(Для педантов – между «индексом» и «коэффициентом» есть небольшое отличие, индекс Джини считается в процентах, а коэффициент Джини – в дробных числах от нуля до единицы. Пенза А.С. 8 (495) 568-00-42 (доб. 99729). ca_PenzaAS@ Коэффициент Джини (индекс концентрации доходов) по субъектам Российской Федерации. На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года). Эти данные включают коэффициент Джини, индексы экономического роста и ВРП на душу населения (более 80 субъектов за период с 1997 по 2018 годы). Get Free Economic Indicators Charts, Historical Data and Forecasts for 196 Countries.
Кривая Лоренца
- Что дает индекс?
- Судьбы глобального неравенства
- Минфин пообещал больше не повышать налоги на богатых / Экономика / Независимая газета
- предоставляет экономические и финансовые данные
- Рекомендуем
- Коэффициент Джини (распределение дохода)
Россия занимает 1-е место в мире по неравенству благосостояния
Экономическое неравенство, что же еще! В 1912 году итальянский статистик и демограф Коррадо Джини предложил в своем труде «Вариативность и изменчивость признака» новую модель определения степени расслоения общества страны или региона по какому-либо признаку. Модель стала важнейшим инструментом оценки экономического неравенства в мире и получила имя в честь своего создателя — коэффициент Джини.
Бедность и прожиточный минимум Неравенство часто ассоциируется с бедностью, иногда их даже отождествляют. Но это две разные, хотя и глубоко взаимосвязанные, проблемы. Определяющий признак бедности — такой уровень лишений, при котором человек не имеет доступа к товарам и услугам, считающимся в данном обществе необходимыми для поддержания приемлемого уровня жизни. Из такого определения видно, что критерии бедности могут изменяться от страны к стране и в различные периоды истории данного общества. Сегодня за этой чертой живут примерно 700 миллионов человек.
Когда бедность определяется через установленную денежную величину дохода или потребления черта бедности , говорят об абсолютной бедности. Другой подход заключается в привязке к постоянно меняющимся стандартам уровня жизни.
Перейти к навигации Перейти к поиску Общий вид кривой Лоренца Коэффициент Джини коэффициент концентрации доходов — статистический показатель, который используют для характеристики степени отклонения линии фактического распределения Кривая Лоренца общего объёма денежных доходов населения от линии их равномерного распределения. Величина коэффициента ограничена промежутком от ноля до единицы — чем выше значение показателя, тем более неравномерно распределены доходы в обществе [1]. Индекс Джини — процентное представление этого коэффициента.
Где применяется индекс Джини Показатель часто помогает людям, которые планируют перебраться на ПМЖ в другое государство. Человек может ознакомиться с индексом, к примеру, в Нидерландах , и узнать, насколько местные состоятельные граждане зарабатывают больше, чем среднестатистические.
На показатель, отражающий неравенство доходов, влияют многие факторы. Всего показатель насчитывает свыше 10 вариаций, которые применяются в отдельных случаях. Коэффициент позволяет также определить процент роста или падения ВВП, темпы роста долгов граждан перед банками, возрастание поляризации в политике или уровня нищеты. Индекс не учитывает доходы от продажи услуг или продуктов собственного производства или выращивания, а также источники прибыли. Половина населения может получать заработную плату, находясь на официальной должности, а другая часть — от сданного жилья в аренду, процентов со счетов в банке и прочего. Индекс Джини не применяется для анализа государств, где действует плановая экономика, поскольку уровень дохода в таких странах априори не имеет большого разрыва между трудящимися, так как регулируется государством.
Индекс Джини по странам: коэффициент концентрации доходов
Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. Индекс Джини по странам: коэффициент концентрации доходов. Индекс Джини по Странам Мира 2024 Таблица • 7-е место исландия.
Понимание индекса Джини
- Карта: Уровень экономического неравенства в мире | MAXIM
- Динамика неравенства: как меняется соотношение доходов богатых и бедных
- Gini Coefficient By Country
- Статистика:Коэффициент Джини в России — Русский эксперт
- World Bank Indicatorss
Росстат отметил рост доходного неравенства в России
Это список стран или зависимостей по показатели неравенства доходов, включая Коэффициенты Джини. Коэффициент Джини. Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года): Коэффициент Джини карта.
