Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно.
Водородная против атомной. Что нужно знать о ядерном оружии
2. Чем отличаются атомная, ядерная и термоядерная бомбы? Понятия «атомная» и «ядерная бомба» чаще всего взаимозаменяемы и в нашем контексте означают одно и то же: для их взрыва используется реакция деления ядер тяжёлых элементов, таких как уран или. Водородная бомба и атомная бомба оба типы ядерного оружия, но одно устройства очень сильно отличаются от другого. В двух словах, атомная бомба представляет собой устройство деления, в то время как водородная бомба использует деление для питания реакции синтеза. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Термоядерная бомба основана на реакции ядерного синтеза.
Разница между водородной бомбой и атомной бомбой
Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время.
Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров. Эти частицы можно разглядеть невооруженным глазом, например, такую пыль можно заметить на снегу. Она приводит к летальному исходу, если кто-либо окажется поблизости. Самые мелкие частицы могут много лет находиться в атмосфере и так «путешествовать», несколько раз облетая всю планету.
Сделать сайт просто как «раз-два-три»! Выбрать и зарегистрировать свободное доменное имя. Заказать хостинг, выбрав подходящий тарифный план или заказать установку выделенного сервера.
Заказать создание сайта у нашего специалиста.
Разница между атомной и водородной бомбой Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны что в 450 раз больше мощности бомбы, сброшенной на Нагасаки , а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.
Как раз по сахаровской концепции. Эта была бомба, которую можно масштабировать до любой мощности взрыва. И когда было проведено испытание, все убедились, насколько она мощная. Осознав, что СССР способен создать любой мощности оружие, американцы пришли к выводу, что у них нет защиты от удара возмездия с нашей стороны, который может уничтожить США. Это было оружие тектоническое, которое может нести разрушение на планетарном уровне. После этого американцы, по словам Юлина, стали более серьезно относиться к вопросам ограничения ядерных вооружений: - Стало понятно, что нас стало невыгодно пугать ядерной дубинкой, ведь у нас она оказалась мощнее. Не сразу, а спустя годы появился Договор об ограничении стратегических наступательных вооружений. И сейчас суммарная мощность ядерных зарядов на Земле примерно раз в 10 — 15 меньше, чем была на момент распада СССР. Конкретно Чем отличается атомная бомба от водородной? То есть, тяжелый атом распадается на более легкие атомы, и выделяется большое количество энергии. Термоядерная бомба она же водородная использует слияние изотопов легких элементов. В этом случае само выделение энергии получается больше, чем при делении. И то, и другое оружие ядерное, но в них разные принципы и разное количество выделяемой энергии. Вопрос - ребром Почему «Кузькина мать»?
Водородная бомба и ядерная бомба отличия
Как правило, о подобных происшествиях оповещают с использованием сирены. Чтобы получить информацию о дальнейших действиях, нужно включить телевизор или радио, зайти в интернет и получить сведения о месте сбора. Находясь в крупном городе, можно укрыться в метро, бомбоубежищах, в подвалах зданий. Важно, что чем дольше человек остается на улице, тем большую дозу радиации он получит. При нахождении в квартире лучше укрыться в таком закрытом помещении, как ванная, кладовая. Сообщается, что порядок действий и правила поведения в зараженном районе определяются органами гражданской обороны. Они предоставляют сведения о характере радиационной обстановки и рассказывают о действиях в будущем. В случае умеренного заражения следует находиться в противорадиационном укрытии до суток. После того, как человек зайдет в помещение, нужно очистить одежду от пыли. При сильном заражении в укрытии может потребоваться находиться до 3 дней. При опасном заражении длительность пребывания в укрытии не менее трех дней.
После этого можно переходить в обычное помещение, но выходить из него допускается только при крайней необходимости на непродолжительный срок. Находясь вне укрытия, важно знать, что местность и все предметы заражены радиоактивными веществами. Если в воздухе есть частицы пыли, нужно использовать СИЗ. Нельзя пользоваться водой из открытого водоема. Как пережить ядерный взрыв в убежище? Важнейшим условием спасения жизни является знание средств и способов защиты от оружия массового поражения. Основной способ защиты - укрытие в защитных сооружениях, эвакуация, использование СИЗ. Необходимо уточнить, где расположены ближайшие убежища по месту нахождения. Как пережить ядерный взрыв в убежище Фото: pxhere. Они состоят из основного помещения, тамбуров, фильтровентиляционной камеры.
В убежищах оборудуются системы водоснабжения и канализации, освещения, отопления. Противорадиационные укрытия обеспечивают защиту от радиоактивного заражения и светового излучения, снижают воздействие ударной волны и проникающей радиации. Чаще всего они оборудуются в подвальных или наземных этажах зданий. Что можно сделать, чтобы защитить квартиру от проникновения радиационной пыли: заделать трещины в дверных и оконных проемах; закрыть дымоходы; в случае распоряжения о светомаскировке нужно закрыть световые проемы; изолировать продукты и воду - завернуть продукты в пергамент или целлофан, выложить в защитные мешки или ящики, застеленные плотной бумагой, воду перелить в термосы, плотно закрывающиеся банки и т. При эвакуации с собой важно взять СИЗ и жизненно необходимые вещи. Потребуются небольшой продуктовый запас, который не портится и не требует приготовления, лекарства, документы. При нахождении в защитном сооружении требуется выполнять указания его коменданта. Как спастись от радиации после ядерного удара? Согласно сведениям, представленным в средствах массовой информации, при нахождении в эпицентре взрыва первоначально нужно закрыть глаза, чтобы не потерять зрение.
