Ученые НИТУ «МИСиС» разработали компактную батарейку на атомной энергии, заряда которой хватит на 20 лет.
Оставайтесь на связи
- Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
- Что за ядерную батарейку создали российские учёные? | Аргументы и Факты
- Российские ученые оценили созданную в Китае ядерную батарейку - Онлайн-журнал «Энергия+»
- Без зарядки 50 лет: в Китае разработали ядерную батарею
Ядерная батарейка: в России создали источник питания, работающий 50 лет
Ядерная батарейка работает на изотопе никель-63. Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет. В России разработана атомная батарейка. Эта батарейка будет полувечной: новости из мира энергетики будущего. Рассчитана на 50 лет работы без подзарядки – Самые лучшие и интересные новости по теме: Батарейка, Китай, Ядерный реактор на развлекательном портале
Ученые создали атомную батарейку. Она может работать 20 лет
Два года назад учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку. «Сердце ядерной батарейки — вакуумная капсула с радиоактивным изотопом. Благодаря энергии ядерного распада она нагревается до 1500°C и начинает светиться. Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет. Атомные батарейки, то есть источники электрического тока, получающие энергию от распада радиоактивных веществ. Если политика позволит, атомные батареи дадут возможность никогда не заряжать мобильный телефон, а дроны, которые могут летать только 15 минут, смогут летать непрерывно". Также известно, что атомная батарейка может быть создана на основе изотопа америций-241, в этом случае устройство будет работать 432 года.
Создана самая маленькая ядерная батарея — с ней смартфоны будут работать 50 лет без подзарядки
Защита от взрыва и теракта. Аспирант факультета прикладной физики Массачусетского технологического института Егор Касаткин отметил, что рынок для атомных батареек даже в существующих условиях безграничен. Военная и гражданская авиация, добывающая промышленность, автономные системы энергоснабжения — можно миллион направлений подобрать, где такая технология будет пользоваться спросом. Весь вопрос в том, насколько гибкой в конечном счёте получится архитектура — можно ли надстроить источник питания для подключения, скажем, не компьютера, а полноценного жилого помещения? Егор Касаткин Аспирант факультета прикладной физики Массачусетского технологического института Конкуренты тоже есть Промышленный выпуск радиоактивных изотопов для российских атомных батареек хотят наладить до конца 2020 года. Если коронавирус и спровоцированные им изменения не преподнесут дополнительных сюрпризов, то "бензин" для маленьких реакторов со слабым бета-излучением начнут делать в достаточных для экспорта количествах.
К созданию батареек, в которых радиоактивный изотоп и алмазный преобразователь для электрической энергии могут спокойно работать 50 и даже 100 лет, в разных странах подошли практически одновременно. Первые разработки российских учёных в этом направлении датируются 2018 годом, их британские коллеги создали такую же технологию в 2019-м, однако ни те ни другие батарейки в продаже ещё не появились. Третий Чернобыль? Что в КНДР с реактором атомной станции Зато у американских учёных есть вполне жизнеспособный образец. Разумеется, атомная батарейка в современном её виде — это почти всегда прототип, который нужно дорабатывать.
Но американская технология существенно отличается от российской. Два прототипа бета-гальванических батарей значительно мощнее российских, хоть и работают по схожему принципу — преобразовывают радиоактивное бета-излучение в электрический ток. Репетиция конца света. Как российские подлодки стреляют ядерным залпом В компании NDB разработчик батарейки утверждают, что продукт позволит "вечно" снабжать энергией абсолютно любое устройство: от смартфона до небольшой баллистической ракеты, которая может автономно и скрытно храниться где-нибудь недалеко от противника.
Почему никель-63? Сегодня ученые НИЯУ МИФИ занялись исследованием возможностей использования никеля-63 в качестве радиоизотопа для ядерных батарей в гражданском секторе. Это наиболее перспективный радионуклид: в миниатюрном элементе питания от излучаемого этим изотопом мягкого бета-излучения легко создать защиту, а его период полураспада - более 100 лет - достаточно длительный. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный многократными соударениями излучаемых изотопом бета-частиц. Эта система является относительно простой, она представляет собой ансамбль плотно упакованных нанокластеров никеля, наночастицы которого осаждены на поверхности диэлектрика — оксида кремния. Ключевая особенность предложенной системы заключается в том, что наночиастицы никеля распределены по размерам, средний размер частицы постепенно изменяется в выделенном направлении.