Беларусь заняла 4 место среди стран с минимальным имущественным неравенством
Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. вы делаете те новости, которые происходят вокруг нас. Коэффициент Джини снизился до 0,391 в 2014 году, и его текущее значение означает худший показатель с 2009 года, уточняет Turkish Minute. Рейтинг был составлен согласно коэффициенту Джини (статистическому показателю степени расслоения общества страны или региона по определенному признаку). Список стран по показателям неравенства доходов — Различия в равенстве доходов в разных странах по коэффициенту Джини. Ниже представлен список стран по по показателям неравенства доходов, включая Коэффициент Джини. Коэффициент Джини стран мира ежегодно с 1967 по 2020 годы в виде рейтинга и визуализации.
Коэффициент Джини по странам.
These insights equip us with a clearer understanding of financial inequality on a global scale, drawing attention to areas where action is needed to reduce economic disparities and foster more equitable growth. With lower values indicating equal wealth distribution and higher values suggesting greater wealth disparities. Top of the list is South Africa, which has the highest Gini Coefficient at 63. Namibia closely follows in second place with a Gini Coefficient of 59. The third highest Gini Coefficient is Suriname with a score of 57.
Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0.
Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление.
Отчет, в котором подчеркивалось неравенство в доходах в 50 штатах США, был составлен на основе данных, полученных в результате опроса Американского сообщества, проведенного Бюро переписей США. Бюро переписей США начало собирать доходы для домашних хозяйств в 1967 году. В США самый высокий разрыв в доходах среди западных промышленно развитых стран. Каждое государство в стране испытывает влияние неравенства в доходах, которое поднимает судьбу богатых и оставляет остальных рабочих позади. Согласно отчету, штат Юта имеет наиболее равномерное распределение доходов с коэффициентом Джини 0, 419. За ним следуют Аляска, Вайоминг и Нью-Гемпшир с показателями 0, 422, 0, 423 и 0, 425 соответственно. Округ Колумбия и Нью-Йорк имеют самые высокие различия в доходах между наемными работниками во всех категориях доходов с коэффициентом Джини 0, 532 и 0, 499 соответственно.
Доверять Джини или нет: вот в чем вопрос
Минфин пообещал больше не повышать налоги на богатых | Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее. |
Минфин пообещал больше не повышать налоги на богатых | Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее. |
Коэффициент Джини, значение по странам мира и в России | Рейтинг был составлен согласно коэффициенту Джини (статистическому показателю степени расслоения общества страны или региона по определенному признаку). |
Индекс Джини по Странам Мира 2024 Таблица • 7-е место исландия
Иными словами, доходы сверхбогачей росли практически теми же темпами, что и у остального населения. Причина этих расхождений все та же: произвольные допущения плюс неполный учет налогов и трансфертов. И снова зададимся вопросом: неужели на столь хлипкой статистической основе можно выносить безапелляционные нормативные вердикты, призывая государство к принятию жесточайших мер по ограничению неравенства? Что касается России, то уж здесь, казалось бы, все ясно.
Все знают, что в ней поддерживается чудовищное, сверхъестественное, запредельное экономическое неравенство по мнению многих, самое высокое в мире. Какие здесь могут быть сомнения? Как ни странно, но могут.
Согласно официальным оценкам Росстата, в России коэффициент Джини по доходам после 1993 г. Много это или мало на фоне других стран? Строго говоря, ни то ни другое.
Отталкиваясь от тех оценок, которые дает Росстат, Россию следовало бы отнести скорее к группе стран-середняков. В совершенно ином свете российская ситуация предстает в недавней работе Филипа Новокмета, Пикетти и Габриэля Цакмана. Во-первых, по их расчетам, уровень неравенства в России намного выше, чем говорит официальная статистика: так, коэффициент Джини по доходам составляет сейчас не 0,41, а 0,55.
Во-вторых, его динамика выглядит совсем иначе. Пик неравенства пришелся на 1996 г. Еще одну историю, не имеющую ничего общего с двумя предыдущими, рассказывают эксперты Всемирного банка.