Однако компактность атомной бомбы не изменит последствия взрыва и приведет к гибели сотен тысяч, а возможно и миллионов человек. Термоядерное оружие Термоядерное оружие или водородная бомба обладает чрезвычайной взрывной силой в результате ядерного синтеза — процесса формирования более тяжелого ядра из двух легких при крайне высокой температуре. Взрыв водородной бомбы может разрушить строения в радиусе полутора километров и вызвать огненные бури, а от яркого белого света можно ослепнуть. Радиоактивные осадки после взрыва водородной бомбы заражают воду и почву на сотни лет. Термоядерное оружие может быть в тысячи раз мощнее атомных бомб — его мощность измеряется мегатоннами в тротиловом эквиваленте. В 1952 году США были первой страной, успешно испытавшей водородную бомбу мощностью 10 Мт. И хотя последствия взрыва термоядерной бомбы более разрушительны, создать их намного сложнее. Взрыв компактной водородной бомбы приведет к масштабному заражению радиацией. Малогабаритное термоядерное оружие называют нейтронной бомбой или усиленными радиационными боеголовками. Это оружие можно эффективно использовать против танковых и пехотных формирований на традиционном поле боя, не затрагивая ближайшие населенные пункты в радиусе нескольких километров. Главная опасность этого вида вооружений заключается в выбросе большого количества радиоактивных осадков. Почему даже небольшая ядерная война приведет к массовому голоду на планете? Ответ здесь! Этот тип вооружений также называют радиологическим оружием. По мнению большинства аналитиков использование «грязной бомбы» носит скорее психологический, чем физический характер и может спровоцировать массовую панику. Эксперты отмечают , что большая часть радиоактивного материала от взрыва грязной бомбы будет рассеяна на несколько городских кварталов или несколько квадратных километров.
Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия. И это очередной повод вспомнить о масштабах ее разрушительных последствий и о том, какую угрозу представляет собой оружие массового поражения. Карибский кризис 1962 года показал, насколько хрупким и беззащитным может быть мир на фоне ядерной угрозы, поэтому в бессмысленной гонке на уничтожение друг друга СССР и США смогли прийти к компромиссу и подписать первый договор, регламентировавший разработку ядерного оружия, — Договор о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой, к которому впоследствии подключились многие страны мира. Теоретическая возможность получения энергии путем термоядерного синтеза была известна еще до Второй мировой войны. Также известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путем сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества, но они не увенчались успехом, так как не удалось получить необходимых температур и давления. Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии. Именно эта реакция протекает в недрах звезд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжелые ядра гелия. Полученного количества энергии достаточно для того, чтобы запустить цепную реакцию, вовлекая в нее весь возможный водород. Именно поэтому звезды не гаснут, а взрыв водородной бомбы обладает такой разрушительной силой. Ученые скопировали эту реакцию с использованием жидких изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». В последствии стал использоваться дейтерид лития-6, твердое вещество, соединение дейтерия и изотопа лития, которое по своим химическим свойствам является аналогом водорода. Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более «чистым», чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд. А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались «слойками». Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу. Почему при взрыве образуется «гриб»? На самом деле облако грибовидной формы — обыкновенное физическое явление. Такие облака образуются при обычных взрывах достаточной мощности, при извержениях вулканов, сильных пожарах и падениях метеоритов. Горячий воздух всегда поднимается выше холодного, однако тут его нагрев происходит настолько быстро и так мощно, что он видимым столбом поднимается вверх, закручивается в кольцеобразный вихрь и тянет за собой «ножку» — столб пыли и дыма с поверхности земли. Поднимаясь, воздух постепенно охлаждается, становясь похожим на обычное облако из-за конденсации паров воды. Однако это еще не все. Гораздо опаснее для человека ударная взрывная волна, расходящаяся по поверхности земли от эпицентра взрыва по окружности радиусом, достигающим 700 км, и радиоактивные осадки, выпадающие из того самого грибовидного облака. В день на полигонах могли производиться по три-четыре эксперимента, в ходе которых изучалась динамика взрыва, поражающие способности, потенциальный ущерб противника. Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го. Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или «Сияпе», расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане. Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы «Толстяк», сброшенной на Нагасаки. Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне. Это была уже настоящая бомба, сброшенная с самолета. Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Юлием Харитоном. Курчатова 30 октября 1961 года на полигоне «Сухой Нос» на архипелаге Новая земля. Измеренная мощность взрыва составила 58,6 мегатонны, что многократно превышало все опытные взрывы, произведенные на территории СССР или США. Изначально планировалось, что бомба будет еще больше и мощнее, однако не существовало ни одного самолета, который мог бы поднять больший вес в воздух. Огненный шар взрыва достиг радиуса примерно 4,6 километра. Теоретически он мог бы вырасти до поверхности земли, однако этому воспрепятствовала отраженная ударная волна, поднявшая низ шара и отбросившая его от поверхности. Ядерный гриб взрыва поднялся на высоту 67 километров для сравнения: современные пассажирские самолеты летают на высоте 8-11 километров. Ощутимая волна атмосферного давления, возникшая в результате взрыва, три раза обогнула земной шар, распространившись всего за несколько секунд, а звуковая волна докатилась до острова Диксон на расстоянии около 800 километров от эпицентра взрыва расстояние от Москвы до Санкт-Петербурга. Радиацией было заражено все на расстоянии двух-трех километров. Немного истории После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более. Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.
И когда было проведено испытание, все убедились, насколько она мощная. Осознав, что СССР способен создать любой мощности оружие, американцы пришли к выводу, что у них нет защиты от удара возмездия с нашей стороны, который может уничтожить США. Это было оружие тектоническое, которое может нести разрушение на планетарном уровне. После этого американцы, по словам Юлина, стали более серьезно относиться к вопросам ограничения ядерных вооружений: - Стало понятно, что нас стало невыгодно пугать ядерной дубинкой, ведь у нас она оказалась мощнее. Не сразу, а спустя годы появился Договор об ограничении стратегических наступательных вооружений. И сейчас суммарная мощность ядерных зарядов на Земле примерно раз в 10 — 15 меньше, чем была на момент распада СССР. Конкретно Чем отличается атомная бомба от водородной? То есть, тяжелый атом распадается на более легкие атомы, и выделяется большое количество энергии. Термоядерная бомба она же водородная использует слияние изотопов легких элементов. В этом случае само выделение энергии получается больше, чем при делении. И то, и другое оружие ядерное, но в них разные принципы и разное количество выделяемой энергии. Вопрос - ребром Почему «Кузькина мать»? Как считается, свое название «Кузькина мать» бомба получила после слов Никиты Хрущева, который в 1959 году сказал вице-президенту США Ричарду Никсону: «В нашем распоряжении имеются средства, которые будут иметь для вас тяжелые последствия. Мы вам покажем Кузькину мать!
