Новости реактор на быстрых нейтронах в россии

Несмотря на это, сегодня 10 реакторов типа РБМК-1000 все еще работают в России.

Быстрые нейтроны на земле, под водой и в реакторах Поднебесной: кто этому прокладывал дорогу?

Для справки Почти все реакторы на планете — тепловые, и работают они на изотопе уран-235. В них тепловыделяющие элементы твэлы отдают в воду большое количество тепла в процессе деления нейтронов. Примерно раз в пять лет твэлы нужно заменять. Их деактивируют, а опасные элементы отправляют в спецхранилище для отработавшего ядерного топлива ОЯТ. Такой принцип работы называют открытым ядерным топливным циклом ОЯТЦ. Быстрые же реакторы работают в условиях замкнутого ядерного топливного цикла ЗЯТЦ. В таком цикле из ОЯТ выделяют немного веществ, которые требуют захоронения, а остальное можно использовать повторно.

В МОКС-топливе есть ещё один важный компонент — плутоний. Его у нас тоже очень много — ведь он копится в любом ядерном топливе при работе реактора. И когда мы перерабатываем отработавшее топливо, то извлекаем из него плутоний. За ядерным топливом будущее? Этот материал представляет собой отличный энергетический источник — собственно, в МОКС-топливе он выступает основным энерговыделителем. Когда работает быстрый реактор, плутоний делится, отдаёт свою энергию натрию, а тот преобразует её в электричество.

Но это ещё не всё. В ходе ядерных реакций из урана тоже образуется плутоний, который также благополучно делится и в конце концов отдаёт свою энергию в провода. То есть в процессе работы реактора плутоний тратится, но при этом нарабатывается из второго компонента — урана. Подарок будущим поколениям — Получается, что для производства МОКС-топлива у нас компонентов намного больше, чем для работы реакторов на тепловых нейтронах? Для тепловых реакторов нужно постоянно добывать уран из-под земли, обогащать его, а потом этот драгоценный изотоп уран-235 выгорает. А в случае уранплутониевого топлива получается так: мы берём обеднённый уран и плутоний, кладём в реактор, там плутоний одновременно и выгорает, и нарабатывается.

И дальше уже вопрос баланса. Козёл, МОХ и жёлтый кек: как хорошо вы понимаете язык атомщиков Есть так называемый коэффициент воспроизводства, то есть соотношение между тем, сколько плутония мы запихнули в реактор, и тем, сколько выгрузили после того, как сборка отработает. Если он меньше единицы, значит, выработалось меньше, чем сгорело. На тепловых реакторах коэффициент воспроизводства топлива гораздо меньше единицы. Для справки Идею быстрых реакторов предложил ещё в 30-е годы XX века лауреат Нобелевской премии по физике Энрико Ферми, «папа» первого в мире ядерного реактора.

Хорошие перспективы имеются у ядерной энергетики с привычными реакторами на тепловых нейтронах, но для их работы также требуется редкий и дорогой уран U-235. Однако есть вариант с так называемым «замкнутым топливным циклом», где ставка делается на реакторы на быстрых нейтронах, которые могут перерабатывать природный U-238 и торий. Что же это за технология такая, и почему будущее именно за ней? Во время работы обычного ядерного реактора тяжелое ядро урана, плутония или тория при делении выпускает несколько «лишних» нейтронов, что приводит к эффекту наведенной радиоактивности. В российских ВВЭР это ведет к накоплению в водяном носителе трития, тяжелого изотопа водорода. После этого его приходится выделять путем сложных и дорогостоящих манипуляций. Новый перспективный отечественный реактор БРЕСТ на быстрых нейтронах решает одновременно множество проблем. Большим преимуществом расплавленного металла является то, что он практически не поглощает нейтроны и не набирает наведенную радиоактивность. Как известно, свинец — это очень радиационно стойкий элемент. При этом он химически пассивен при контакте с воздухом или водой, поэтому исключены возможные взрывы при нештатной разгерметизации контура реактора.

