16. На рисунке изображены графики функций видов f(x) = a √x и g(x)=kx, пересекающиеся в точках A и B. Найдите абсциссу точки B. На рисунке 69 изображён график линейной функции (y=f(x)). Какие из следующих утверждений о данной функции верны? Решение задачи 7. Вариант 340. 30.01.2021 31.01.2021 admin 0 Комментариев. На рисунке изображен график функции f(x)=5-|x+1|-|x-2|Пользуясь рисунком вычислите F(3) – F(‐1), где F(x) – некоторая первообразная f(x).
Значение не введено
Креативные идеи: Художники, писатели и другие творческие личности могут использовать сервис для генерации идей и вдохновения. Технические консультации: Полезен для получения информации о программировании, инженерии и других технических областях. Неуместное использование: Медицинская диагностика и лечение: Не следует полагаться на ЯсноПонятно24 для медицинских диагнозов или лечебных рекомендаций. Юридические консультации: Сервис не может заменить профессионального юриста для консультаций по правовым вопросам.
Конфиденциальная информация: Не следует использовать ЯсноПонятно24 для работы с конфиденциальной или чувствительной информацией.
Анализируем по очереди приведенные в правом столбце характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода. Решение: Анализируем характеристики: Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода. Поэтому получаем ответ: А—1. Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам — 2002—2003 гг. Но так как первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г—2.
Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006—2008 гг. Именно в это время добыча сначала понемногу увеличивалась примерно с 190 млн т до 210 , а потом резко возросла до 250 млн т. Медленный рост следует искать в период, когда линия графика имеет наиболее пологий вид. Это: 2004—2006 год, что соответствует периоду Б, то есть получаем: Б—4. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси — температура двигателя в градусах Цельсия. Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику температуры. Решение: Выше 600 температура была с 4-й по 7-ю минуту. Поэтому здесь нужно взять интервал 4—6 мин.
Получаем: В—1. Температура падала только после 7-й минуты. Соответственно, тут подходит интервал 7—9 мин. Ответ: Г—2. Самый быстрый рост температуры происходил там, где график имеет наиболее «крутой» вертикальный подъем. Это имеет место только в 1-ю минуту нагревания. Ответ: А—3. В пределах 40—50 0С температура имела место, начиная со 2-й по 3-ю минуту.
Значит, нужно выбрать интервал 2—3мин. Ответ: Б—4. На горизонтальной оси отмечено время в минутах , прошедшее с начала выступления гимнаста, на вертикальной оси — частота пульса в ударах в минуту. Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику пульса гимнаста на этом интервале. Для точек графика, которые не попадают в «узлы» сетки рисунка то есть для которых невозможно определить точные значения , нужно определять значения приблизительно. Величина роста пульса связана с пологостью или, напротив, крутизной линии графика. Это означает, что чем большее изменение значения функции происходит за тот или иной но обязательно одинаковый промежуток времени, тем больше величина роста. Решение: Анализируем предложенные характеристики: Если частота пульса сначала падала, а затем росла, то на графике это должно выразиться в «прогибе» линии графика вниз.
Такая кривизна наблюдается только в течение 3—4 минуты. Значит, получаем ответ: Г—1. Самый большой «подъем» линии на 1-й половине графика имеет место с 1-й по 2-ю минуту. Отсюда получаем: Б—2. Частота пульса падала, начиная со 2-й минуты. В течение 3—4 минут тоже наблюдалось падение, однако оно потом перешло в рост. Поэтому правильным здесь следует считать интервал В. Единственный интервал, на котором частота не превысила 100 ударов, — 0—1 мин.
Отсюда имеем ответ: А—4.
Разбор примера На рисунке ниже изображён график функции, определенной на множестве действительных чисел. Используя график, найдите промежутки возрастания и промежутки убывания функции. Отметим с помощью штриховых линий промежутки, где график функции убывает «спускается с горы» и где он возрастает «идет в гору». Запишем через знаки неравенств, какие значения принимает « x » на полученных промежутках.
Просто перенесем эти две касательные на этот круг так, чтобы они проходили через его центр, но не изменяли наклона. Тангенс мы получаем равным длине отрезка на красной линии ось тангенса от оси абсцисс до точки пересечения с этой линией касательной.
Мы видим, что наибольшее числовое значение тангенса будет у касательной b.
Привет! Нравится сидеть в Тик-Токе?
Задание №10 по теме «Графики функций» ЕГЭ по математике профильного уровня 2023 года | Если график функции в задании изображен на клеточках, и указан масштаб координатных осей, то возможен второй способ решения, который я условно называю "по единичке". |
7. Анализ функций | Для определения того, в каких точках производная функции f(x) отрицательна, мы должны знать, что производная функции описывает ее скорость изменения. |
Остались вопросы?
Какие из следующих утверждений о данной функции неверны? На графике функции выделены две точки с координатами (-2;4) b (2;1). Подставим координаты этих точек в уравнение функции и решим систему двух уравнений с двумя переменными. Задача 17 – 31:03 На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. 16. На рисунке изображены графики функций видов f(x) = a √x и g(x)=kx, пересекающиеся в точках A и B. Найдите абсциссу точки B. 5)На рисунке изображены графики функций вида.
