетках млекопитающих, в том числе зараженных вирусами, а также у иглокожих и насекомых. Белок информосом служит, вероятно, для переноса иРНК из ядра в цитоплазму, а также для защиты иРНК от разрушения и регуляции скорости белкового синтеза. Малые ядерные РНК присутствуют в ядрах в комплексах с белками, получившими название малые рибонуклеопротеиновые частицы мяРНП.
Однако было не ясно, как такая молекула может возникнуть из предшественников, не способных к каталитической активности. Оказалось, что рибозим, который способен расщеплять другие молекулы, может возникнуть спонтанно, поскольку для обеспечения его функции необходимы только несколько консервативных оснований. Однако оставалась проблема, как именно это свойство сохранилось в ходе биохимической эволюции. Исследователи разработали модель, которая имитирует случайные разрывы в простых молекулах РНК, лишенные ферментативной активности. В результате возникали короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК.
Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности. В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты.
Генетическая информация в виде цепочек ДНК копируется и передается от поколения к поколению. Но как обстояло дело до появления клеток и ДНК?
В 1968 году химик Лесли Орджел опубликовал статью, в которой описал возможность существования жизни на Земле исключительно в виде рибонуклеиновых кислот, которые были способны передавать информацию безо всяких белков. Впоследствии эту идеи развили другие ученые. Так возникла гипотеза «РНК-мира». Ученым из США удалось получить ее первое подтверждение.
Гипотеза мира РНК
Исследователи предложили возможный путь, по которому набор пребиотических олигомеров коротких полимерных цепочек , несущих информацию, мог приобрести ранние каталитические функции, такие как специфическое расщепление. Используя компьютерное моделирование на основе структуры фермента РНК, они показали, что даже спонтанное, неферментативное расщепление может способствовать размножению олигомеров за счет образования коротких фрагментов, выступающих в роли затравок для дальнейшего роста. Естественный отбор мог способствовать развитию каталитической эффективности этих молекул.
Что касается РНК, то ее вообще не замечали. Это стало мировой сенсацией, изменившей многие представления в генетике. Затем была открыта новая грань РНК: она может работать вместо белков. Пусть медленней, пусть не так точно, но, тем не менее, она на это способна.
А дальше - больше. Словом, РНК оказалась этаким универсалом, мастером на все руки. Она способна делать все, правда, не так хорошо.
Подписаться Найдено подтверждение гипотезы «РНК-мира» Эволюция, по определению Дарвина, это наследование с модификациями. Генетическая информация в виде цепочек ДНК копируется и передается от поколения к поколению.
Но как обстояло дело до появления клеток и ДНК?
Ей, как и Лиланду, было о чем понервничать. В историях и легендах внезапно поседевшие люди встречаются часто, а на страницах медицинских журналов — редко. К тому же эти клинические отчеты не всегда точны, а местами больше похожи на выдумки, чем на научные наблюдения. Один из немногих научных обзоров середины XX века едва набрал с полсотни случаев с 1827 года. Авторы исследования посвежее, 2013 года, отмечают, что из 196 случаев, описанных с 1800 года по настоящее время, лишь 44 были подтвержденными — то есть ученые и врачи лично наблюдали быстрое поседение. В остальных случаях авторы поверили на слово или пациенту, или коллегам. Десятилетиями туман из мифов позволял феномену нервной седины ускользать от исследователей. Но с 2010-х скепсис в отношении клинических случаев прошлого постепенно сменился живым научным интересом и исследованиями нервной седины у мышек в контролируемых лабораторных условиях. Сейчас мы знаем и про людей, что седина от стресса — не выдумка культуры.
Пусть без преувеличений и не обошлось. Как можно поседеть от стресса? И раз уж это не сказки, чем опасна нервная седина? Седина — это нормально Нормой считается появление седых волос после 30 лет. Как ни крути, если у вас есть волосы, возрастного, то есть физиологического, поседения вам не избежать. Волосы состоят из двух частей. Снаружи, над поверхностью кожи, виден стержень волоса — тонкая, гибкая нить из неживых, ороговевших эпителиальных клеток, кератиноцитов. Под поверхностью кожи находится корень из живых клеток, которые продолжают делиться. Корень окружен оболочкой из кожи и соединительной ткани — волосяным фолликулом. У основания волоса корень расширяется, образуя волосяную луковицу.
В ней постоянно образуются новые клетки, которые затем ороговевают и склеиваются в волос. Цвет волосу придают два вида пигмента меланина. Эумеланин — темный пигмент, который отвечает за черный и коричневый цвет волос. Феомеланин — красноватый пигмент. В зависимости от количества и сочетания типов меланина меняется цвет волос: если много эумеланина, они будут темные; если эумеланина мало — светлые; если эумеланина мало, а феомеланина много — рыжие. Подробнее о том, как баланс этих пигментов влияет на окрас кошек — в материале «Раскрашиваем котика». Меланин синтезируют клетки меланоциты в луковице волоса. Меланоциты упаковывают пигмент в меланосомы — пузырьки внутри клетки. Затем пузырьки с пигментом переносятся по длинным ветвящимся отросткам меланоцита в эпителиальные клетки. Пока наверняка неизвестно, как именно меланосомы попадают в клетки волоса, но, скорее всего, меланоциты выделяют пузырьки с пигментом во внешнюю среду, а эпителиальные клетки их «заглатывают».
Если же меланоциты начинают плохо работать, меланосом с пигментом в волосе становится совсем мало, их место занимают пузырьки без пигмента, и волосы становятся седыми. Считается, что изменение цвета волос жестко синхронизировано с фазами роста волоса. Каждый волосяной фолликул раз в несколько лет проходит через три этапа: Анаген — фаза роста. На этой стадии клетки в луковице волоса — кератиноциты и меланоциты — способны делиться. В каждый момент времени около 90 процентов волос находится в фазе роста. В среднем анаген длится от двух до пяти лет, но может длиться меньше, если вы нервничаете, плохо питаетесь или состарились. Катаген — фаза, в которую волосяная луковица отсоединяется от кровеносных сосудов и нервов. Она значительно короче анагена и длится от трех до шести недель. В катаген предшественники кератиноцитов и меланоцитов отмирают и перестают делиться. Телоген — фаза покоя.
Через несколько месяцев после утраты кровяного снабжения оголодавший волос выпадет.
Японские ученые впервые доказали способность РНК эволюционировать
гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся. Строение РНК Типы РНК Гипотеза РНК мира. Согласно гипотезе мира РНК, эта макромолекула изначально могла быть единственной ответственной за клеточную или доклеточную жизнь. Поэтому многие учёные придерживаются гипотезы "мира РНК", согласно которой РНК появилась на Земле раньше, чем ДНК. Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. Обнаружены доказательства гипотезы РНК-мира, технологии, новости экономики, Банки, банк, кредит, проценты, ставки, финансы, курсы валют, деловые новости.
Многообещающая, даже фундаментальная работа
- Обнаружены новые доказательства РНК-мира
- Исследования по гипотезе РНК-мира: возникновение саморепликации –
- Почему РНК не хватало
- Гипотеза мира РНК -
- Как в мир РНК пришли белки | Наука и жизнь
- Ученые нашли новые доказательства РНК-мира
Ученые обнаружили новые доказательства теории РНК-мира
гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся. Смелая гипотеза оказалась пророческой, в начале 80-х были найдены первые рибозимы — биокатализаторы на основе РНК. Ученые из Университета Иллинойса представили новые доказательства в поддержку гипотезы РНК-мира, которая является важной теорией о происхождении жизни на Земле. Смелая гипотеза оказалась пророческой, в начале 80-х были найдены первые рибозимы — биокатализаторы на основе РНК.
Ученые нашли новые доказательства РНК-мира
22-M. «Мир РНК» . ПРОСТЫЕ ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ТВОРЦА | гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся. |
Найдено подтверждение гипотезы "РНК-мира" | Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. |