И в этом же направлении происходит увеличение электрических зарядов. Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада в электрический ток без использования дополнительных сложных полупроводниковых систем.
Результаты исследования были опубликованы в международном научном журнале Applied Radiation and Isotopes. Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах, а также в труднодоступных или абсолютно не доступных местах: в космосе, под водой, в высокогорных районах.
Сначала ориентировались на сверхтяжёлый водород - тритий. Но его тяжело загнать в твёрдое состояние, а работать с радиоактивным газом как-то не хочется, - объясняет один из авторов проекта, аспирант химического факультета МГУ им. Ломоносова Иван Харитонов.
В итоге остановились на никеле-63. В природе такого изотопа не существует. Легче всего его получить из никеля-62, который образуется естественным путём. Поэтому сначала пришлось воспользоваться центрифугой, чтобы увеличить концентрацию никеля-62. Дальше ещё сложнее: целых два года бомбардировали нейтронами никель-62, чтобы часть атомов схватила дополнительную частицу и превратилась в никель-63. Об этом удалось договориться с Ленинградской АЭС. Но далеко не весь металл превратился в нужный изотоп.
Поэтому его разогрели до такого состояния, что он перешёл в газовую фазу, и снова разделили по массе, чтобы увеличить концентрацию никеля-63. Дорогой - это мягко сказано. Одна экспериментальная батарейка стоит от трёх до десяти миллионов рублей. Ещё одна проблема - нанесение никеля-63 на подложку из кремния. Нужно обеспечить слой примерно в 15 нанометров, иначе распад будет поглощаться внутри самого материала. А неэффективно тратить столь дорогой изотоп, конечно, нельзя. Реакция порой идёт совершенно непредсказуемо и зависит от мелочей вплоть до тряпки, которой протирали стол.
Иван показывает на экране чёрно-белые пирамидки.
«Ядерные батарейки» для космической техники
Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа. Главная/Новости/Китай представил ядерную батарейку размером с монету, которой хватит на 50 лет. Области применения ядерных батарей разнообразны: в ближайшем будущем ядерные батарейки станут незаменимы на территориях, удаленных от инфраструктуры, например.
Создана уникальная ядерная батарейка
Образец "ядерной батарейки" состоял из двухсот алмазных преобразователей, чередуемых слоями фольги из никеля-63 и стабильного никеля. Как будто концепции ядерных батарей недостаточно, есть и более эксцентричная идея — создавать батареи из искусственных наноалмазов. В Китае создали компактную ядерную батарею, которая может проработать 50 лет. В Китае создали компактную ядерную батарею, которая может проработать 50 лет. Также известно, что атомная батарейка может быть создана на основе изотопа америций-241, в этом случае устройство будет работать 432 года.
В России создали «ядерную батарейку» для космоса и авиации
Главным вопросом, которому посвящена разработка НИЯУ МИФИ, является исследование электрофизических свойств формируемой нанокластерной пленки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество. Первичные результаты, подтверждающие возможность реализации такой системы, ранее были опубликованы коллективом авторов в престижном журнале Applied Physics Letters. Однако оказалось, что данные наноструктурированные пленки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределенным спектром излучения в заданном спектральном диапазоне. Как показали проведенные эксперименты, процесс окисления данной пленки приводит к образованию оксидной оболочки поверх металлического ядра нанокластера. Таким образом, при окислении металлической пленки формируется ансамбль металлических нанокластеров с пространственным распределением нанокластеров по размерам и имеющих слой оболочку оксида. Малые размеры нанокластеров 2-15 нм приводят к проявлению квантовых свойств, в связи с чем ансамбль подобных нанокластеров, имеющих оксидную оболочку, представляет собой набор полупроводниковых материалов с широким разбросом значений ширины запрещенной зоны. Это обеспечивает возможность эмиссии фотонов заданной длины волны при нагреве и, следовательно, обеспечивает возможность «настройки» спектра излучения предлагаемой системы под требуемый диапазон длин волн. Это принципиально важный момент, повышающий в рамках предлагаемой концепции энергоэффективность и энергосбережение современных тепловых источников электроэнергии на совершенно новый уровень.
