Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы. Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует.
Случайность как художник: учёные обнаружили первую фрактальную молекулу
Фракталы в природе (53 фото). Смотрите 65 фотографии онлайн по теме фракталы в природе животные. Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest!
Сейчас на главной
- Впервые в природе обнаружена микроскопическая фрактальная структура
- Фракталы в природе - презентация онлайн
- Поделиться
- Основная навигация
- Фракталы в природе
ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ
Второе: у меня введены конкретные характеристики этих фракталов, они у меня называются «Показатели Марцинкевича» в честь польского математика Йозефа Марцинкевича, а не российского националиста. Эти показатели помогают лучше справляться с некоторыми краевыми задачами. До этого были либо несчитаемые характеристики, либо менее точные. Есть надежда, что в будущем мы переведем всю математику на рельсы неспрямляемых кривых, и это даст прибавку везде. Это даст нам гораздо большую точность в любых расчетах. В обществе распространено мнение об отдаленности математической науки от реальности, от практики. Но это не так. Одно из самых главных, чему учат на мехмате — это построение и изучение математических моделей, моделей того, что нас окружает. А уж что вы будете делать с этими моделями — решать вам. Как говорится, пистолет дали — крутись. А на практике фрактальная геометрия оказывается полезной во многих областях.
В первую очередь, в биотехнологиях. Например, при диагностировании онкозаболеваний. Если фрактальная сетка сосудов в каком-то месте нарушена, то следует обратить туда внимание: почти наверняка именно этот участок выступит очагом болезни. Что касается окружающей среды. Как выяснили ученые, лес — это один большой фрактал. С помощью фрактальной геометрии можно бороться с исчезновением лесного массива на Земле, прогнозировать, как именно будет разрастаться молодой лес, выявить его слабые места. Это все можно сделать, лишь наблюдая за одним деревом как частью фрактала. Более того, фрактальные антенны которые используются в мобильных телефонах работают лучше, чем обычные, в экономических графиках тоже наблюдаются фракталы — теперь мы лучше представляем, как с ними работать.
Случайность и нейтральные мутации могут быть не менее важными факторами эволюционного процесса. Биомиметика и нанотехнологии: фрактальные структуры обладают уникальными физическими и химическими свойствами, такими как высокая площадь поверхности, фрактальная размерность и самоподобие. Изучение молекулярного фрактала цитратсинтазы может открыть новые пути для создания биомиметических материалов с улучшенными характеристиками, например, для катализа, доставки лекарств или сенсорики. Открытие молекулярного фрактала в цианобактерии — это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Этот феномен открывает перед нами новые горизонты исследований и вдохновляет на поиск других "случайных шедевров" в микромире, которые могут изменить наше представление о жизни и её эволюции.
Например, фракталы используются в компьютерной графике и анимации для создания реалистичных текстур и эффектов. Они также используются в медицине для анализа сложных структур, таких как легкие или кровеносные сосуды. Фракталы имеют свойство самоподобия, что означает, что они выглядят одинаково на разных масштабах. Это свойство делает фракталы очень полезными для анализа сложных систем, таких как погода или финансовые рынки. Фрактальный анализ может помочь выявить скрытые закономерности и предсказать будущие изменения. Фракталы также имеют связь с хаосом и теорией динамических систем. Хаос - это состояние системы, когда даже небольшие изменения в начальных условиях могут привести к значительным изменениям в будущем. Фракталы могут помочь понять и описать хаотические системы и предсказать их поведение. Наконец, фракталы имеют важное значение для нашего понимания природы и ее эволюции.
Ветви деревьев имеют сложную структуру, которая может быть разделена на множество более мелких ветвей, каждая из которых является копией всего дерева. Эта структура позволяет деревьям эффективно собирать солнечный свет и питательные вещества из почвы. Еще одним примером фракталов в природе является грозовая туча. Грозовые тучи имеют сложную структуру, которая может быть разделена на множество более мелких туч, каждая из которых является копией всей тучи. Эта структура позволяет грозовым тучам эффективно переносить воду из одного места в другое. Фракталы - это не просто геометрические фигуры, они имеют множество интересных свойств и приложений в науке и технологии. Например, фракталы используются в компьютерной графике и анимации для создания реалистичных текстур и эффектов. Они также используются в медицине для анализа сложных структур, таких как легкие или кровеносные сосуды. Фракталы имеют свойство самоподобия, что означает, что они выглядят одинаково на разных масштабах.
ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.
Часто говорят, что мать-природа чертовски хороший дизайнер, а фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи вместе. Фракталы часто встречаются в природе. Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе.
ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.
Фракталы. Чудеса природы. Поиски новых размерностей: solar_activity — LiveJournal | Фракталы в природе (53 фото). |
Фракталы в природе и созданные человеком | RATBAG - Дизайн | На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. |
Впервые в природе обнаружена микроскопическая фрактальная структура | | Когда вы думаете о фракталах, вам могут прийти на ум плакаты и футболки Grateful Dead, пульсирующие всеми цветами радуги и вызывающие завихрение сходства. |
Фракталы в природе | Международная группа ученых обнаружила первую в природе молекулу, которая является регулярным фракталом. |
Подписка на дайджест
- ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ | Наука и жизнь
- Фракталы в природе
- Компьютерные игры
- Уникальная сборка
Что такое фрактал?
9 Удивительных фракталов, найденных в природе | Знание – свет | На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. |
Фрактал. 5 вопросов | Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. |
9 Удивительных фракталов, найденных в природе
Соответственно, если динамическая система определяется n переменными, то вместо двумерной фазовой плоскости ей можно поставить в соответствие n-мерное фазовое пространство. Теперь начнем воздействовать на наши маятники внешним периодическим сигналом. Реакция линейной и нелинейной систем будет различной. В первом случае постепенно установятся регулярные периодические колебания с той же частотой, что и частота вынуждающего сигнала. На фазовой плоскости такому движению соответствует замкнутая кривая, называемая аттрактором от английского глагола to attract - притягивать , - множество траекторий, характеризующих установившийся процесс. В случае нелинейного маятника могут возникнуть сложные, непериодические колебания, когда траектория на фазовой плоскости не замкнется за сколь угодно долгое время. При этом поведение детерминирован ной системы будет внешне напоминать совершенно случайный процесс - это и есть явление динамического, или детерминированного, хаоса.
Образ хаоса в фазовом пространстве - хаотический аттрактор - имеет очень сложную структуру: это фрактал. В силу необычности свойств его называют также странным аттрактором. Почему же система, развивающаяся по вполне определенным законам, ведет себя хаотически? Влияние посторонних источников шума, а также квантовая вероятность в данном случае ни при чем. Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий.
Поясним, что это значит, на примере нелинейного колебательного контура, находящегося под воздействием внешнего периодического сигнала. Внесем в нашу систему небольшое возмущение - изменим немного начальный заряд конденсатора. Тогда колебания в возмущенном и невозмущенном контурах, первоначально практически синхронные, очень скоро станут совершенно разными. Поскольку в реальном физическом эксперименте задать начальные условия можно лишь с конечной точностью, предсказать поведение хаотических систем на длительное время невозможно. Предсказание будущего - Из-за такой малости! Из-за бабочки!
Она упала на пол - изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино... И грянул гром Насколько упорядочена наша жизнь? Предопределены ли в ней те или иные события? Что предсказуемо на многие годы вперед, а что не подлежит сколько-нибудь надежному прогнозированию даже на небольшие интервалы времени? Человеку постоянно приходится сталкиваться как с упорядоченными, так и с неупорядоченными процессами, порождаемыми различными динамическими системами. Мы знаем, что Солнце встает и заходит каждые 24 часа, и так будет продолжаться в течение всей нашей жизни.
Вслед за зимой всегда наступает весна, и вряд ли когда-нибудь будет наоборот. Более или менее регулярно функционируют коммунальные службы, снабжающие нас светом и теплом, учреждения и магазины, а также транспортные системы автобусы, троллейбусы, метро, самолеты, поезда. Нарушения ритмичной работы этих систем вызывают законное возмущение и негодование граждан. Если сбои возникают неоднократно - говорят о хаосе, выражая отрицательное отношение к подобным явлениям. Но в то же время существуют процессы, хорошо известные своей непредсказуемость ю. Например, подбрасывая монету, мы никогда точно не знаем, что выпадет - "орел" или "решка".
Такая непредсказуемость не вызывает тревоги. К гораздо более драматичным последствиям она может привести при игре в рулетку, однако любители испытывать судьбу сознательно идут на этот риск. Почему одни процессы предсказуемы по своим результатам, а другие нет? Может быть, нам просто не хватает каких-то начальных данных для хорошего прогноза? Надо улучшить знания о начальных условиях - и все будет в порядке, и с монетой и с предсказанием погоды. Сказал же Лаплас: дайте мне начальные условия для всей Вселенной, и я вычислю ее будущее.
Лаплас ошибался: ему и его современникам не были известны примеры детерминированных динамических систем, прогноз поведения которых на длительное время нельзя осуществить. Лишь в конце XIX столетия французский математик Анри Пуанкаре впервые почувствовал, что такое возможно. Однако прошло еще три четверти века, прежде чем началась эпоха бурного изучения детерминированного хаоса. Динамические системы можно условно разделить на два типа. У первых траектории движения устойчивы и не могут быть значительно изменены малыми возмущениями. Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет.
Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия. Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе. К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро в масштабе времени, характерном для этой системы приводят к кардинальному изменению траектории. Как отметил Пуанкаре в своей работе "Наука и метод" 1908 , в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть. Предсказание становится невозможным, мы имеем перед собой явление случайное". Таким образом прогнозирование на длительные времена теряет всякий смысл.
Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах. Реконструкция прошлого Итак, прогноз будущего не всегда возможен. А как обстоит дело с прошлым? Всегда ли можно реконструировать "предсказать", однозначно истолковать прошлое? Казалось бы, здесь проблем быть не должно. Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад.
Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько. При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой. Прошлое "не предсказывается"? Бред какой-то! Ведь что-то уже произошло.
Все известно... Но давайте подумаем. Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей? Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений. Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы.
Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов траекторий , отвечающих нынешнему состоянию системы. Только один из них соответствует реальному течению событий. Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории. На основании чего выбирается правильная траектория "версия"? Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов. Траектории, несовместимые с ними, отбрасываются.
В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории. Однако даже для недалекого прошлого траекторий может оказаться значительно больше, чем достоверных сведений, - тогда однозначная трактовка исторического процесса уже не может быть произведена. И все это при добросовестном и уважительном отношении к истории и к фактам. Теперь добавьте сюда пристрастия первичных источников, потерю части информации со временем, манипуляции с фактами на этапе интерпретации замалчивание одних, выпячивание других, фальсификация и др. И что интереснее всего, при необходимости те же самые интерпретаторы через некоторое время могут без труда утверждать противоположное.
Когда следующая частица садиться здесь, площадь поверхности увеличивается еще сильнее - еще больше увеличивая вероятность осаждения частиц именно в этой области. В результате процесса получается древовидная структура, обладающая фрактальными свойствами. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен как описанный выше зачастую приводит к фрактальным структурам. Если же мы говорим не просто о природе, а о живой природе - то здесь также начинают участвовать эволюционные механизмы. Дело в том, что фрактальные структуры во многих случаях показывают высокую эффективность - очень эффективно организовать кровеносные сосуды в виде фрактальной сетки, например. Ну и добавлю еще одно соображение.
Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины; треугольник Серпинского «скатерть» и ковёр Серпинского — аналоги множества Кантора на плоскости; губка Менгера — аналог ковра Серпинского в трёхмерном пространстве; Ковёр Аполлония — множество всевозможных последовательностей окружностей, каждая из которых касается трёх уже построенных; примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции ; кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке; кривая Пеано — непрерывная кривая, проходящая через все точки квадрата; траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [3]. Построение кривой Коха Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором точнее, ломаной, подобной генератору.
Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность. А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача. Получается, что рынок, как минимум, имеет фрактальные свойства. Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части. Что еще интересного можно найти на основе модели Мандельброта? К примеру, можно взглянуть на соотношение частей этого фрактала: Фрактальную теорию тесно связывают с принципом золотого сечения и числами Фибоначчи. Опять же, не будем вдаваться в сложные математические вычисления и доказательства. Нас тут интересует, что определенное соотношение частей и сторон множества Мандельброта соответствуют принципам золотого сечения и чисел Фибоначчи.
Что такое фрактал?
ПРОСТО ФРАКТАЛ. Фракталы в природе. Фото подборка встречающихся в природе или искусственно созданных фракталов. Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию.
Прибыльная торговля с помощью фрактальности существует?
Фракталы в природе. | Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала. |
Бесконечность фракталов. Как устроен мир вокруг нас | Капитал страны | Деревья – один из самых квинтэссенциальных фракталов в природе. |
Фракталы — фигуры в дизайне: сакральные аспекты в геометрии и природа фракталов | Смотрите 27 онлайн по теме фрактал в природе. |