Что опаснее водородная или ядерная бомба. Разница между атомной и водородной бомбой
Но такую бомбу никто не делает, так как мощность в 500 000 тонн — уже вершина безумия. Кстати, ядерное топливо уран-235, который используется в атомной бомбе, делится не полностью. Например, атомная бомба, сброшенная американцами на Хиросиму, Япония, содержала 60 килограммов урана-235. Но успешному делению подверглось только 700 граммов топлива. Поэтому, если вы хотите создать крупную ядерную бомбу с большой мощностью и оснастить ею боеголовку управляемой ракеты, вы должны овладеть технологией водородной бомбы. Водородная бомба более сложная для изготовления.
В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез. Отсюда у водородных бомб есть альтернативное название — термоядерное оружие. По сути, внутри термоядерной бомбы содержится небольшая атомная бомба, которая взрывается во время детонации, а высвобождаемая при этом энергия используется в качестве своеобразного термоядерного «детонатора». Топливо для ядерного синтеза нагревается до невероятно огромной температуры. Но этого мало для запуска термоядерного синтеза.
Создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием. Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва.
Будут обсуждены два из самых страшных и разрушительных элементов войны, атомная бомба и водородная бомба. У атомных и водородных бомб есть какая-то разница? Почему водородная бомба сильнее атомной бомбы? Как атомный, так и водород отличаются несколькими сравнительными способами. Водородная бомба считается более мощной, чем атомная бомба, из-за их соответствующих принципов и относительных сил.
Обе эти бомбы используют радиоактивные элементы урана и плутония для создания ядерной энергии, но отличаются тем, как используются эти элементы. Водородная бомба также известна как «термоядерные» бомбы и генерирует энергию от бомбы деления для сжатия и термоплавкого топлива. Атомная бомба работает путем атомного деления или расщепления атомного ядра, а водородная бомба работает путем атомного синтеза или объединения атомных ядер.
Немного дошло до Великобритании, - делится ученый. Но серьезных повреждений на поверхности Земли не было. Уровень радиации - стандартный. Это зафиксировали пролетевшие рядом судна.
На Земле во время взрыва часть людей увидела вспышку в небе и облако в виде гриба ядерного взрыва, а некоторые почувствовали и ударную волну на себе. А вот как взрыв описывал начальник испытательного полигона на Новой Земле Гавриил Кудрявцев: «Нижняя часть ядерного шара не доставала поверхности, но из-за гор в районе Маточкина Шара мы увидели огромный черный столб, поднимавшийся вверх, как бы пытаясь соединиться с огненными шаром. Ядерное облако при своем подъеме разрывалось на части воздушными потоками. Мы почувствовали слабые колебания земли под своими ногами, чего раньше почти не замечали. Я услышал громоподобные мощные звуки от самого взрыва, а затем и отраженные продолжительные звуки от новоземельских гор. Все это походило на артиллерийскую канонаду из гаубичных орудий, расположенных рядом с нами, или на серию взрывов крупных авиационных бомб». Собственно, этого СССР и добивался.
То есть, если атомную бомбу первую создали американцы, то водородную - в СССР. Как раз по сахаровской концепции. Эта была бомба, которую можно масштабировать до любой мощности взрыва.
Затем запускается термоядерный синтез на основе гелия и трития, что приводит к мгновенному нагреву внутри боевого заряда и мощному взрыву.
Какая бомба мощнее? Мощность термоядерной бомбы может в сотни тысяч раз превышать мощность атомной бомбы. Единица измерения мощности термоядерной бомбы — мегатонна, или 1 000 000 т в тротиловом эквиваленте.
Атомный и ядерный взрыв в чем разница. Чем отличаются атомная, ядерная и водородная бомбы
Водородная бомба и ядерная бомба отличия | Таким образом, водородная бомба отличается от атомной бомбы в использовании водорода в качестве топлива, принципе действия, мощности, разрушительном радиусе и радиационном загрязнении. |
В чем разница между ядерной и термоядерной бомбой? | | Атомная бомба, В чем разница, Водородная бомба. |
Как работает водородная бомба, последствия ее взрыва. Инфографика | В чем разница между водородными бомбами и атомными? |
«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия | B-53 — американская термоядерная бомба, наиболее старое и мощное ядерное оружие находившееся в арсенале стратегических ядерных сил США вплоть до 1997 года. |
Что произойдет после взрыва ядерной бомбы? - Hi-Tech | Таким образом, водородная бомба отличается от атомной бомбы в использовании водорода в качестве топлива, принципе действия, мощности, разрушительном радиусе и радиационном загрязнении. |
Термоядерная бомба и ядерная отличия
Атомная бомба и водородная бомбы являются мощным оружием, которое использует ядерные реакции в качестве источника взрывной энергии. Ученые впервые разработали технологию ядерного оружия в ходе Второй мировой войны. Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Атомная ядерная и водородная бомба разница. Атомное и термоядерное оружие. Структура водородной бомбы. Водородная бомба принцип действия и факторы поражения. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Чем водородная бомба отличается от атомной?
Атомная бомба и водородная бомба
Термоядерная бомба основана на реакции ядерного синтеза. Атомная бомба — это один из видов ядерного оружия, которое базируется на процессе деления атомных ядер. Ядерная бомба, или атомная бомба, работает на основе деления атомных ядер, что называется ядерным делением. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Термоядерные бомбы были испытаны, но никогда не использовались в боевых действиях.
Разница между атомной и водородной бомбой
Водородная и атомная бомбы: сравнительные характеристики | Водородные и атомные бомбы относятся к атомной энергетике. |
Водородная против атомной. Что нужно знать о ядерном оружии | Таким образом, атомные бомбы, водородные бомбы и нейтронные бомбы — это все типы ядерного оружия, которые различаются по своей взрывной мощности, механизмe детонации и радиационному эффекту. |
Что такое ядерное оружие и сколько его у России. Простыми словами
В апреле 1946г. Через какое-то время после совещания он передал материалы, связанные с этими рабо- тами, представителям советской разведки и они попали к нашим физикам. В начале 1950г. Фукс был арестован и этот источник информации «иссяк». В конце августа 1946г. Теллер выдвинул идею, альтернативную «классическому суперу», которую он назвал «Alarm Clock». Сахаровым под названием «слойка», а в США никогда не реализовывался. Идея заклю- чалась в окружении ядра делящейся атомной бомбы слоем термоядерного горючего из смеси дейтерия с тритием.