Это событие приближает еще на один шаг серийный выпуск атомных батареек средний срок службы которых планируется в 50 лет. В Горно Химическом Комбинате ГХК завершен очередной этап на пути к созданию бета-вольтаического источника питания на изотопе Ni63, а именно произведена конверсия обогащенного рабочего газа в форму пригодную для нанесения на полупроводниковый преобразователь. Принцип Работы Ведущую позицию реализации проекта "Росатома" по созданию малогабаритного атомного источника питания на базе никель-63 занимает Электрохимический завод города Зеленогорска Красноярского края. Со слов Сергея Зырянова, руководителя изотопного отдела это единственное в мире предприятие, занимающееся изготовления радиоизотопа в промышленных масштабах.
Новая разработка имеет бетавольтаический элемент с двусторонним нанесением радиоактивного элемента и оригинальной трехмерной структурой, из-за чего данный источник питания имеет небольшие размеры, повышенную удельную мощность, а также низкую себестоимость при массовом производстве. В перспективе новинку можно будет применять как источник питания в том числе и аварийный , а также датчик температуры, в разного плана устройствах, эксплуатация которых подразумевается в труднодоступных и удаленных местах с экстремальными температурами - космос, высокогорье, большие водные глубины.
Как минимум лет 50 точно Китайский стартап Betavolt представил, как он заявляет, первую в мире миниатюрную ядерную батарейку. Создатели разработки утверждают, что такая батарейка абсолютно безопасна, совершенно не имеет внешнего излучения, а после периода распада изотоп никеля превращается в стабильный и нерадиоактивный изотоп меди, не представляющий угрозы для окружающей среды. Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта.
Батарейка для Севморпути будет работать на плутонии-238
Дмитрий Трунин Физики оптимизировали толщину слоев ядерной батарейки, использующей для производства электрической энергии бета-распад изотопа никеля-63. В одном грамме построенной ими батарейки запасено около 3300 милливатт-час, это лучший результат среди никелевых ядерных батареек и он в десять раз превосходит плотность энергии, запасаемой в обычных химических элементах. Статья опубликована в журнале Diamond and Related Materials. Обычные батарейки , которые используют для питания часов, карманных фонариков, игрушек и других сравнительно небольших автономных электрических приборов, получают электрическую энергию с помощью химических реакций. В ходе этих реакций, которые называют окислительно-восстановительными , заряд «перетекает» через электролит с одного электрода на другой, и на электродах возникает разность потенциалов. Если соединить концы батарейки проводом, электроны постараются перераспределиться так, чтобы разность потенциалов исчезла — по проводу потечет ток. Химические батарейки, которые также называют гальваническими элементами , обладают высокой эффективностью отношением мощности создаваемого тока к массе , но сравнительно быстро разряжаются, и это заметно ограничивает их автономную работу.
Конечно, при определенной конструкции химических элементов их можно перезаряжать тогда их называют аккумуляторами , однако даже в этом случае батарейку нужно как-то соединить с зарядным устройством, что иногда не очень удобно — например, если она обеспечивает питание кардиостимулятора. Очевидно, что остановить его работу, чтобы заменить элемент питания, невозможно. К счастью, электрическую энергию можно получать не только в химических реакциях.
Японские разработчики решили эту проблему и придумали вечное пиво. Теперь этим звуком можно наслаждаться бесконечно.
А что за "ядерную" батарейку придумали в России? Звук имитирует небольшой динамик. Зато такой напиток никогда не испортится, после него можно смело садиться за руль. И голова наутро не заболит. Правда стоит виртуальное пиво в 5 раз дороже настоящего.
А вот и нет. В Китае выпустили бесконечное мыло. И оно действительно работает. Правда, не совсем как обычное. Этот брусок из нержавейки удаляет не грязь, а запах.
Секрет — в составе. Стальной сплав нейтрализует сульфоксиды. Эти органические кислоты — главная причина появления стойких кухонных ароматов. На моем пальце до сих пор остался чеснок с маслом, я специально нанес.
Также отмечается, что проблем с утилизацией быть не должно — к концу эксплуатации почти все радиоактивные элементы попросту распадутся. Эта разработка, как и множество других подобных в США, России и в других странах, использует источник изотопов, который выделяет энергию при радиоактивном бета-распаде. У таких батарей низкий КПД на уровне единиц процентов, но работать они могут десятилетиями, поэтому, например, нашли применение в качестве бортовых систем питания межпланетных станций, которые направляются вглубь Солнечной системы. Пригодные для использования в массовой электронике портативные прототипы атомных бета-гальванических батарей безуспешно пытаются создать в США, России и не только. Они безопасны, но достаточной для работы тех же смартфонов мощности ещё никто из разработчиков не выжал. Китайская Betavolt тоже этого не сделала и обещает революцию завтра, а не сегодня.