По этим оценкам, за последние полтора десятилетия неравенство в России устойчиво и быстро снижалось. С 1998 по 2012 г. Сжатие неравенства более чем на 15 п.
Наконец, в качестве завершающего штриха сошлюсь на оценки по 53 странам Питера Линдерта, одного из наиболее авторитетных современных исследователей проблем неравенства.
Фигура, образованная пересечением красной прямой линии и фиолетовой кривой, это и есть неравенство распределения доходов. Значение коэффициента Джини — отношение площади этой фигуры к площади всего треугольника. Мнение эксперта Знайка, самый умный эксперт в Цветочном городе Если у вас есть вопросы, задавайте их мне!
The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.
Инфляция и более высокие процентные ставки могут замедлить рост благосостояния домохозяйств в ближайшем будущем», — таков прогноз, сделанный в отчете. Страны со средним уровнем дохода будут основной движущей силой глобальных тенденций. К следующей новости.
Минфин пообещал больше не повышать налоги на богатых
Во втором — посмотреть динамику потребления и сделать экономические прогнозы. Величина прожиточного минимума зависит от региона и даже социальной принадлежности получателя. Всего есть три социально-демографические группы, для которых определяется прожиточный минимум: трудоспособное население, пенсионеры и дети. Отдельно он рассчитывается «в расчёте на душу населения».
Последнее название напоминает нам, что прожиточный минимум — это статистическая величина, выполняющая конкретную роль при составлении бюджета. В России государство использует абсолютный подход к бедности. На 2 квартал 2017 года прожиточный минимум составляет На 2 квартал 2017 года прожиточный минимум составляет 11163 руб.
Кривая Лоренца показывает кумулятивный процент общего дохода, полученного от общего числа получателей, начиная с беднейших индивидов или домохозяйств. Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой.
Опрос показал, что средний годовой располагаемый доход домохозяйства в 2020 году составил 69 тыс. Средний годовой эквивалентный располагаемый доход домохозяйства из нескольких человек без семьи составил 38 тыс.
Чем больше площадь фигуры, образованной Кривой Лоренца и линией «абсолютного равенства», тем сильнее проявляется в данном обществе неравенство. Коэффициент Джини — это отношение площади этой фигуры к площади треугольника, образованного осью X, линией «абсолютного равенства» и вертикальной линией на отметке 100 по оси X. В результате мы получим значение от 0 до 1. Где 0 — абсолютное равенство, а 1 — абсолютное неравенство когда все доходы принадлежат одному человеку. Если считать по квинтилям, то единицу мы не получим даже в теории, но при разбиении оси X на количество граждан такая ситуация возможна теоретически, если всё принадлежит кому-то одному из представителей данного общества и то, коэффициент всё равно на какие-то миллионные доли будет меньше 1. То есть, чем меньше значение этого коэффициента, тем меньше будет неравенство. Индекс Джини — это тот же Коэффициент Джини, но выраженный в процентах.
Значение индекса находится в пределах от 0 до 100. Децильный коэффициент Помимо Коэффициента Джини есть и другие коэффициенты, отражающие неравенство в обществе. Так, популярностью пользуется также Децильный коэффициент. Дециль — это десятая часть. Например, в офисе трудятся 100 работников от уборщиц до генерального директора. Первый дециль самые низкооплачиваемые сотрудники зарабатывает 200 000 рублей в месяц на всех. А десятый дециль — 2 миллиона рублей на всех.
Делим 2 миллиона на 200 тысяч, получаем коэффициент равный 10. Это показатель неравенства в данном офисе. И чем он меньше — тем меньше неравенство. Преимущество данного коэффициента в том, что его легче посчитать. Но не всегда он точно отражает ситуацию с неравенством.
Индекс Джини по Странам Мира 2024 Таблица • 7-е место исландия
Коэффициент Джини снизился до 0,391 в 2014 году, и его текущее значение означает худший показатель с 2009 года, уточняет Turkish Minute. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. По итогам 2023 года коэффициент Джини в России вырос до 0,403, что говорит об увеличении концентрации доходов в стране по сравнению с предыдущим годом. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках. Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные. На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года).