Излучение от атомного взрыва способно сжать 7-16 слоев горючего, перемежающегося со слоями делящегося материала и нагреть его примерно до такой же температуры, как и само делящиеся ядро. Это опять же требовало исполь- зования очень дорогого и неудобного трития. Термоядерное топливо окружала оболочка из урана-238 которая на первом этапе выполняла роль теплоизолятора, не давая энер- гии выйти за пределы капсулы с топливом. Без нее горючие, состоящие из легких элементов было бы абсолютно прозрачно для теплового излучения, и не прогрелось бы до высоких температур. Непрозрачный уран, поглощая эту энергию, возвращал часть ее обратно в топливо. Кроме того, они увеличивают сжатие горючего путем сдерживания его теплового расширения. На втором этапе, уран подвергался распаду за счет нейтро- нов, появившихся при синтезе, выделяя дополнительную энергию.
В сентябре 1947г. Теллер предложил использовать новое термоядерное горючее - дейтерид лития-6 являющееся при нормальных условиях твердым веществом. Литий поглощая нейтрон делился на гелий и тритий с выделением дополнительной энергии, что еще больше повышало температуру, помогая начаться синтезу. Идею «слойки», использовали и британские физики при создании при создании своей первой бомбы. Но будучи тупиковой ветвью развития термоядерных систем эта схема отмерла. Перевести разработку термоядерного оружия в практическую плоскость позволила предложенная в 1951г. Для инициирования термоядерного синтеза предполагалось сжимать термоядерное топливо, используя излучение от первичной реакции расщепления, а не ударную волну т.
Эта модель американской водородной бомбы получила название Улама-Теллера. На практике все происходит следующим образом. Компоненты бомбы помещаются в цилиндрический корпус с триггером на одном конце. Термоядерное топливо в виде ци- линдра или эллипсоида помещается в корпус из очень плотного материала — урана, свинца или вольфрама. Внутри цилиндра аксиально помещен стержень из Pu-239 или U-235, 2-3 см. Все оставшееся пространство корпуса заполняется пласт- массой. При подрыве триггера испускаемые рентгеновские лучи нагревают урановый корпус бомбы он начинает расширяться и охлаждаться путем уноса массы абляции.
Явление уноса, подобно струе кумулятивного заряда направленного внутрь капсулы, развивает огромное давление на термоядерное горючие. Два других источника давления движение плазмы после срабатывания первичного заряда корпус капсулы как и всё устройство представляет собой ионизированную плазму и давление рентгеновских фотонов не оказывают значительного влияния на обжатие. При обжатии стержня из делящегося материала он переходит в надкритическое состояние. Быстрые нейтроны, образующиеся при делении триггера и замедленные дейтеридом лития до тепловых скоростей начинают цепную реакцию в стержне. Происходит еще один атомный взрыв действующий наподобие «запальной свечи» и вызывающий еще большее увеличивает дав- ления и температуры в центре капсулы, делая их достаточными для разжигания термо- ядерной реакции. Урановый корпус мешает выходу теплового излучения за его пределы, значительно увеличивая эффективность горения. Температуры, возникающие в ходе термоядерной реакции многократно превышают образующиеся при цепном делении до 300 млн.
Все это происходит примерно за несколько сотен нано- секунд. Описанная выше последовательность процессов на этом заканчивается, если корпус заряда изготовлен из вольфрама или свинца. Однако если изготовить его из U-238 то образующиеся при синтезе быстрые нейтроны, вызывают деление ядер U-238. Деление одной тонны U-238 дает энергию, эквивалентную 18 Мт. При этом обраэуется много радиоактивных продуктов деления. Все это и составляет радиоактивные осадки, сопровождающие взрыв водородной бомбы. Чисто термоядерные заряды создают значи- тельно меньшее заражение обусловленное только взрывом триггера.
Для дальнейшего увеличения величины заряда можно использовать энергию второй ступени для сжатия третьей. На каждой стадии в таких устройствах возможно усиление мощности в 10-100 раз. Модель требовала большого количества трития, и для его производства американцы построили новые реакторы. Работы шли в большой спешке, ведь Советский Союз к тому времени уже создал атомную бомбу. Штатам оставалось только надеяться, что СССР пошел по украденному Фуксом тупиковому пути который был арестован в Англии в январе 1950г. И эти надежды оправдались. Первые термоядерные устройства были взорваны в ходе операции Greenhouse Оран- жерея на атолле Эниветок Маршалловы острова.
Операция включала четыре испытания. В ходе первых двух «Dog» и «Easy» в апреле1951г. Это был чисто исследовательский эксперимент по изучению термоядерного горения дейтерия. Устройство представляло собой ядерный заряд в виде тора 2,6м. Выход энергии от синтеза в этом устройстве очень невелик по сравнению с выходом энергии от деления ядер урана. В нем в качестве термоядерного топлива использова- лась смесь дейтерия с тритием, охлажденная до жидкого состояния, и находящаяся внутри ядра из обогащенного урана. Устройство создавалось для испытания принципа увеличения мощности атомного заряда за счет дополнительных нейтронов возникающих в реакции синтеза.
Эти нейтроны, попадая в зону реакции деления, увеличивали их интенсивность увеличивалась доля ращепившихся ядер урана а следовательно и силу взрыва. Для ускорения разработок в июле 1952г. Лоуренса в Калифорнии. Это было первое устройство, созданное по принципу Теллера-Улама. Весило оно около 80т. Термоядерное горю- чее дейтерий — тритий находилось в жидком состоянии при температуре, близкой к абсолютному нулю в дьюаровском сосуде по центру которого проходил плутониевый стр- ежень. Сам сосуд окружал корпус-толкатель из природного урана, массой более 5т.
Целиком сборка помещалась в огромную стальную оболочку, 2м. Эксперимент стал промежуточным шагом амери- канских физиков на пути к созданию транспортабельного водородного оружия. В этом плане впереди оказались советские ученые, использовавшие дейтерид Li6 уже в первой советской термоядерная бомбе испытанной в августе 1953г. Американский же завод по производ- ству Li6 в Ок-Ридже был пущен в эксплуатацию только к середине 1953г. После операции «Ivy Mike» оба ядерных центра в Лос- Аламосе и Калифорнии приступили к спешной разработке более компактных зарядов с использованием дейтерида лития, которые возможно было бы применять в боевых усло- виях. В 1954г. Однако для скорейшего оснащения вооруженных сил новым ору- жием три типа устройств, были сразу, без испытаний, изготовлены малой серией по 5 изделий.