Применение такой технологии безгранично: небольшая батарейка может питать практически любой — как бытовой, так и военный прибор. От "вечных" спутников и небольших беспилотников до суперкомпьютеров и небольших полярных станций — одного элемента с радиоактивным изотопом будет достаточно, чтобы подогреть еду, дать свет и даже набрать горячую ванну. Защита от взрыва и теракта.
Аспирант факультета прикладной физики Массачусетского технологического института Егор Касаткин отметил, что рынок для атомных батареек даже в существующих условиях безграничен. Военная и гражданская авиация, добывающая промышленность, автономные системы энергоснабжения — можно миллион направлений подобрать, где такая технология будет пользоваться спросом. Весь вопрос в том, насколько гибкой в конечном счёте получится архитектура — можно ли надстроить источник питания для подключения, скажем, не компьютера, а полноценного жилого помещения?
Егор Касаткин Аспирант факультета прикладной физики Массачусетского технологического института Конкуренты тоже есть Промышленный выпуск радиоактивных изотопов для российских атомных батареек хотят наладить до конца 2020 года. Если коронавирус и спровоцированные им изменения не преподнесут дополнительных сюрпризов, то "бензин" для маленьких реакторов со слабым бета-излучением начнут делать в достаточных для экспорта количествах. К созданию батареек, в которых радиоактивный изотоп и алмазный преобразователь для электрической энергии могут спокойно работать 50 и даже 100 лет, в разных странах подошли практически одновременно.
Первые разработки российских учёных в этом направлении датируются 2018 годом, их британские коллеги создали такую же технологию в 2019-м, однако ни те ни другие батарейки в продаже ещё не появились. Третий Чернобыль? Что в КНДР с реактором атомной станции Зато у американских учёных есть вполне жизнеспособный образец.
Разумеется, атомная батарейка в современном её виде — это почти всегда прототип, который нужно дорабатывать. Но американская технология существенно отличается от российской. Два прототипа бета-гальванических батарей значительно мощнее российских, хоть и работают по схожему принципу — преобразовывают радиоактивное бета-излучение в электрический ток.
Американский стартап показал «вечную» ядерную батарейку
Выбор радиоизотопа и схемы преобразования Области применения ядерных батарей разнообразны: в ближайшем будущем они могут стать незаменимыми на территориях, удаленных от инфраструктуры, например, в Арктике, на больших глубинах, на газо- и нефтепроводах большой протяженности, в космосе, а также в связи и медицине — там, где нужна длительная работа прибора без подзарядки или замены источников энергии. Кроме высокой удельной мощности, важны также простота и удобство наработки радионуклида например, в атомном реакторе и такой параметр, как отсутствие гамма-излучения — поэтому, скажем, для ядерных батареек в кардиостимуляторах или датчиках артериального давления и показателей крови подходят только плутоний-238 и никель-63. Кроме выбора радиоизотопа принципиально важным является выбор схемы преобразования энергии ядерного распада в электричество. На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: энергия альфа- и бета-частиц сначала превращаются в другие виды энергии, например в тепловую, химическую, механическую или световую энергию, а они уже превращаются в электричество. Почему никель-63? Сегодня ученые НИЯУ МИФИ занялись исследованием возможностей использования никеля-63 в качестве радиоизотопа для ядерных батарей в гражданском секторе. Это наиболее перспективный радионуклид: в миниатюрном элементе питания от излучаемого этим изотопом мягкого бета-излучения легко создать защиту, а его период полураспада - более 100 лет - достаточно длительный. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный многократными соударениями излучаемых изотопом бета-частиц.
Совсем не порадовала стоимость ядерного аккумулятора - директор государственного унитарного предприятия объявил цену изотопа никеля в долларах! Означает ли это, что основной компонент будет приобретаться за границей России?