Внедрение МОКС-топлива позволяет многократно расширить сырьевую базу атомной энергетики за счет обедненного урана и плутония и перерабатывать облученное топливо вместо хранения. Дожигание минорных актинидов — это следующий шаг в замыкании ядерного топливного цикла, который должен не только уменьшить количество ядерных отходов, подлежащих финальной изоляции, но и значительно снизить их радиоактивность. В перспективе это дает возможность отказаться от сложного и дорогостоящего глубинного захоронения отходов», — прокомментировал старший вице-президент по научно-технической деятельности АО «ТВЭЛ» Александр Угрюмов. Она появилась в 2021 году как часть продуктового направления «Сбалансированный ядерный топливный цикл» и рассчитана до 2035 года. Программа включает задачи по выделению минорных актинидов в отдельные фракции, их промежуточное хранение, вовлечение в топливо быстрых реакторов, эксплуатацию такого топлива, послереакторные исследования и др. Еще один важный аспект — оптимизация реакторных установок для выжигания максимального количества минорных актинидов. Сбалансированный ядерный топливный цикл ЯТЦ — это продукт Госкорпорации «Росатом», основанный на инновационных практических решениях в области замыкания ядерного топливного цикла, позволяющих эффективно переработать облученное ядерное топливо и обеспечить рациональное обращение с продуктами переработки, как полезными уран, плутоний , так и направляемыми на захоронение продукты деления.

Например, один из проектов предполагает прокладку через активную зону реактора трубы, по которой могли бы прокачиваться подлежащие трансмутации радионуклиды. Это может привести к изменению — не в лучшую сторону — и ядерно-физических, и тепломеханических характеристик реактора. К тому же для осуществления трансмутации в промышленных масштабах потребуется создание новых весьма дорогих и опасных радиохимических производств. Если они заработают, это приведет к многократному увеличению объемов радиоактивных отходов. В сухом остатке получаем, что весь этот замкнутый ядерный топливный цикл не ведет к улучшению экономических или экологических параметров. Все финансовые вложения сейчас выносятся за скобочки. Росатом хочет, чтобы федеральная программа профинансировала строительство химического производства, и потом бы в отчетах говорилось, что мы сделали то, чего никто в мире не умеет. А никто в мире просто не хочет эксплуатировать натриевые реакторы — и в этом всё дело. Обновлено 04. В ответе, который поступил в адрес редакции 74. RU, сообщается: «Все реакторы БН до настоящего момента являлись единственными в мире, и как любое уникальное производство — дорогостоящими. Как раз следующий БН-1200М призван стать образцом для серийного строительства быстрых реакторов, по стоимости он будет сопоставим с ВВЭР. Эксперименты на работающем реакторе с минорными актинидами никто не ставит. Происходит нормальный процесс внедрения нового вида топлива с наличием актинидов в рамках получения разрешения Ростехнадзора. Трансмутация минорных актинидов не говорит о «сжигании» ОЯТ — речь идет о дожигании отработанного ядерного топлива и обеспечении его более безопасного хранения. С точки зрения воздействия на экологию это несомненный плюс. Нужно понимать, что сегодня без поступательного развития атомной энергетики невозможна энергетическая безопасность России, социально-экономическое развитие страны, снабжение промышленности и граждан». Мы адресовали специалистам Белоярской АЭС еще ряд вопросов и опубликуем ответы отдельным материалом после получения. Первоначально использовала реакторы на тепловых нейтронах АМБ-100 и АМБ-200, которые вывели из эксплуатации в 1980-е годы. В 1980 году запущен реактор на быстрых нейтронах БН-600, в 2015 году — более мощный БН-800, в планах — запуск третьего работающего реактора БН-1200. Вот репортаж наших коллег с этой АЭС. Согласны с автором?

«Росатом» начал строить первый в мире атомный энергоблок с безотходным циклом

Индия имеет исследовательский быстрый реактор FTBR, но с пуском демонстрационного реактора PFBR-500 у индийцев не ладится уже много лет по причине отсутствия опыта и специалистов. Многочисленные отказы экспериментального оборудования ставят под вопрос реализацию этого проекта. Единственными серьезными конкурентами России в этой области сейчас являются китайцы, которые, однако, используют российское топливо с обогащенным ураном: они запустили экспериментальный реактор на быстрых нейтронах CEFR в 2011 году, а сейчас строят демонстрационный блок, который должен заработать в ближайшие годы. Первый китайский опытный реактор CEFR мощностью 65 мегаватт проектировался в 90-х годах в России, но строился китайцами самостоятельно. Пущенная в 2010 году эта установка стала для Китая своего рода полигоном, где нарабатывается понимание, каким образом строить и эксплуатировать быстрые натриевые реакторы. Однако с 2011 года и по сей день CEFR находится в полурабочем состоянии. Не выполнена и задача перевода реактора на собственное МОКС-топливо. Отдельно насчет «вечности». Сейчас на всех мировых АЭС, кроме Белоярской, используется уран-235, который составляет менее одного процента имеющегося в природе урана. Топлива для реакторов на быстрых нейтронах хватит человечеству более чем на три тысячи лет.

Создается он в рамках росатомовского проекта «Прорыв». Это упрощает управление и повышает энергоэффективность реактора. Конструкция БРЕСТ-300 обеспечивает так называемую естественную безопасность: на этом реакторе невозможна авария из-за неконтролируемого выброса нейтронов, приводящего к цепным реакциям, например в случае разгона реактора по мощности.

Производство и внедрение такого топлива позволит увеличить ресурс атомных электростанций, утилизировать накопленные запасы обеднённого урана, перерабатывать облучённые элементы для производства свежего топлива вместо их хранения, а также радикально сократить образование ядерных отходов и их активность.

Его тепловая мощность — 2800 МВт. Теплоноситель — натрий. Предусмотрено четырехпетлевое исполнение с симметричным исполнением петель. Для использования в активной зоне БН-1200М рассматриваются оксидное и нитридное топливо.

БН-1200 создается на базе опыта, накопленного за много десятилетий создания и работы быстрых реакторов. В проекте БН-1200М использованы технические решения, зарекомендовавшие себя при эксплуатации энергоблоков с реакторами БН-600 и БН-800. БН-600 используется также для реакторного обоснования конструкционных материалов и топлива в проектных условиях эксплуатации. В БН-1200М учтены новые, более жесткие требования к системам безопасности и средствам управления запроектными авариями, заложены самые современные технические решения. Это, например, система пассивного останова на основе гидравлически взвешенных стержней, устройство удержания и охлаждения расплавленного топлива внутри корпуса реактора при постулировании аварии с плавлением ядерного топлива.

Дожигание минорных актинидов — это следующий шаг в замыкании ядерного топливного цикла, который должен не только уменьшить количество ядерных отходов, подлежащих финальной изоляции, но и значительно снизить их радиоактивность. В перспективе это дает возможность отказаться от сложного и дорогостоящего глубинного захоронения отходов», - прокомментировал старший вице-президент по научно-технической деятельности АО «ТВЭЛ» Александр Угрюмов. Она появилась в 2021 году как часть продуктового направления «Сбалансированный ядерный топливный цикл» и рассчитана до 2035 года. Программа включает задачи по выделению минорных актинидов в отдельные фракции, их промежуточное хранение, вовлечение в топливо быстрых реакторов, эксплуатацию такого топлива, послереакторные исследования и др.

Еще один важный аспект — оптимизация реакторных установок для выжигания максимального количества минорных актинидов. Сбалансированный ядерный топливный цикл ЯТЦ — это продукт Госкорпорации «Росатом», основанный на инновационных практических решениях в области замыкания ядерного топливного цикла, позволяющих эффективно переработать облученное ядерное топливо и обеспечить рациональное обращение с продуктами переработки, как полезными уран, плутоний , так и направляемыми на захоронение продукты деления. Сбалансированный ЯТЦ ставит своей основной задачей принципиальное снижение объема и активности радиоактивных отходов, направляемых на захоронение.

Ядерный спор: Ученый и "Росатом" разошлись в вопросе о развитии отрасли

Запасов этих изотопов примерно в 100 раз больше, чем запасов «обычного» энергетического урана-235. Реактор-размножитель из некогда «мусорного» обедненного урана-238 нарабатывает плутоний-239, который можно использовать как высокоэнергетическое ядерное топливо повторно — для розжига смеси из бедных изотопов. Но даже не это самое замечательное свойство новых реакторов. Дело в том, что размножители способны нарабатывать ядерное топливо в количестве, превышающем потребности самого реактора. С сугубо практической точки зрения мы можем получить топлива больше, чем загрузили. Закон сохранения энергии при этом не нарушается. Иными словами, Россия сделала еще один важный шаг к созданию «вечного двигателя», пока на уровне эксперимента. Его должны построить к 2026 году. К 2035 году российская атомная энергетика может стать двухкомпонентной, то есть она будет состоять из «тепловых» и «быстрых» реакторов. Это и есть тот самый ЗЯТЦ — «замкнутый ядерный топливный цикл». У нас может появиться безотходная атомная энергетика.

У этого проекта есть свое название — «Прорыв».

В конце июня в реактор загрузили последнюю треть топлива, а в сентябре наконец его запустили, сообщает АиФ. У урана есть два изотопа, но топливный из них только один — уран-235. Остальное идет в отход, и в итоге образуется плутоний — искусственный топливный элемент, который является делящимся веществом.

Раньше его отправляли либо на склад, либо военным, — объясняет технологию глава «Атоминфо-Центра» Александр Уваров. А сейчас данный плутоний вернули в реактор, впервые выведя его на номинальную мощность. Такой вид ядерного топлива называется МОКС-топливом.

Сообщалось, что общий объем инвестиций в проект "Прорыв" по состоянию на сентябрь 2022 года оценивался в 240 млрд рублей. В СХК в конце прошлого года сообщали "Интерфаксу", что модель переработки отработавшего ядерного топлива будет введена в 2030 году.

Получение лицензии Ростехнадзора позволит перейти к следующему этапу испытаний: можно будет провести комплексные тесты оборудования всех производственных участков полной цепочки изготовления тепловыделяющих сборок БРЕСТ-ОД-300 с использованием обеднённого урана. В его основе два ключевых компонента — обеднённый уран и плутоний, извлекаемый из облучённого ядерного топлива.

Российские учёные вывели реактор Белоярской АЭС на номинальную мощность

«Росатом» начал возводить в Томской области уникальный реактор на быстрых нейтронах. Целью сооружения МБИР является создание высокопоточного исследовательского реактора на быстрых нейтронах с уникальными потребительскими свойствами для реализации следующих задач: проведение реакторных и послереакторных исследований. Так, без обновления парка высокопоточных реакторов с достаточным потоком быстрых нейтронов в течение пары десятилетий ядерная наука может начать ощущать серьезную нехватку инструментария. «Прорыв» относится к поколению так называемых реакторов на быстрых нейтронах, работающих по принципу замкнутого цикла, то есть без отходов.

Ученые Росатома обсудили в Обнинске будущее развитие реакторов на быстрых нейтронах

Реакторы на быстрых нейтронах: ядерная энергетика в деталях — лидерство России в мире по реакторам на быстрых нейтронах с натриевым теплоносителем.
Радиационные явления в реакторных материалах обсудили в Обнинске «Прорыв» предусматривает создание ядерных энергетических технологий нового поколения на базе замкнутого топливного цикла с использованием реакторов на быстрых нейтронах.
Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей Росатом ЗАМКНУЛ ЯДЕРНЫЙ ЦИКЛ! Борис Марцинкевич. Четвертый энергоблок БН-800 Белоярской АЭС после очередной загрузки инновационным МОКС-топливом выведен на 1.

Россия создала нейтронный «Прорыв»

Так, без обновления парка высокопоточных реакторов с достаточным потоком быстрых нейтронов в течение пары десятилетий ядерная наука может начать ощущать серьезную нехватку инструментария. Выполнены запланированные исследования в обоснование безопасности многоцелевого исследовательского реактора на быстрых нейтронах МБИР и продления сроков эксплуатации БОР-60. Выполнены запланированные исследования в обоснование безопасности многоцелевого исследовательского реактора на быстрых нейтронах МБИР и продления сроков эксплуатации БОР-60. «Россия продолжает шаг за шагом использовать те уникальные преимущества, которые дают нашей отрасли мощные реакторы на быстрых нейтронах.

Российские ученые: Реактор БН-800 полностью переведен на МОКС-топливо

The Program is intended to create a new technological platform for the nuclear engineering based on the closed fuel cycle involving fast reactors. The purpose of the MBIR construction is to have a high-flux fast test reactor with unique capabilities to implement the following tasks: in-pile tests and post-irradiation examination, production of heat and electricity, testing of new technologies for the radioisotopes and modified materials production.

В рамках пресс-тура журналисты встретились с руководством и специалистами Белоярской АЭС, посетили реакторное отделение, в центральном зале которого увидели работающий на МОКС-топливе реактор БН-800, побывали на блочном пункте управления и в машинном зале, где турбогенератор вырабатывает электроэнергию, которая обеспечивает электроснабжение населения, социальных и промышленных объектов Урала. Сегодня Россия продолжает обеспечивать стабильную энергетическую безопасность. Энергетика является основой поступательного социально-экономического развития страны, снабжения промышленности и граждан.

Технологии топлива для «быстрых» реакторов с каждым годом развиваются. В 2023 году производства МОКС-топлива, созданное на Горно-химическом комбинате, полностью перешло на изготовление оболочек тепловыделяющих элементов из хромоникелевой аустенитной стали ЭК164. В перспективе это позволит повысить уровень выгорания ядерного топлива и увеличить длительность топливной компании, тем самым сделав эксплуатацию энергоблока более экономически эффективной.

Следующим шагом станет изготовление и загрузка в реактор БН-800 опытных МОКС-ТВС, содержащих минорные актиниды америций, нептуний — наиболее высокоактивные и токсичные элементы, содержащиеся в облученном ядерном топливе. Таким образом, российские атомщики первыми смогут использовать еще одно конкурентное преимущество «быстрых» реакторов, позволяющих «дожигать» минорные актиниды вместо глубокого геологического захоронения в качестве ядерных отходов. Инновационные технологии Росатома основаны на передовых достижениях российской атомной науки и в полной мере отвечают актуальной ESG-повестке.

Этот проект настолько амбициозен, что включает в себя — на всякий случай — даже бюджет на внедрение в массовое сознание местного населения жутких легенд о «гиблом месте» после окончательного запечатывания могильника и его рекультивации лет сто спустя. Этот вздор преподносится как защитное гуманитарное мероприятие, дабы невежественные потомки не пытались раскопать могильник после гибели технической цивилизации. Финны хотят заработать на ядерном кладбище, утилизируя чужие отходы за немалые деньги. Россия последние десятилетия принимала неугодное на «позеленевшем» Западе отработавшее ядерное топливо.

Но таким образом мы накопили значительное количество потенциальной атомной энергии, которую сможем извлечь в реакторах нового поколения. Нам еще за это и заплатили. Однако вторичное использование отработавшего ядерного топлива — далеко не самое замечательное свойство реактора БН-800 и его младшего собрата БН-600. Да и астероидную опасность никто не отменял — нельзя исключать, что нам могут понадобиться гигатонны взрывной мощности в тротиловом эквиваленте. Это единственные в своем роде промышленные реакторы, которые относятся к классу «размножителей». Запасов этих изотопов примерно в 100 раз больше, чем запасов «обычного» энергетического урана-235. Реактор-размножитель из некогда «мусорного» обедненного урана-238 нарабатывает плутоний-239, который можно использовать как высокоэнергетическое ядерное топливо повторно — для розжига смеси из бедных изотопов.

Но даже не это самое замечательное свойство новых реакторов.

Россия создала нейтронный «Прорыв»

Российским решением проблемы минорных актинидов должны стать инновационные реакторы на быстрых нейтронах. Именно этот инновационный реактор на быстрых нейтронах стал настоящей мировой сенсацией, когда первым на планете целый год вырабатывал энергию на МОКС-топливе. В Северске началось капитальное строительство линий электропередачи (ЛЭП) для реализации схемы выдачи мощности будущего энергоблока с инновационным реактором на быстрых нейтронах со свинцовым теплоносителем БРЕСТ-ОД-300.

К «Прорыву» добавляется реактор

И реактор на быстрых нейтронах немного уменьшает их количество. И реактор на быстрых нейтронах немного уменьшает их количество. Фактически реактор на быстрых нейтронах превратится в «перпетуум мобиле». Научно-техническая конференция «Развитие технологии реакторов на быстрых нейтронах с натриевым теплоносителем (БН-2023)».

Похожие новости:

Оцените статью
Добавить комментарий