Одним из них стла бомба EC-16 ее испытание под именем «Jughead» планиро- валось провести в ходе операции «Castle». Это была транспортабельная версия криогенной системы «Mike» масса бомбы 19т. Но после первых успеш- ных испытаний устройств с дейтеридом лития EC-16 моментально устарела и даже не испытывалась. Такое горючие применялось в США впервые поэтому мощность взрыва сильно превысила ожидаемую в 4-8Мт. Причина неожиданно высокой мощности состояла в Li7 который по ожиданиям должен был быть достаточно инертным, но в действительности при поглощении быстрых нейтронов атом Li7 тоже делился на тритий и гелий. Этот «незапланированный» тритий и обеспечил 2-х крат- ное усиление мощности. Кратер от взрыва получился 2км.
Масса устройства составляла 10. Успешный результат первого испытаня привел к отказу от криогенных проектов «Jughead» EC-16 и «Ramrod» криогенного близнеца устройства «Morgenstern». Из-за дефицита обогащенного Li6 в следующем испытани «Castle Romeo» исполь- зовался заряд из природного 7. Термоядерное устройство под именем «Runt I» было взорвано 26 Марта 1954г. Одновременно это было контрольное испытание термоядерной бомбы получившей обозначение EC-17. Мощность взрыва составила 11Мт. Как и в случае с «Bravo», выделившаяся мощность намного превысила ожидаемые 1.
Масса устройства - 18т. Энерговыделение — 6,9 Мт. Взрыв оставил на дне лагуны кратер 100м. Масса устройства — 12,5 т. Испытание было неудачным. Вместо планировавшейся 1Мт. Это произошло из-за того, что нейтронный поток от триггера достиг второй ступени, пред- варительно разогрев ее и помешав эффективному обжатию.
Остальные изделия, испытан- ные в «Castle», содержали бор-10, служащий хорошим поглотителем нейтронов и снижа- ющим эффект предварительного разогрева термоядерного топлива. Это дало прибавку мощности в 2. Мощность взрыва составила 13. Масса «Runt II» 17,8т. Вклю- чение в график испытания этого заряда произошло из-за чрезвычайного успеха «Castle Romeo» и исключения испытаний устройств «Ramrod» и «Jughead». По сравнению с весом остальных зарядов, эта бомба выглядит совсем небольшой масса - 2. Первона- чально она разрабатывалось как чисто атомная бомба с мощностью в диапазоне сотен килотонн в которой применялось радиационное обжатие одного атомного заряда другим.
Идея была сохранена но в проект добавили термоядерное горючее для увеличения мощ- ности. Проект выиграл в весе, но применение в нем дорогого и отсутствующего на тот момент в должных количествах материала - высокообогащенного лития сдерживало его производство до 1955г. Таким образом на вооружение США уже в 1954г поступили в ограниченном коли- честве первые термоядерные бомбы. Это были огромные и тяжелые мастодонты ЕС-14 «Alarm Clock» масса 14т. Эти заряды изготовлены сериями по 5 шт. Термоядерная бомба Mk. Взять ее в полет мог только B-36.
Для ее эксплуатации требовались специальные машины, средства и приспособления. Подве- сить ее в самолет могли лишь на одной авиабазе, что было крайне неудобно и снижало гибкость применения этого оружия. Поэтому все пять Mk. После операции «Castle» было развернуто серийное производство новых термоя- дерных зарядов, начавших поступать на вооружение в 1955г. Серийная версия «Zombie» «Castle Nectar» - Mk. В 1955- 1957гг. В 1955 — 56гг.
Наследник «Castle Yankee» - Mk. В 1954-55 гг. В 1956г. Энерговыделение составило 3. Важное отличие этого заряда от испытанных ранее то, что он был сразу конструктивно оформлен в виде авиабомбы и впервые в США было произведено бом- бометание термоядерного устройства с самолета. Самая мощная американская бомба была разработана по программе B-41. Работы начались в 1955г.
Прототипы бомбы TX-41, ис- пытывался в тестах "Sycamore", "Poplar" и "Pine" операции "Hardtack" на полигоне в Тихом океане, между 31 маем и 27 июлем 1958г. В результете была создана самая мощная американская термоядерная бомба Mk. Она имела ширину 1,3м. За период 1960-62гг. Этот трехступенчатый термоядерный заряд производился в двух вариантах. Среди всех американских проектов, в этом был достигнут наибольший удельный энерговыход: 5. В 1979г.
Теллер сделал неожиданное заяв- ление «…первую конструкцию водородной бомбы создал Дик Гарвин». В интервью, посвященном той же теме, Гарвин вспоминал что в 1951г.
Сам, вероятно, не знает 0 Николай Николаев 03 Декабря 2021, 03:16 Каков механизм получения из реакции ядерного синтеза энергии большей, чем затрачивается на этот синтез? Если в реакции ядерного распада используются свертяжёлые неустойчивые ядра, уже созданные природой, то есть, природа уже затратила энергию на создание критического состояния, то лёгкие ядра очень устойчивы и чтобы заставить их вступить в синтез, необходимо затратить энергии больше, чем может быть получено из этого синтеза. В любом советском учебнике по гражданской обороне написано гораздо понятнее и правильнее 1 Nicolay1 30 Апреля 2021, 16:43 При взрыве водородной бомбы основная энергия выделяется в виде выделения нейтронов при слиянии двух изотопов водорода из которых образуется один атом гелия. Автор именно эту подробность скрыл. Во сколько раз дейтерид лития сжимается,? В миллиард?
Москва, Большой Саввинский пер. II; Адрес редакции: 119435, г.
Плутоний получают искусственно — он накапливается в промышленных ядерных реакторах, за счет превращения 238U в 239Pu под действием потока нейтронов. Клуб взаимного устрашения Взрыв советской ядерной бомбы 29 августа 1949 года сообщил всем об окончании американской ядерной монополии.
Но ядерная гонка только разворачивалась, к ней очень скоро присоединились новые участники. Политическое воздействие ядерного оружия как средства взаимного шантажа хорошо известно. Угроза быстрого нанесения противнику мощного ответного ядерного удара была и остается главным сдерживающим фактором, вынуждающим агрессора искать другие пути ведения военных действий Это проявилось и в специфическом характере третьей мировой войны, осторожно именовавшейся «холодной» Официальная «ядерная стратегия» хорошо отражала и оценку общей военной мощи. Так, если вполне уверенное в своей силе государство СССР в 1982 году объявило о «неприменении ядерного оружия первым», то ельцинская Россия вынуждена была объявить о возможности применения ядерного оружия даже против «неядерного» противника. США в 2003 году, когда агрессия против Ирака была уже решенным делом, от болтовни о «несмертельном» оружии перешли к угрозе «возможного использования тактического ядерного оружия».