А сколько грамм необходимо на изготовление одного аккумулятора? Одновременно с этим было замечено, что потребуются также алмазные элементы также не ясно сколько? Какова же будет полная стоимость такой батарейки? Электрокардиостимуляторы в России устанавливаются по полису ОМС бесплатно в экстренных случаях или при наличии квоты. При недостаточности квоты и за электрокардиостимуляторы иностранного производства больным приходится оплачивать самостоятельно. Будут ли ядерные батареи устанавливаться за счет бюджета ОМС или пожилые люди должны будут приобретать их отдельно? Если бы руководство Росатома впомнило, что российские пенсионеры живут в режиме "день простоять и ночь продержаться", то, наверно, осознало бы тот нелепый диссонанс между космическим сроком службы и стоимостью. Это наталкивает на мысль, что уважаемый Павел Зайцев активно осваивает средства, выделенные на НИОКР, ничуть не задумываясь о конечных пользователях. Аналогичную оценку "изобретения" Росатома дают пользователи социальных сетей: Едва ли ее где-нибудь получится использовать.
Я более чем уверен, что бюджет как всегда освоили, часть его потратили на презентацию, а само изделие никто никогда не увидит : Заявленный срок службы 50 лет , как мы догадались - это как раз половина периода полураспада Ni63 100лет. Такую же логику используют ученые Бристольского университета в концептуальном ролике. В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C14 и может работать 5730 лет! В Бристольском университете правда забыли поделить на 2, но и 2865 лет слишком много для кардиостимулятора. Уникальность бристольской концепции заключается в том, что проблема ядерных отходов решается путем переработки их в ядерные батарейки.
Иван показывает на экране чёрно-белые пирамидки. Проверять правильность нанесения приходится с помощью атомно-силового микроскопа, который позволяет контролировать работу с точностью почти до атома. Мощность - 60 микроватт. Для сравнения: чтобы обеспечить энергией обычную лампочку, понадобится примерно десять миллионов таких устройств. Атомная электростанция в сердце У обывателя сразу возникает вопрос: а можно ли на основе этой технологии сделать батарейку для телефона или ноутбука и навсегда забыть фразу "у меня гаджет разрядился"? Но должен сразу предупредить: по размеру батарейка будет несопоставима с мобильником. Пока считают, что основное назначение атомной батарейки - питание кардиостимуляторов. Кому-то покажется страшноватой идея разместить внутри организма миниатюрный аналог атомной электростанции. Но учёные уверяют: устройство абсолютно безопасно. Использование атомной батарейки позволит не менять источник энергии кардиостимулятора раз в 3-4 года, как это делается сейчас, всё-таки операция - штука не самая приятная. Вдобавок такой кардиостимулятор не раздражает металлоискатель. Ещё эту батарейку можно использовать в космических аппаратах - сейчас там стоят источники энергии, которые работают не больше двух десятков лет. И тогда "Вояджер" или "Пионер" нового поколения сможет улететь ещё дальше - туда, куда человечество никогда не добиралось. Для чего нужны изотопы 235U и 238U уран-235 и уран-238 - основное топливо для атомных электростанций, ядерное оружие. В смеси с тритием применяется в водородных бомбах. Предполагается, что он станет основой и для мирной термоядерной энергетики. Ещё дейтерий планируют использовать в медицине - чтобы лекарства в организме работали дольше. Ведутся эксперименты по использованию трития в генераторах энергии сверхмалой мощности - например, для питания радиометок или автономных датчиков.
В камере источника питания капсула для изотопа плутония-238, установка преобразовывает энергию его полураспада в электричество. Для проверки ее работы вполне достаточно имитатора источника из молибдена, но можно ли уже сейчас запитать от установки датчик телеметрии, который необходим для проверки трубопроводов в газовой промышленности? Подключаем контакты, работает! Мы имеем комплект: датчик, запитанный от автономного радиоизотопного источника питания. Фактически, это открывает нам возможность 20 лет, независимо от внешних условий, получать информацию в данном случае о температуре, о влажности, это может быть коррозионная стойкость, это может быть давление в линейной части нефтегазопровода. Эта информация может быть отражена на мониторе. Этого хватит чтобы обеспечить электричеством, например, метеостанцию на Крайнем Севере, где альтернативные источники энергии использовать очень непросто, особенно Полярной ночью. Области применения ограничиваются только фантазией инженеров. Можем поставить станцию слежения за температурой где-нибудь на отдалённом острове и на протяжении всего периода работы такого источника мы будем получать сигнал. Тепло с помощью особого нанопокрытия превращают в свет, а свет в электрическую энергию. Оригинальность решения ученых МИФИ в использовании специального покрытия. Мы создаем специальное покрытие на основе наночастиц, которыми покрывается капсула радиоизотопного источника тепла, чтобы сместить спектр излучения нагретого тела в более коротковолновую область, в более видимый спектр. Это позволяет увеличить эффективность преобразования энергии ядерного распада в электричество с помощью специальных фотоэлементов.