На рисунке изображен график функции y=f(x)
Показать ответ Преподаватель: Татьяна Леонидовна. Ответ: 61. Задание состоит в теме: Графики функций. Какие из следующих утверждений о данной функции неверны? На рисунке 15 изображены графики функций видов f(x)=2x2-5x+5 и g(x)=ax2+bx+c, пересекающиеся в точкаx A и B. Найдите ординату точки B. На рисунке изображён график функции у = f(x) и отмечены точки -5, -4, -1, 1 на оси абсцисс. 4. На рисунке изображены графики функций вида y = ax2 + bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c. На рисунке ниже изображён график функции, определенной на множестве действительных чисел.
11.5. Логарифмические функции (Задачи ЕГЭ профиль)
На оси абсцисс отмечены восемь точек: x1, x2, x3,... Сколько из этих точек лежит на промежутках возрастания функции f x? Если график функции убывает — производная отрицательна верно и наоборот. Если график функции возрастает — производная положительна верно и наоборот. Эти две фразы помогут вам решить большую часть задач.
Внимательно смотрите, рисунок производной вам дан или функции, а дальше выбирайте одну из двух фраз. Построим схематично график функции. Получается, что 3 точки лежат на участках возрастания: x4; x5; x6. Функция f x определена на промежутке -6; 4.
На рисунке изображен график ее производной. Найдите абсциссу точки, в которой функция принимает наибольшее значение. На рисунке изображён график функции f x и двенадцать точек на оси абсцисс: x1, x2,... В скольких из этих точек производная функции отрицательна?
Задача обратная, дан график функции, нужно схематично построить, как будет выглядеть график производной функции, и посчитать, сколько точек будет лежать в отрицательном диапазоне. Положительные: x1, x6, x7, x12. Отрицательные: x2, x3, x4, x5, x9, x10, x11. Ноль: x8.
В какой точке отрезка [2; 8] функция f x принимает наименьшее значение? Определите количество целых точек, в которых производная функции положительна. Определите количество целых точек, в которых производная функции отрицательна. Сколько из этих точек лежит на промежутках убывания функции f x? Найдите точку максимума функции f x. Найдите точку из отрезка [8 ; 12] , в которой производная функции f x равна 0. Найдите точку из отрезка [7 ; 12] , в которой производная функции f x равна 0. Найдите точку из отрезка [2 ; 7] , в которой производная функции f x равна 0. Найдите точку из отрезка [2 ; 6] , в которой производная функции f x равна 0. В скольких из этих точек функция f x положительна?
В скольких из этих точек функция f x отрицательна? На оси абсцисс отмечено одиннадцать точек: x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11.
Задача 9 — 14:15 Сколько из этих точек лежит на промежутках убывания функции f x? Задача 10 — 15:40 Найдите количество точек экстремума функции f x , принадлежащих отрезку [-17;-4]. Задача 11 — 17:20 Найдите точку экстремума функции f x , принадлежащую отрезку [1;6]. Найдите точку минимума функции f x. Найдите количество точек максимума функции f x , принадлежащих отрезку [-2;17]. Найдите количество точек минимума функции f x , принадлежащих отрезку [-18;3]. В какой точке отрезка [-5;-1] функция f x принимает наибольшее значение?
Вопрос пользователя: На рисунке изображён график линейной функции. Напишите формулу, которая задаёт эту линейную функцию. Обратите внимание: ответы, предоставляемые искусственным интеллектом, могут не всегда быть точными. Не рассчитывайте на них в критически важных областях, таких как медицина, юриспруденция, финансы или в вопросах, связанных с безопасностью. Для важных решений всегда обращайтесь к квалифицированным специалистам.
§ 14. Свойства некоторых видов функций — 44. Свойства линейной функции — 1119 — стр. 251
Это и есть функция, график которой изображён на рисунке 1. Нам нужно найти f(-8), поэтому нет необходимости преобразовывать полученную функцию к виду f(x) = ax2 + bx + c. На рисунке изображен график функции и отмечены шесть точек на оси абсцисс: Сколько среди этих точек таких, в которых производная функции отрицательна? На рисунке изображен график f x cos AX-B.
Исследование графиков функции при помощи производной
На оси абсцисс отмечены точки -1, 2, 3, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку. На оси абсцисс отмечены точки -2, -1, 3, 4. В какой из этих точек значение производной наименьшее?
Найдите количество точек минимума функции f x , принадлежащих отрезку [-13;1].
Найдите количество точек экстремума функции f x , принадлежащих отрезку [-10;10]. Найдите промежутки возрастания функции f x. В ответе укажите сумму целых точек, входящих в эти промежутки. Найдите промежутки убывания функции f x.
Задача 4 — 05:09 Определите количество целых точек, в которых производная функции положительна. Задача 5 — 08:18 В скольких из этих точек производная функции f x положительна? Задача 6 — 09:53 В скольких из этих точек производная функции f x отрицательна?
Определите количество целых точек, в которых производная функции отрицательна. Задача 8 — 12:55 Сколько из этих точек лежит на промежутках возрастания функции f x? Задача 9 — 14:15 Сколько из этих точек лежит на промежутках убывания функции f x? Задача 10 — 15:40 Найдите количество точек экстремума функции f x , принадлежащих отрезку [-17;-4].
Решение бытовых вопросов: Пользователи могут получать советы по повседневным вопросам, например, по кулинарии, домашнему мастерству или организации личных финансов. Креативные идеи: Художники, писатели и другие творческие личности могут использовать сервис для генерации идей и вдохновения. Технические консультации: Полезен для получения информации о программировании, инженерии и других технических областях. Неуместное использование: Медицинская диагностика и лечение: Не следует полагаться на ЯсноПонятно24 для медицинских диагнозов или лечебных рекомендаций. Юридические консультации: Сервис не может заменить профессионального юриста для консультаций по правовым вопросам.