Другой пример. И почти сразу последовало резкое обострение противостояния на их границе. Израильтяне же предпочитают загадочно улыбаться — сама возможность наличия ядерного оружия остается мощным средством давления даже в региональных конфликтах. Ядерная зима Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен.
На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества пыли, сажи, дыма , чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально.
Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата: похолодание на 1 градус, пройдет незаметно; ядерная осень — похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов; аналог «года без лета» — когда температура упала значительно, на несколько градусов на год; малый ледниковый период — температура может упасть на 30 — 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями; ледниковый период — развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре; необратимое похолодание — это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету. Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.
Утром 30 октября 1961г. Ту-95 поднялся в воздух и взял курс на Новую Землю. Экипажем самолета командовал майор А. Бомба отделилась на высоте 10500м.
За время падения самолет успел удалиться на относительно безопасное расстояние в 40-50км. Взрыв произошел в 11:32 по московскому времени. Вспышка оказалась настолько ярка, что ее можно было наблюдать с расстояния до 1000 км. Светящийся огненный шар достиг земли и имел размеры около 10км. Гиганский гриб поднялся на высоту в 65 км. После взрыва из-за ионизации атмосферы на 40 мин. Зона полного уничтожения представляла собой круг в 25км.
При полной мощности в 100 Мт. С полной уверенностью можно утверждать, что использование такого оружия в военных условиях было невозможно и испытание имело сугубо политическое и психоло- гическое значение. Дальнейшие работы по бомбе были прекращены серийное производ- ство не велось. Великобритания В Великобритании разработка термоядерного оружия была начата в 1954г. В целом информированность британской стороны по термо- ядерной проблеме находилась на весьма зачаточном уровне, так как США не делились информацией, ссылаясь на закон об Атомной энергии 1946г. В 1957г. Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» Операция Схватка.
Первым под наименованием «Short Granite» Хрупкий Гранит было испытано опытное термоядерное устройство мощностью около 300Кт. В ходе испытания «Orange Herald» Оранжевый вестник была взорвана самая мощная из когда-либо созданных атомная бомба мощностью 700Кт. Почти все свидетели испытаний включая экипаж самолета, который ее сбросил считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в ее состав входил 117кг. В сентябре 1957г. Первым в испытании под названием «Grapple Х Round» 8 ноября было взорвано двухступенчатое устройство с небольшим термоядерным зарядом. Мощность взрыва составила приблизительно 1.
Франция В ходе испытаний «Канопус» во Французской Полинезии в августе 1968 г. Франция взорвала термоядерное устройство типа «Теллер-Улам» мощностью около 2,6Мт. Подроб- ности о развитиии французской программы малоизвестны. Это фотографии испытаний первой французской термоядерной бомбы. Испы- тание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной прог- раммы от реакции расщепления к синтезу. Это стало возможным благодаря США откуда в то время были высланы по подозрению в шпионаже работавшие там китайские физики. Айви Майк - первые атмосферные испытания водородной бомбы, проведенные США на атоллле Эниветок 1 ноября 1952 года.
Как устроено это оружие, что оно может и чего не может? Мы расскажем об истории ее создания и разберёмся, правда ли, что такой боеприпас почти не загрязняет среду, но может уничтожить мир. Идея термоядерного оружия, где ядра атомов сливаются, а не расщепляются, как в атомной бомбе, появилась не позднее 1941 года. Она пришла в головы физикам Энрико Ферми и Эдварду Теллеру. Примерно в то же время они стали участниками Манхэттенского проекта и помогли создать бомбы, сброшенные на Хиросиму и Нагасаки. Сконструировать термоядерный боеприпас оказалось намного сложнее. Приблизительно понять, насколько термоядерная бомба сложнее атомной, можно и по тому факту, что работающие АЭС давно обыденность, а работающие и практичные термоядерные электростанции - все еще научная фантастика.
Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов. Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году проект неофициально назывался Super , но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу. Президент США Гарри Трумэн заявил, что на советский рывок нужно ответить «так называемой водородной, или супербомбой». К 1951 году американцы собрали устройство и провели испытания под кодовым названием «Джордж». Конструкция представляла собой тор - проще говоря, бублик - с тяжелыми изотопами водорода, дейтерием и тритием. Выбрали их потому, что такие ядра сливать проще, чем ядра обычного водорода. Запалом служила ядерная бомба.
Взрыв сжимал дейтерий и тритий, те сливались, давали поток быстрых нейтронов и зажигали обкладку из урана. В обычной атомной бомбе он не делится: там есть только медленные нейтроны, которые не могут заставить делиться стабильный изотоп урана. За счет дополнительного урана взрыв получился вдвое мощнее, чем с обычной атомной бомбой. Тогда математик Станислав Улам предложил другой подход - двухступенчатый ядерный запал. Его задумка заключалась в том, чтобы поместить в «водородной» зоне устройства плутониевый стержень. Взрыв первого запала «поджигал» плутоний, две ударные волны и два потока рентгеновских лучей сталкивались - давление и температура подскакивали достаточно, чтобы начался термоядерный синтез. Новое устройство испытали на атолле Эниветок в Тихом океане в 1952 году - взрывная мощность бомбы составила уже десять мегатонн в тротиловом эквиваленте.
Тем не менее и это устройство было непригодно для использования в качестве боевого оружия. Чтобы ядра водорода сливались, расстояние между ними должно быть минимальным, поэтому дейтерий и тритий охлаждали до жидкого состояния, почти до абсолютного нуля. Для этого требовалась огромная криогенная установка. Второе термоядерное устройство, по сути увеличенная модификация «Джорджа», весило 70 тонн - с самолета такое не сбросишь. СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. В ней предполагалось использовать дейтерид лития. Это металл, твердое вещество, его не надо сжижать, а потому громоздкий холодильник, как в американском варианте, уже не требовался.
Не менее важно и то, что литий-6 при бомбардировке нейтронами от взрыва давал гелий и тритий, что еще больше упрощает дальнейшее слияние ядер. Бомба РДС-6с была готова в 1953 году. В отличие от американских и современных термоядерных устройств плутониевого стержня в ней не было. Такая схема известна как «слойка»: слои дейтерида лития перемежались урановыми. Мощность взрыва составила 400 килотонн в тротиловом эквиваленте - в 25 раз меньше, чем во второй попытке американцев. Зато РДС-6с можно было сбросить с воздуха. Такую же бомбу собирались использовать и на межконтинентальных баллистических ракетах.
А уже в 1955 году СССР усовершенствовал свое термоядерное детище, оснастив его плутониевым стержнем. Сегодня практически все термоядерные устройства - судя по всему, даже северокорейские - представляют собой нечто среднее между ранними советскими и американскими моделями. Все они используют дейтерид лития как топливо и поджигают его двухступенчатым ядерным детонатором. Как известно из утечек, даже самая современная американская термоядерная боеголовка W88 похожа на РДС-6c: слои дейтерида лития перемежаются ураном. Разница в том, что современные термоядерные боеприпасы - это не многомегатонные монстры вроде «Царь-бомбы», а системы мощностью в сотни килотонн, как РДС-6с. Мегатонных боеголовок в арсеналах ни у кого нет, так как в военном отношении десяток менее мощных зарядов ценнее одного сильного: это позволяет поразить больше целей. Техники работают с американской термоядерной боеголовкой W80 Чего не может термоядерная бомба Водород - элемент чрезвычайно распространенный, достаточно его и в атмосфере Земли.
Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф. Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны. Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» - опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, - получается меньше, чем при делении ядер урана.
Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению. Зона возможного тотального поражения «Царь-бомбой», нанесенная на карту Парижа. Красный круг - зона полного разрушения радиус 35 км. Желтый круг - размер огненного шара радиус 3,5 км.
Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации. Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз - мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная.
Мощность удара составила около 100 млн мегатонн - это в 10 тыс. И жизнь в целом, и человек куда крепче, чем они кажутся. Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа - более чем достаточный сдерживающий фактор. В конце 30-х годов прошлого столетия в Европе уже были открыты закономерности деления и распада а водородная бомба из разряда фантастики перешла в реальную действительность. История освоения ядерной энергии интересна и до сих пор представляет собой захватывающее соревнование между научным потенциалом стран: нацистской Германии, СССР и США.
Самая мощная бомба, владеть которой мечтало любое государство, была не только оружием, но и мощным политическим инструментом. Та страна, которая имела ее в своем арсенале, фактически становилась всемогущей и могла диктовать свои правила. Водородная бомба имеет свою историю создания, в основу которой легли физические законы, а именно термоядерный процесс. Изначально ее неправильно назвали атомной, а виной тому была неграмотность. В ученый Бете, впоследствии ставший лауреатом Нобелевской премии, работал над искусственным источником энергии - делением урана. Это время было пиком научной деятельности многих физиков, а в их среде было такое мнение, что научные секреты не должны существовать вовсе, так как изначально законы науки интернациональны. Теоретически водородная бомба была изобретена, теперь же с помощью конструкторов она должна была приобрести технические формы.
Оставалось только упаковать ее в определенную оболочку и испытать на мощность. В США термоядерной проблемой еще в 1942 году начал заниматься физик По распоряжению Гарри Трумэна, на то время президента США, над этой проблемой работали лучшие ученые страны, они создавали принципиально новое оружие уничтожения. Причем, заказ правительства был на бомбу мощностью не меньше миллиона тонн тротила. Водородная бомба Теллером была создана и показала человечеству в Хиросиме и Нагасаки свои безграничные, но уничтожающие способности. На Хиросиму была сброшена бомба, которая весила 4,5 тонны с содержанием урана 100 кг. Этот взрыв соответствовал почти 12 500 тоннам тротила. Японский город Нагасаки стерла плутониевая бомба такой же массы, но эквивалентная уже 20 000 тонн тротила.
Будущий советский академик А. Сахаров в 1948 году, основываясь на своих исследованиях, представил конструкцию водородной бомбы под наименованием РДС-6. Его исследования пошли по двум ветвям: первая имела название «слойка» РДС-6с , а ее особенностью был атомный заряд, который окружался слоями тяжелых и легких элементов. Вторая ветвь - «труба» или РДС-6т , в ней плутониевая бомба находилась в жидком дейтерии. Впоследствии было сделано очень важное открытие, доказавшее, что направление «труба» является тупиковым. Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка. При этом процесс сопровождается высвобождением высокой температуры, которая нужна для дальнейшего Нейтроны начинают бомбардировку вкладыша из дейтерида лития, а он в свою очередь под непосредственным действием нейтронов расщепляется на два элемента: тритий и гелий.
Используемый атомный запал образует нужные для протекания синтеза составляющие в уже приведенной в действие бомбе. Вот такой непростой принцип действия водородной бомбы. После этого предварительного действия начинается непосредственно термоядерная реакция в смеси дейтерия с тритием. В это время в бомбе все больше увеличивается температура, а в синтезе участвует все большее количество водорода. Если следить за временем протекания этих реакций, то скорость их действия можно охарактеризовать, как мгновенную. Впоследствии ученые стали применять не синтез ядер, а их деление.
Разница между атомной бомбой и водородной бомбой
Атомная бомба и ядерная бомба: два разных понятия. Какое отличие атомной бомбы от водородной ввергло в ужас мировую супердержаву? 2. Чем отличаются атомная, ядерная и термоядерная бомбы? Понятия «атомная» и «ядерная бомба» чаще всего взаимозаменяемы и в нашем контексте означают одно и то же: для их взрыва используется реакция деления ядер тяжёлых элементов, таких как уран или. Ядерная бомба (атомная). Приводится в действие в момент взрыва из-за огромного количества энергии, выделяющейся при делении ядер. У ядерного взрыва три механизма поражения: ударная волна, вспышка видимого и инфракрасного излучения и гамма-излучение. Статья о том, как атомная бомба и водородная бомба отличаются друг от друга и как работают, исследуя их основные принципы действия.
Атомная, водородная и нейтронная бомбы
В этом случае, при высоких температурах и давлении, ядра атомов сливаются, образуя новые элементы. Этот процесс называется термоядерным синтезом. Основным источником энергии при термоядерном синтезе является разность масс исходных атомов и образовавшихся элементов. Химические процессы Помимо физических процессов, при взрыве ядерного оружия и водородной бомбы происходят также и химические процессы. Процессы окисления и редукции играют важную роль в реакциях взрыва. Окисление — это процесс, при котором одно вещество передает электрон другому веществу. Редукция — это процесс, при котором одно вещество получает электрон от другого вещества. Химические вещества, используемые при взрыве, обладают свойствами окислять или быть окисляемыми, что позволяет им участвовать в реакциях взрыва и выделить большое количество энергии. Таким образом, взрыв водородной бомбы и ядерного оружия включает в себя сложные физические и химические процессы, которые приводят к огромному выделению энергии. Какова разрушительная мощность водородной бомбы и ядерного оружия?
Ядерное оружие Ядерное оружие использует ядерные реакции для создания огромного количества энергии. Мощность ядерного взрыва определяется величиной ядерного заряда и его способностью увеличиться при делении атомных ядер или поглощении ядер. У ядерного оружия есть разные типы, такие как атомная бомба и термоядерная бомба, но все они имеют огромный потенциал разрушения. Мощность ядерного оружия измеряется в килотоннах кт или мегатоннах Мт , что означает эквивалентный взрыв силы взрыва конвенционного взрывчатого вещества. Например, ядерная бомба мощностью 1 Мт равна взрыву 1 миллиона тонн тротила. Водородная бомба Водородная бомба, также известная как термоядерная бомба, является более сложным и мощным типом ядерного оружия. Она использует реакцию термоядерного синтеза, при которой происходит слияние атомных ядер водорода. Такая реакция освобождает огромное количество энергии и порождает еще более сильное ядерное взрывающее действие по сравнению с атомной бомбой. Мощность водородной бомбы измеряется в мегатоннах Мт и может достигать нескольких сотен мегатонн.
Такие взрывы способны нанести сокрушительные разрушения на огромной территории и вызвать масштабные последствия для окружающей среды и человеческого здоровья.
Одна из крупнейших разработанных атомных бомб имеет мощность разрушения до 500 килотонн в тротиловом эквиваленте. Для сравнения, первая в мире атомная бомба, использованная в военных целях в Хиросиме, Япония, в 1945 году имела взрывную мощность в 15 килотонн тротила. В то время как атомная бомба плохая, водородная бомба еще хуже. Он способен нанести гораздо больший урон, чем атомная бомба. Самая мощная водородная бомба, разработанная до настоящего времени, имеет мощность взрыва 15000 килотонн, что в тысячу раз хуже, чем у первой атомной бомбы. Технически говоря, нет предела взрывной мощности водородной бомбы, что делает ее еще более опасной.
Оба являются типами ядерного оружия, также широко известного как оружие массового уничтожения. Оба способны к великому разрушению; однако они отличаются тем, как они реагируют, чтобы вызвать это упомянутое разрушение. Атомная бомба представляет собой тип ядерного оружия на основе деления, что в основном означает, что она использует реакцию деления для создания тепла и энергии. Здесь энергия создается путем сборки обогащенного урана или плутония в сверхкритическую массу, а затем либо путем стрельбы одним куском материала с докритическими параметрами в другой, который называется методом пушки, либо путем сжатия с использованием взрывных линз докритической сферы материала с использованием химических взрывчатых веществ во много раз превышает его первоначальную плотность, которая известна как метод взрыва. Метод взрыва используется только для плутония и не работает с ураном.
При этом для инициирования синтеза требуется высокая температура, даваемая атомной бомбой отсюда - термоядерная, а водородная она оттого, что употребляются изотопы водорода - дейтерий и тритий; в первом американском испытании использовались именно они, однако система оказалась непрактична, и принятые на вооружении используют дейтрид лития, а тритий образуется при нейтронном облучении лития. Принципиальная возможность получить нужную температуру не посредством ядерного взрыва существует, и, по некоторым утверждениям, это было реализовано по программе "мирных ядерных взрывов" для нефтедобычи, рытья каналов и т. Дело в том, что изотопы при ядерном взрыве радиоактивны, и создают загрязнение, особенно опасное при попадании вовнутрь организма с водой, едой, воздухом... При термоядерном же образуется гамма-излучение и нейтроны, последние могут, действуя на материалы бомбы, превращать их в радиактивные изотопы, но соответствующим подбором этого можно избежать. Такая водородная бомба именуется "чистой", хотя ядерный запал некоторое заражение всё же создаёт если существует неядерный запал - то и этого заражения нет.
Простое помещение дейтрида лития рядом с атомной бомбой-запалом приведёт к разбросу его без существенного выделения энергии, поэтому он окружается оболочками тяжёлого металла, не допускающими быстрого разлёта.
У атомных и водородных бомб есть какая-то разница? Почему водородная бомба сильнее атомной бомбы? Как атомный, так и водород отличаются несколькими сравнительными способами. Водородная бомба считается более мощной, чем атомная бомба, из-за их соответствующих принципов и относительных сил.
Обе эти бомбы используют радиоактивные элементы урана и плутония для создания ядерной энергии, но отличаются тем, как используются эти элементы. Водородная бомба также известна как «термоядерные» бомбы и генерирует энергию от бомбы деления для сжатия и термоплавкого топлива. Атомная бомба работает путем атомного деления или расщепления атомного ядра, а водородная бомба работает путем атомного синтеза или объединения атомных ядер. По принципу деление делает радиоактивные элементы расщепляемыми от больших атомов до более мелких, в то время как слияние объединяет небольшие атомы для создания больших, что приводит к тому, что водородная бомба высвобождает больше энергии, чем атомная бомба.
Какая бомба мощнее: ядерная или водородная
Атомная ядерная и водородная бомба разница. Атомное и термоядерное оружие. Структура водородной бомбы. Водородная бомба принцип действия и факторы поражения. Термоядерная бомба: устройство. первая термоядерная бомба. испытание термоядерной бомбы. Атомная бомба, или ядерное оружие, отличается от водородной бомбы своими размерами и весом. Атомная бомба состоит из ядерного заряда, который взрывается на основе цепной реакции деления. В водородной бомбе используется "начинка" из ядерной бомбы на Уране-235, которая нужна для создания высоких темепратур для термоядерного синтеза в оболочке из Урана-238.