Атомная батарейка. 80 лет без подзарядки
Тепло от ионизирующего излучения нагревает капсулу примерно до 1,5 тыс. К, заставляя ее поверхность светиться. Это улавливают окружающие капсулу фотоэлементы, способные выдерживать колоссальную жару. И на выходе уже сейчас, на стадии прототипа, обеспечивается мощность, способная заставить светиться электрическую лампочку на несколько свечей. Казалось бы, зачем так сложно? Ведь тепло, неизменный спутник процесса радиоактивного распада, способно давать ток напрямую. Примерно так рассуждали ученые прошлых поколений в Советском Союзе, когда конструировали и запускали в серийное производство радиоизотопный термоэлектрический генератор РИТЭГ. Он работал на бета-частицах стронция 90 по другому принципу — термоэлектрическому.
Иначе говоря, как термопара: между холодным и разогретым от активного источника контактами возникало напряжение, током от которого и запитывали приборы. Для эвакуации последних РИТЭГов с автономных антарктических метеопостов в 2015 году, кстати, пришлось снаряжать полярную миссию. С тех пор российские автоматические метеостанции в труднодоступных районах электричество получают от ветряков.
Схема преобразования Превращение батарейки в селективно излучающую систему в инфракрасном диапазоне, позволяет увеличить эффективность работы источников питания, часть энергии которых обычно безвозвратно тратиться на тепло, что и было экспериментально продемонстрировано учеными НИЯУ МИФИ в рамках опытно-конструкторской работы по договору с ЧУ «Наука и инновации» Госкорпорации «Росатом».
Также было проведено исследование технических характеристик прототипа, разработан полный комплект конструкторской документации для масштабирования, отработана технология преобразования тепловой энергии ядерного распада в электричество с помощью термофотовольтаических преобразователей. Разработка термофотовольтаических преобразователей в настоящее время активно ведется в США и Европе с целью увеличить эффективность РИТЭГ для использования в космических аппаратах. На текущий момент, основной путь создания высокоэффективных радиоизотопных источников энергии — поиск новых или модифицированных материалов, например, нано- материалов, которые могли бы по своим полупроводниковым свойствам заменить кремний, германий и другие узкозонные полупроводники. Идея, предложенная учеными НИЯУ МИФИ — это оригинальный альтернативный подход к решению проблемы преобразования энергии ядерного распада в электричество.
Её реализация позволила использовать процесс преобразования энергии во всем объеме материала, что увеличивает эффективность преобразования и открывает широкие возможности масштабирования данных элементов для получения как больших мощностей, так и миниатюризации. Это дает право рассматривать данный подход к созданию ядерных батарей с энергиями до единиц кВт как универсальный.
Об этом сообщает пресс-служба вуза. Разработка описана в научном журнале Applied Radiation and Isotopes. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Она относится к так называемым бетавольтаическим элементам. Такой элемент питания состоит из двух частей: полупроводников — преобразователей энергии и радиоактивного элемента-излучателя. Исследователи разработали особую конструкцию микроканальную 3D-структуру атомной батареи, в которой расположение радиоактивного элемента изотопа никеля предотвращает потерю мощности, вызываемую обратным током.
Авторами изобретения стали специалисты из компании Betavolt. Компания утверждает, что она является первой, кто успешно миниатюризировал атомную энергию, поместив 63 ядерных изотопа в батарею размером меньше монеты. Этот прорыв ставит его «далеко впереди» всех других европейских и американских академических и коммерческих учреждений, отмечается в публикации.
При этом инженеры уверяют, что устройство безопасно для людей: в нем используется никель и алмазные полупроводники, уточняет «Газета.
В России создали «ядерную батарейку» для космоса и авиации
В Китае создали компактную ядерную батарею, которая может проработать 50 лет. Атомная термоэлектрическая станция (АТСТ) малой мощности "Елена-М", разработанная в Национальном исследовательском центре "Курчатовский институт", и РИА Новости. В Китае создали компактную ядерную батарею, которая может проработать 50 лет. Такие батареи могут стоить $100 за кВт·ч, что вдвое дешевле самых простых литий-ионных версий. Сейчас ученые патентуют свою технологию производства атомной батарейки на международном уровне. Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес.