Новости с точки зрения эволюционного учения бактерии являются

Основателями биосферы являются – бактерии и археи, вирусы. Бактерии являются древнейшей группой организмов на нашей планете. 28. Из предложенной информации выберите сведения о бактериях и грибах: 1. отсутствует. Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху). История роли микроорганизмов в спорном вопросе о возникновении жизни регулярно описывается в большинстве учебников по микробиологии.

Концепции происхождения и развития микроорганизмов

Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. Почему бактериальную клетку считают простоорганизованной? Поскольку «эволюция бактерий» часто доказывается именно указанием на их способность приспосабливаться к воздействию антибиотиков, то в ряде исследований биологи проверили древних бактерий именно на устойчивость к этим самым антибиотикам. Поскольку «эволюция бактерий» часто доказывается именно указанием на их способность приспосабливаться к воздействию антибиотиков, то в ряде исследований биологи проверили древних бактерий именно на устойчивость к этим самым антибиотикам. Этапы эволюции микроорганизмов кратко | Образовательные документы для учителей, воспитателей, учеников и родителей. 28. Из предложенной информации выберите сведения о бактериях и грибах: 1. отсутствует.

Задания части 2 ЕГЭ по теме «Популяция, дивергенция, изоляция, видообразование»

«Эксперимент Ленски является еще одним тычком в глаз антиэволюционистов», утверждает Джери Койн, эволюционный биолог в Чикагском Университете. С позиций эволюционного учения Ч. Дарвина любое приспособление организмов является результатом. какими организмами являются бактерии с точки зрения эволюции.

Бактерии эволюционировали в лаборатории?

Пастер доказал, что причиной многих заболеваний человека и животных — сибирской язвы, куриной холеры, болезни шелковичных червей — являются бактерии, и заложил научные основы создания вакцин и вакцинации. Были исследованы многие болезнетворные бактерии, получены вакцины и лекарства, способные предотвратить и победить болезни, вызываемые этими бактериями. Многие бактерии стали служить человеку в промышленных масштабах: их культивированием и получением продукции от этих микроорганизмов занимается прикладная микробиология и биотехнология. Свернуть Общая характеристика бактерий Бактерии — это крошечные организмы, изучать которые можно только с помощью увеличительной техники. Увидеть бактерии можно и в световой микроскоп, а вот рассмотреть мельчайшие структуры бактериальных клеток позволяют только электронные микроскопы. Бактерии, видимые в световой а и электронный б микроскопы. Бактерии — это одноклеточные организмы У некоторых видов бактерий клетки не разделяются после деления, а располагаются парами, четвёрками, цепочками или гроздьями, но при этом каждая бактериальная клетка остаётся самостоятельным организмом и способна существовать независимо от других клеток. Многие бактерии способны образовывать на питательной среде колонии характерной формы. Колония таких бактерий не является многоклеточным организмом, а представляет собой клеточную массу — различимое невооружённым глазом скопление клеток. Формы бактериальных клеток Это интересно: форма бактериальных клеток Бактериальные клетки бывают разной формы. Палочковидные бактерии называют бациллами от лат.

Диплококки от др. Названия стафилококков и стрептококков происходят от греческих слов staphylоs [стафилос] — «виноград, гроздь» и streptos [стрептос] — «цепочка». В бактериальных клетках нет ядер Все представители царства бактерий являются прокариотами. Прокариоты, или Доядерные, — это надцарство одноклеточных организмов, не имеющих клеточных ядер. Бактериальные клетки окружены клеточной стенкой из муреина Муреин от лат. Прочная и достаточно жёсткая клеточная стенка располагается поверх клеточной мембраны и определяет характерную для каждого вида форму бактериальных клеток. Бактерий можно выращивать в лабораторных условиях Микробиологи, изучающие разные виды бактерий, выращивают их на особых средах — в жидком питательном бульоне, на поверхности или в толще особых плотных желеобразных сред. Колонии бактерий на поверхности питательных сред в чашках Петри Строение бактериальной клетки Клетки бактерий устроены гораздо проще клеток других организмов — животных, растений, грибов. В них нет не только ядер, но и многих органоидов. В цитоплазме можно обнаружить только мелкие округлые органоиды — рибосомы, осуществляющие сборку белковых молекул, и включения в виде зёрен, капель, кристаллов или комочков разной формы — отложенные впрок запасы питательных веществ или изолированные уже ненужные клетке продукты обмена веществ.

В цитоплазме располагается также генетический материал — вещество, содержащее наследственную информацию о строении и жизнедеятельности бактериальной клетки. В отличие от клеток эукариотических организмов, генетический материал в клетках бактерий не окружён ядерной оболочкой. У некоторых видов бактерий поверх клеточной стенки имеется дополнительный внешний слой — слизистая капсула. В отличие от стенки, капсула неплотная, полужидкая, полупрозрачная. Капсула обеспечивает дополнительную защиту бактериальных клеток от повреждений. Схема строения бактериальной клетки. Некоторые виды бактерий имеют один или несколько жгутиков, с помощью которых они передвигаются. Узнать больше: пили бактерий Этот материал будет полезен тем, кто готовится к олимпиаде Иногда клетки бактерий бывают покрыты многочисленными тонкими выростами — пилями от лат. Пили представляют собой нитевидные белковые образования и бывают двух видов. Одни, более короткие и тонкие, участвуют в прикреплении бактериальных клеток к различным поверхностям и друг к другу.

Другие, длинные и более толстые, служат для передачи наследственного материала от одной бактериальной клетки к другой. Жизнедеятельность бактерий Дыхание Большинство видов бактерий используют для дыхания кислород, их называют аэробными бактериями. Но есть виды прокариот, не нуждающиеся в кислороде, — это анаэробные бактерии. Бактерии-анаэробы способны жить на дне водоёмов, в глубоких слоях почвы, в желудках и кишечниках животных, то есть в местообитаниях, где совсем немного или вообще нет кислорода. Некоторые бактерии могут приспосабливаться к жизни в средах с разным содержанием кислорода. Если кислорода достаточно, то дыхание у таких бактерий протекает как у аэробных организмов, а если кислорода мало или он отсутствует, то их обмен веществ перестраивается, и они на время становятся анаэробными организмами. Питание Для разных видов бактерий характерны самые разнообразные способы питания. Большую группу составляют микроорганизмы, питающиеся готовыми органическими веществами, — гетеротрофные бактерии. Среди них есть как паразиты и симбионты других организмов, так и свободноживущие сапротрофы.

Существуют аэробные бактерии, живущие в воздушной среде, и анаэробные бактерии, которые могут жить только в условиях отсутствия кислорода. К аэробным бактериям относят многочисленных редуцентов, которые разлагают органические вещества мертвых растений и животных. Анаэробные бактерии составляют микрофлору нашего кишечника - бескислородную среду обитания. Получают энергию бактерии путем хемо- или фотосинтеза. Среди хемосинтезирующих бактерий можно встретить нитрифицирующие бактерии, железобактерии, серобактерии. Важно заметить, что клубеньковые бактерии азотфиксирующие не осуществляют хемосинтез: клубеньковые бактерии относятся к гетеротрофам. Среди фотосинтезирующих бактерий особое место принадлежит цианобактериями сине-зеленым водорослям. Благодаря им сотни миллионов лет назад возник кислород, а с ним и озоновый слой: появилась жизнь на поверхность земли и аэробный тип дыхания поглощение кислорода , которым мы сейчас с вами пользуемся : Что касается бактерий гетеротрофов, то их способ питания основан на разложении останков животных и растений - сапротрофы редуценты , либо же они питаются органами и тканями животных и растений - паразиты. Биотехнология Бактерии широко применяются в направлении биотехнологии - генной инженерии. Их используют для получения различных химических веществ белков. В ДНК бактерии вставляют нужный ген к примеру, ген, кодирующий белковый гормон - инсулин , бактерия принимает новый участок гена за свой собственный, в результате чего начинает синтезировать белок с данного участка. На рибосомах подобных бактерий синтезируется инсулин, который человек собирает, обрабатывает и использует как лекарство. Бактерии используются для получения антибиотиков тетрациклина, стрептомицина, грамицидина , широко применяемых в медицине. Бактерии также применяют в пищевой промышленности, где их используют для получения молочнокислых продуктов, алкогольных напитков. Классификация бактерий по форме При микроскопии становятся заметны явные отличия форм бактерий.

Например, царство Протеобактерий содержит организмы, характеризующиеся смешанными физиологическими чертами, напоминающими черты, характерные почти для всех известных прокариот. Второй прокариотический домен составляют Археи, состоящие из трех основных типов: Кренархеот, Эвриархиот и Корархеот. Физиологически бактерии и археи легко дифференцируются по наличию у бактерий или отсутствию у археев клеточной стенки, содержащей пептидогликан. Представители домена Эукариот в составе своей клеточной стенки также не содержат пептидогликан. Подобные организмы могли сохраниться с того времени, когда Земля еще находилась на ранних этапах формирования, которые характеризовались экстремальными условиями, и эти прокариоты или близкие к ним археи могут представлять собой реликты ранних форм жизни. Первоначально, некоторые формы Археев были обнаружены при анализе рибосомальных генов организмов, обитающих в экзотической среде, например в открытом океане, Антарктических водах, и в водах глубоководных гидротермальных источников. Однако они также находятся в обычной почве и в озерных водах. Наша информация об универсальном дереве жизни продолжает расширяться. В современной филогенетике к числу трудных относится вопрос, каким образом классифицировать организмы по видам, и второй, с ним связанный, как группировать виды в основные домены или царства. По мере обнаружения новых видов, может быть пересмотрена и скорректирована структура основных доменов. Видео этапы эволюции, естественного отбора, искусственного отбора Редактор: Искандер Милевски. Дата обновления публикации: 18.

Такие виды, как Azotobacter az. Следовательно, трансформация азота самым тесным образом связана с почвенной микрофлорой, от деятельности которой зависит азотный режим почвы, т. Микроорганизмы осуществляют круговорот веществ в почве, влияя на минерализацию органических остатков и превращая нерастворимые формы в доступные для растений соединения. При этих процессах происходит активное выделение метаболитов — продуктов, участвующих в синтезе гумуса. Микроорганизмы содействуют накоплению и разложению гумуса. Количество и качество питательных веществ в почве зависит от интенсивности микробиологических процессов целлюлозоразлагающей и ферментативной активности и т. Свободноживующие азотфиксаторы, которые в почвах довольно широко распространены, вместе с симбиотическими клубеньковыми бактериями усваивают атмосферный азот и играют важную роль в поддержании азотного режима почв. Клубеньковые бактерии в значительной мере обеспечивают азотное питание бобовых культур.

Эволюция бактерий

  • Эволюция микроорганизмов: этапы развития бактерий и вирусов
  • Материалы по теме
  • Бактерии – доядерные организмы — что это, определение и ответ
  • учитель биологии - Бактерии

Бактерии (5–7 кл.)

Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. Бактерии делятся бинарным делением клетки. В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. Однако бактерии размножаются посредством бинарного деления, которое является формой бесполого размножения, что означает, что дочерняя клетка и родительская клетка генетически идентичны. Его основной труд «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926 г.) лег в основу синтетической теории эволюции. Микоплазмы являются отдельным классом микроорганизмов, отличающимся как от вирусов, так и от бактерий. 28. Из предложенной информации выберите сведения о бактериях и грибах: 1. отсутствует.

Презентация, доклад на тему Методы эволюционной биологии: исследование эволюции бактерий

Большая часть особей гибнет в борьбе за существование и не оставляет потомства. Гибель или успех в борьбе за существование носят избирательный характер. Организмы одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, то есть лучше приспособлены. Избирательное выживание размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором. Под действием естественного отбора находящиеся в разных условиях группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Они приобретают настолько существенные отличия, что превращаются в новые виды принцип расхождения признаков. Эволюционная теории Дарвина совершила переворот в биологической науке. На основе изучения гигантского материала, собранного во время путешествия на корабле УБиглФ, Дарвину удается вскрыть причины изменения видов.

Изучив геологию Южной Америки, Дарвин убедился в несостоятельности теории катастроф и подчеркнул значение естественных факторов в истории земной коры и ее животного и растительного населения. Благодаря палеонтологическим находкам он отмечает сходство между вымершими и современными животными Южной Америки. Он находит так называемые переходные формы, которые совмещают признаки нескольких современных отрядов. Таким образом был установлен факт преемственности между современными и вымершими формами. На Галапагосских островах он нашел нигде более не встречающиеся виды ящериц, черепах, птиц. Они близки к южноамериканским. Галапагосские острова имеют вулканическое происхождение, и поэтому Ч. Дарвин предположил, что виды попали на них с материка и постепенно изменились. В Австралии его заинтересовали сумчатые и яйцекладущие, которые вымерли в других местах земного шара.

Австралия как материк обособилась, когда еще не возникли высшие млекопитающие. Сумчатые и яйцекладущие развивались здесь независимо от эволюции млекопитающих на других материках. Так постепенно крепло убеждение в изменяемости видов и происхождении одних от других. Однако в естественных условиях численность взрослых особей каждого вида длительно сохраняется примерно на одном уровне, следовательно, большинство появляющихся на свет особей гибнет в борьбе за существование — внутривидовой, межвидовой и в борьбе с неблагоприятными абиотическими факторами условиями неживой природы. Сопоставив два вывода — о перепроизводстве потомства и о всеобщей изменчивости, Дарвин пришел к главному заключению: больше шансов выжить и достичь взрослого состояния имеют особи, отличающиеся от множества других какими-либо полезными свойствами. Так был открыт принцип естественного отбора как главной движущей силы эволюции. Хотя эволюция протекает как единый процесс, обычно выделяют два уровня — микроэволюционный и макроэволюционный. Процессы, протекающие на популяционном и внутривидовом уровне, называют микро эволюцией, на уровне выше видового — макро эволюцией. Биополимеры - белки.

Полимеры- высокомалекулярные соединения состоящие из молекул мономеров. Мономеры- низкомалеккулярные соединения. Регулярные полимеры- молекула состоит из мономеров одного вида. Нерегулярные полимеры- молекула состоит из мономеров нескольких видов. Белки- это нерегулярные полимеры, мономерами которых являются аминокислоты. Аминокислот — 20 видов из них 8 незаменимые, не синтезируются в организме человека, а поступают в него вместе с пищей. Нуклеиновые кислоты. Эти биополимеры состоят из мономеров, называемых нуклеотидами. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями.

Нуклеотиды, входящие в состав РНК, содержат пяти-углеродный сахар — рибозу, одно из четырех органических соединений, которые называют азотистымиоснованиями: аденин, гуанин, цитозин, урацил А, Г, Ц, У — и остаток фосфорной кислоты. Нуклеотиды, входящие в состав ДНК, содержат пяти-углеродный сахар — дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин А, Г, Ц, Т —и остаток фосфорной кислоты. В составе нуклеотидов к молекуле рибозы или дезокси-рибозы с одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых оснований. Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Гвсегда расположено азотистое основаниеЦ. А аденин — Т тимин Т тимин — А аденин Г гуанин — Ц цитозин Ц цитозин -Г гуанин Эти пары оснований называют комплиментарными основаниями дополняющими друг друга.

Нити ДНК, в которых основания расположены комплементарно друг другуФ называют комплиментарными нитями. Расположение четырех типов нуклеотидов в цепях ДНК несет важную информацию. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, то есть их первичную структуру. Набор белков ферментов, гормонов и др. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков. Другими словами, ДНК является носителем наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток. Однако небольшое их количество содержится в митохондриях и хлоропластах. Основные виды РНК.

Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов — рибосом — идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах. Молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы — рибоза и вместо тимина — урацил. Значение РНК определяется тем, что они обеспечивают синтез в клетке специфических для нее белков. Удвоение ДНК. Перед каждым клеточным делением при абсолютно точном соблюдении нуклеотидной последовательности происходит самоудвоение редупликация молекулы ДНК. Редупликация начинается с того, что двойная спираль ДНК временно раскручивается. Это происходит под действием фермента ДНК-полимеразы в среде, в которой содержатся свободные нуклеотиды.

Каждая одинарная цепь по принципу химического сродства А-Т, Г-Ц притягивает к своим нуклеотидным остаткам и закрепляет водородными связями свободные нуклеотиды, находящиеся в клетке. Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплиментарной цепи. В результате получаются две молекулы ДНК, у каждой из них одна половина происходит от родительской молекулы, а другая является вновь синтезированной, то есть две новые молекулы ДНК представляют собой точную копию исходной молекулы. Несоответствие между возможностью видов к беспредельному размножению и ограниченностью ресурсов — главная причина борьбы за существование. Виды борьбы за существование. Внутривидовая борьба. Дарвин указывал, что борьба за жизнь особенно упорна между организмами в пределах одного вида, и обосновывал свое утверждение тем, что они обладают сходными признаками и испытывают одинаковые потребности. Широкое распространение в природе конкуренции организмов за ограниченные ресурсы — типичный способ естественного отбора, благоприятствующего победителям в конкуренции. Кроме того, естественный отбор может осуществляться и без непосредственной конкуренции, например вследствие действия неблагоприятных факторов среды.

Способность переносить низкие и высокие температуры, воздействие других параметров среды также приводит к выживанию более приспособленных или к их более успешному размножению. Иногда косвенные формы борьбы за существование дополняются прямой борьбой. Примером могут служить турнирные бои самцов за право обладать гаремом. Взаимоотношения особей в пределах вида не ограничиваются борьбой и конкуренцией, существует также и взаимопомощь. Межвидовая борьба. Под межвидовой борьбой следует понимать конкуренцию особей разных видов. Особой остроты межвидовая борьба достигает в тех случаях, когда противоборствуют виды, обитающие в сходных экологических условиях и использующие одинаковые источники питания. В результате межвидовой конкуренции происходит либо вытеснение одного из противоборствующих видов, либо приспособление видов к разным условиям в пределах единого ареала, либо, наконец, их территориальное разобщение. Межвидовая борьба ведет к экологическому и географическому разобщению видов.

При попытках переселения в новые зоны обитания большинство не выдерживает влияния других видов и факторов внешней среды, лишь некоторые способны закрепиться и выдержать конкуренцию. Сложные взаимоотношения хищника и жертвы, хозяина и паразита — тоже примеры межвидовой борьбы. Борьба с неблагоприятными условиями среды. В ходе естественного отбора основное значение имеет фенотип организма: окраска, способность быстро перемещаться, устойчивость к действию высоких или низких температур и многое другое. Поэтому верно утверждение, что естественный отбор оценивает прежде всего фенотип особи. Поскольку за одинаковыми фенотипами могут скрываться различные генотипы например, АА и Аа при полном доминировании , то сходные фенотипы, наиболее приспособленные к конкретной ситуации, могут формироваться на различной генетической основе. Широкое распространение инсектицидов привело к возникновению у многих видов насекомых устойчивости к ним. Однако генетические механизмы устойчивости оказались неодинаковыми в различных популяциях. В одних случаях устойчивость определялась доминантным геном, в других — рецессивным, отмечено не только аутосомное наследование, но и наследование, сцепленное с полом.

Обнаружены, кроме того, случаи полигенного и цитоплазматического наследования. Соответственно и физиологические механизмы устойчивости к инсектицидам оказались различными. Среди них накопление яда кутикулой; повышенное содержание липидов, способствующих растворению инсектицида; повышение устойчивости нервной системы к действию ядов; снижение двигательной активности и др. Направление, в котором действует естественный отбор, и его интенсивность в природных популяциях не являются строго фиксированным, неизменным показателем. Они существенно изменяются как во времени, так и в пространстве. У обыкновенного хомяка обнаруживаются две основные формы окраски — бурая и черная. Их распространение от Украины до Урала показывает, что существует как большое разнообразие в сезонной изменчивости черных и бурых форм, так и значительные различия в их концентрации на видовом ареале. Итак, естественный отбор — единственный фактор эволюции, осуществляющий направленное изменение фенотипического облика популяции и ее генотипического состава вследствие избирательного размножения организмов с разными генотипами. Аденозинфосфорные кислоты.

Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой АТФ. Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, нервных импульсов, свечений например, у люминесцентных бактерий , то есть для всех процессов жизнедеятельности. АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20—30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит — в этот период происходит расщепление углеводов и других веществ происходит накопление энергии и запас АТФ в клетках восстанавливается.

Митохондрии окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны. Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки кристы , очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки Удыхательной цепиФ, отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий. Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там. Это приводит к возникновению электрохимического потенциала вследствие разницы в концентрации и зарядах. Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут. Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента.

Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату АДФ , что и приводит к синтезу АТФ. Митохондрия, таким образом, исполняет в клетке роль Уэнергетической станцииФ. Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей. Направления эволюции На макроэволюционном уровне можно проследить главные направления органической эволюции: биологический и морфофизиологический прогрессы. Поскольку направление эволюции определяется естественным отбором, то пути эволюции совпадают с путями формирования приспособлений, определяющих те или иные преимущества одних групп перед другими. Появление таких признаков обусловливает прогрессивность данной группы. Биологический прогресс, то есть расширение ареала, увеличение количества особей данного вида и количества новых систематических единиц внутри вида или более крупной систематической единицы, достигается различными путями. Можно выделить несколько путей эволюции : — арогенез ароморфоз или морфофизиологический прогресс аллогенез идиоадаптацию — гипергенез Арогенез — такой путь эволюции, который характеризуется повышением организации, развитием приспособлений широкого значения, расширением среды обитания данной группы организмов. На арогенный путь развития группа организмов вступает, вырабатывая определенные приспособления, называемые в таком случае ароморфозами.

Примером ароморфоза у млекопитающих является разделение сердца на левую и правую половины с развитием 2 кругов кровообращения, что привело к увеличению легких и улучшению снабжения кислородом органов. Дифференцировка органов пищеварения, усложнение зубной системы, появление тепло кровности — все это уменьшает зависимость организма от окружающей среды. У млекопитающих и птиц появилась возможность переносить снижение температуры среды значительно легче, чем, например, у рептилий, которые теряют активность с наступлением холодной ночи и холодного времени года. В связи с этим ночная активность рептилий в среднем ниже, чем дневная. Теплокровность млекопитающих и птиц позволила им овладеть поверхностью всего земного шара. Дифференцировка зубного аппарата у млекопитающих, приспособление его к жевательной функции, чего не было ни у одного из предшествовавших классов хордовых, обеспечили большую возможность использования пищи. У них хорошо развиты большие полушария головного мозга, которые обеспечивают поведение Уразумного типаФ, позволяют организмам приспосабливаться к быстрым изменениям среды без изменения своей морфологической организации. Ароморфозы сыграли важную роль в эволюции всех классов животных. Например, в эволюции насекомых большое значение имело появление трахейной системы дыхания и преобразование ротового аппарата.

Трахейная система обеспечила резкое повышение активности окислительных процессов в организме, что вместе с появлением крыльев обеспечило им выход на сушу. Благодаря необычайному разнообразию ротового аппарата у насекомых сосущий, колющий, грызущий они приспособились к питанию самой разнообразной пищей Немалую роль сыграло в их эволюции и развитие сложной нервной системы, а также органов обоняния, зрения, осязания. Аллогенез — путь эволюции без повышения общего уровня организации. Организмы эволюционируют путем частных приспособлений к конкретным условиям среды. Такой тип эволюции ведет к быстрому повышению численности и многообразию видового состава. Все многообразие любой крупной систематической группы является результатом аллогенеза. Достаточно вспомнить многообразие млекопитающих, чтобы увидеть, насколько разнообразны пути их приспособления к самым различным факторам среды. Аллогенезы осуществляются благодаря мелким эволюционным изменениям, повышающим приспособление организмов к конкретным условиям обитания. Эти изменения называются идиоадаптацией.

Хорошим примером идиоадаптаций служат защитная окраска у животных, разнообразные приспособления к перекрестному опылению ветром и насекомыми, приспособление плодов и семян к рассеиванию, приспособление к придонному образу жизни уплощение тела у многих рыб. Аллогенез часто приводит к узкой специализации отдельных групп. Общая дегенерация катагенез. В ряде эволюционных ситуаций, когда окружающая среда стабильна, наблюдается явление общей дегенерации, то есть резкого упрощения организации, связанного с исчезновением целых систем органов и функций. Очень часто общая дегенерация наблюдается при переходе видов к паразитическому образу существования. У крабов известен паразит саккулина, имеющая вид мешка, набитого половыми продуктами, и обладающая как бы корневой системой, пронизывающей тело хозяина. Эволюция этого организма такова. Родоначальная форма принадлежала к усоногим ракам и прикреплялась не к водным камням, а к крабам и постепенно перешла к паразитическому способу существования, утратив во взрослом состоянии почти все органы. Несмотря на то, что общая дегенерация приводит к значительному упрощению организации виды, идущие по этому пути, могут увеличивать численность и ареал, то есть двигаться по пути биологического прогресса.

Гипергенез — путь эволюции, связанный с увеличением размеров тела и непропорциональным пере развитием органов. В различные периоды в различных классах организмов появлялись гигантские формы. Но, как правило, они довольно быстро вымирали и наступало господство более мелких форм. Вымирание гигантских форм чаще всего объясняется нехваткой пищи, хотя некоторое время такие организмы могут иметь преимущество вследствие своей огромной силы и отсутствия по этой причине врагов. Соотношение направлений эволюции. Пути эволюции органического мира сочетаются друг с другом либо сменяют друг друга, причем ароморфозы происходят значительно реже идиоадаптаций. Но именно ароморфозы определяют новые этапы в развитии органического мира. Возникнув путем ароморфоза, новые, высшие по организации группы организмов занимают другую среду обитания. Далее эволюция идет по пути идиоадаптаций, иногда и дегенерации, которая обеспечивает организмам обживание новой для них среды обитания.

Клетка — элементарная единица живой системы. Элементарной единицей она может быть названа потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки свойства живого. Известно, что организмы бывают одноклеточными например, бактерии, простейшие, водоросли или многоклеточными.

Роль горизонтальных переносов росла вместе с нововведениями, а с прекращением образования de novo семейств оставалась более или менее постоянной. Всё складывается в логичную схему: после появления жизни на планете организмы начали быстро приспосабливаться к различным экологическим нишам, изобретая для этого необходимые ферменты и реакции. После накопления достаточного массива ферментативного инструментария всё лишнее быстро вышло из употребления. Зато в дальнейшем удобнее было при необходимости перетасовывать уже имеющийся массив, чем изобретать что-то новое. Отсюда и устойчиво высокая роль горизонтальных переносов. Зато если возникала нужда в освоении новой экологической ниши, надежнее было продублировать уже имеющийся ген и изменить его в угоду новым условиям, чем изобретать новый ген, еще не приспособленный ни к внутренней генной среде, ни к внешней абиотической. Учитывая эту картину, мы можем пересмотреть вопрос, поставленный Г.

Заварзиным: Составляет ли эволюция смысл биологии? Заварзин, на основе изучения эволюции микроорганизмов, подводил нас к мысли, что в мире бактерий эволюция в целом не обязательна. Обязательно приспособление к геохимическим обстановкам, встраивание в геохимические круговороты. Именно это и заставляет микромир меняться. Смысл биологии микромира — это участие в геохимических планетарных циклах, а сама эволюция если она есть вторична. Высказанная Г. Заварзиным мысль исключительна по своей глубине и значимости. Однако она скорее описывает ситуацию после окончания грандиозной Архейской Экспансии. А до и во время нее гены переживали период своей самой бурной эволюции. Что вызвало Архейскую экспансию, какие события привели к столь радикальным переменам генов микробного мира?

Конечно, точного ответа на этот вопрос нет. Но авторы предложили свою версию. Они посмотрели, какие функциональные группы генов в этот период появлялись активнее всего, провели специальные вычисления, сравнивая темпы появления различных функциональных групп семейств генов до экспансии и во время экспансии. В результате этого анатомирования Архейской экспансии четко выявились лидеры экспансии рис. Семейства генов здесь сгруппированы по своим функциям, точнее по тем субстратам, с которыми они работают. Группы показаны цветом. Высота каждого столбика гистограмм показывает отношение семейств генов определенной функциональной группы, появившихся во время архейской экспансии, к числу семейств этой группы, появившихся до экспансии. Шкала логарифмическая log2. То есть это своего рода анатомия Архейской экспансии. График из обсуждаемой статьи в Nature Среди ведущих функциональных семейств оказались гены, связанные с работой электронтранспортной цепи синие столбики.

Размножение бактерий Бактерии размножаются с помощью равновеликого бинарного деления, представляющего собой ряд последовательных простых делений каждой клетки за короткий отрезок времени на две идентичные клетки. Также у бактерий известен процесс, напоминающий половое размножение. Половые клетки не образуются, как у растений или животных, но происходит обмен генетическим материалом генетическая рекомбинация. Это играет большую роль в жизни микроорганизмов, так как полезные признаки могут передаваться от бактерии к бактерии. Способы питания бактерий Гетеротрофные бактерии: Бактерии-сапрофиты сапротрофы — извлекают питательные вещества из мёртвых и разлагающихся тел.

Бактерии-паразиты — живут внутри другого организма или на нём, укрываются и питаются его тканями. Среди бактерий-паразитов много болезнетворных, вызывающих различные заболевания у растений, животных и человека. Бактерии-симбионты — живут совместно с другими организмами и часто приносят им ощутимую пользу. Например, особые бактерии, живущие в утолщениях корней в клубеньках бобовых растений, из атмосферного воздуха усваивают азот, служащий растению удобрением. Некоторые бактерии, живущие внутри кишечника животных, в том числе и человека, потребляя и перерабатывая их пищу, поставляют им витамины группы B и K.

Автотрофные бактерии: Фотобактерии — используют солнечный свет для синтеза органических веществ из неорганических.

А эта система способна гарантированно узнать неправильную копию и уничтожить ее. То есть бактериальную иммунную систему фактически научились инсталлировать в человеческую клетку, и она работает как часы. Теперь мы можем заменить любую букву в нашем генетическом коде. Этот род бактерий назван в честь их открывателя ветеринара Дэниеля Салмона 1850—1914 [КШ] Скоро ли методы редактирования генома позволят нам самим создавать полезных микробов? У моих студентов в Сколтехе завтра начинается практикум: они все будут это делать. Но что получится, мы не знаем. Предсказать, как изменение гена или внесение дополнительного гена повлияет на конечный результат, мы пока не можем. Сейчас в моду входит системная биология, которая пытается предсказать последствия генетических изменений в организме, пытается конструировать какие-то новые генетические сети с требуемыми свойствами. Чтобы кишечная палочка, например, ела нефть, ей нужно ввести некий комплекс генов, который, по мнению исследователей, связан со способностью перерабатывать нефть.

Эта задачу очень трудно решить — мы слишком мало знаем. Изменить ген легко, но, скорее всего, то, что получится, не будет работать: вы просто испортите генетический механизм, и палочка умрет либо станет кривая или косая. Зоопарк внутри человека [КШ] Если они так хорошо приспосабливаются, не обречены ли мы на проигрыш в гонке вооружений с микробами? Рано или поздно появится смертельная инфекция, с которой невозможно будет справиться… [КС] Эти страхи возникли еще в XIX веке с подачи Пастера, когда вдруг выяснилось, что мы находимся в состоянии войны с коварным противником — микробами. Но реальная ситуация совершенно не такая. Большинство микробов о нас знать не знают, они занимаются своими делами, и мы им глубоко безразличны. Идея, что микробы — это что-то очень плохое, посланное богом за наши прегрешения, совершенно неверна. Мы зависим от микробов гораздо больше, чем они от нас. Наше тело состоит из триллиона клеток — потомков единственной оплодотворенной яйцеклетки. При этом внутри нашего организма находится 10 триллионов бактериальных клеток!

Большая часть из них живет в кишечнике и составляет огромный орган, который сейчас называют микробиом. Обычно говорят, что самый крупный орган человека — печень: она весит больше мозга. Но на самом деле это, конечно, микробиом. Он выполняет массу совершенно необходимых для нас функций. Например, наши клетки вдруг потеряли возможность производить ряд витаминов, необходимых для жизни. Мы можем себе это позволить, потому что в нас живут бактерии, которые производят эти витамины. Они вносят огромный вклад и в работу иммунной системы, защищая нас от вредных бактерий, которых абсолютное меньшинство. Метагеном — совокупный геном сообщества организмов, живущих вместе. Недавно, например, китайские ученые прочитали метагеном микробов, обнаруженных в смоге Пекина. Их там оказалось очень много, больше тысячи.

Микробиом человека — сообщество бактерий, живущих в нашем кишечнике. Мы никогда не будем одиноки! Секвенирование — определение последовательности нуклеотидов, из которых состоит ДНК, то есть прочтение генетического кода. Раньше микробиологи изучали только те бактерии, которые им удавалось вырастить в чашке Петри. А современные методы геномного секвенирования позволяют читать геномы даже бактерий, культивировать которые не получается. Вот вы можете походить по комнате с пылесосом и засосать воздух, а потом с помощью современных машинок выделить из пыли все ДНК и определить так называемый метагеном комнаты. Метагеном — это набор генов всех организмов, которые присутствовали в анализируемом образце. И в нем вы обнаружите огромное количество генетических следов разнообразных неизвестных бактерий. Если речь идет о метагеноме кишечника, то вы можете найти корреляции между какими-то кусками этих генетических текстов и какими-то свойствами человека — например, продолжительностью его жизни или какими-то патологиями. Это важно для диагностики и персональной медицины ближайшего будущего, например для разработки правильной диеты.

Диета оказывает огромное влияние на что угодно. Но когда я ем шоколадку, мои клетки получают не какао, сахар и масло, а продукты их глубокого разложения живущими в моем пищеварительном тракте бактериями. Есть такая замечательная вещь, как пересаживание кала, — этот метод в США прошел клиническое испытание на людях и уже используется. Оказывается, лучший способ похудеть — это пересадить себе какашку худого человека, которая, как известно, в основном состоит из его бактерий. В дальнейшем можно будет на своей странице в соцсетях выставлять не только геном, но и метагеном. И если какой-нибудь Цукерберг или Брин будут иметь доступ к этой информации, они смогут проводить исследования, например, о связи определенной бактерии с желанием, я не знаю, купить айфон. А медики, скажем, выяснят, что все, кто ел огурцы и имел такую-то бактерию, рано умерли. То есть бактерии могут служить диагностическими маркерами заболеваний или какого-то поведения. Таков размер самой крупной бактерии Thiomargarita namibiensis. Большинство же бактерий имеют размер 0,5—5 мкм.

Кстати, проанализировав геном, тоже почти ничего пока нельзя сказать. К сожалению, это сложно. Любой человек с точки зрения геномики — это, в общем, одна и та же книжка. Если вы возьмете «Войну и мир» и увеличите ее в тысячу раз, там будет три миллиарда букв. Эти «опечатки» обеспечивают нашу индивидуальность и предрасположенность к болезням. Есть очень простые заболевания, как гемофилия у Романовых, причиной которой служит одна-единственная опечатка. Но на возникновение шизофрении или рака влияют десятки и сотни опечаток — пока вычленить все влияния не представляется возможным. С микробиомом то же самое. Получается, они разрушают всё наше уникальное сообщество бактерий?

Похожие новости:

Оцените статью
Добавить комментарий