Задача по генетике.
Отзывы, вопросы и статьи
- Поздравляю с успешным освоением новой темы!
- Задания 2023 - МОШ генетика
- Начало работы
- Ключи к этому заданию дописывались прямо во время экзамена
- Решение задач по генетике на ЕГЭ по биологии
- Реальный вариант с ЕГЭ 2023 по биологии задания и ответы
Будут ли на ЕГЭ в 2023 году задачи на закон Харди-Вайнберга
Второе задание проверяет умение правильно делать вывод по эксперименту. Во второй части работы методологическую основу имеют задания 22 и 23. Изменения в контрольных измерительных материалах в 2024 году В 2024 году в ЕГЭ по биологии есть небольшие изменения: количество заданий первой части сократилось с 22 до 21. Была убрана линия заданий на последовательность по темам: «Эволюция живой природы», «Происхождение человека», «Экосистемы и присущие им закономерности», «Биосфера». В первой части экзаменационной работы по этим темам остались следующие линии: на выбор трех правильных ответов 17 и 18 линии — базовый уровень сложности ; на установление соответствия 19 линия — повышенный уровень сложности ; на работу с таблицей 20 линия — повышенный уровень сложности. Остальные задания первой части экзаменационной работы остались без изменений. Таким образом, общее количество баллов снизилось с 59 до 57. Конструкция заданий второй части такая же как была в 2023 году. Задания 22 и 23 составляют блок по одному эксперименту.
При подготовке к выполнению этих заданий необходимо изучить алгоритм проведения эксперимента: знать, как выдвигать гипотезы, понимать причины формирования контрольных групп, уметь ставить отрицательный контроль, делать выводы на основе результатов эксперимента. По-прежнему главным является именно узнавание объекта. Если объект определен неверно, то все остальные рассуждения не проверяются и не оцениваются. При подготовке к выполнению задания с рисунком советуем обратиться к учебникам, обращая внимание на иллюстрации, схемы, диаграммы и прочее. На что обратить внимание при подготовке Традиционно наибольшие затруднения вызывают задания 25 и 26, где необходимо продемонстрировать не только знание предмета, но и использование знаний в новой предложенной ситуации. Задания 25 и 26 посвящены обобщению и применению знаний о человеке и общей биологии соответственно.
Реализация наследственной информации. Генетический код, его свойства.
Транскрипция — матричный синтез РНК. Принципы транскрипции: комплементарность, антипараллельность, асимметричность. Трансляция и её этапы. Участие транспортных РНК в биосинтезе белка. Условия биосинтеза белка. Кодирование аминокислот. Роль рибосом в биосинтезе белка. Организация генома у прокариот и эукариот.
Регуляция активности генов у прокариот. Гипотеза оперона Ф. Жакоб, Ж. Регуляция обменных процессов в клетке. Клеточный гомеостаз. Вирусы — неклеточные формы жизни и облигатные паразиты. Строение простых и сложных вирусов, ретровирусов, бактериофагов. Вирусные заболевания человека, животных, растений.
Интерфаза и митоз. Особенности процессов, протекающих в интерфазе. Подготовка клетки к делению. Пресинтетический постмитотический , синтетический и постсинтетический премитотический периоды интерфазы. Матричный синтез ДНК — репликация. Принципы репликации ДНК: комплементарность, полуконсервативный синтез, антипараллельность. Механизм репликации ДНК. Строение хромосом.
Теломеры и теломераза. Хромосомный набор клетки — кариотип. Диплоидный и гаплоидный наборы хромосом. Гомологичные хромосомы. Половые хромосомы. Деление клетки — митоз. Стадии митоза и происходящие в них процессы. Типы митоза.
Кариокинез и цитокинез. Биологическое значение митоза. Регуляция митотического цикла клетки. Программируемая клеточная гибель — апоптоз. Функциональная геномика 3 Организм как биологическая система 3. Одноклеточные, колониальные, многоклеточные организмы. Взаимосвязь частей многоклеточного организма. Ткани, органы и системы органов.
Организм как единое целое. Гомеостаз 3. Виды бесполого размножения: почкование, споруляция, фрагментация, клонирование. Половое размножение. Половые клетки, или гаметы. Стадии мейоза. Поведение хромосом в мейозе. Биологический смысл мейоза и полового процесса.
Мейоз и его место в жизненном цикле организмов. Предзародышевое развитие. Гаметогенез у животных. Половые железы. Образование и развитие половых клеток. Сперматогенез и оогенез. Строение половых клеток. Оплодотворение и эмбриональное развитие животных.
Способы оплодотворения: наружное, внутреннее. Индивидуальное развитие организмов онтогенез. Стадии эмбриогенеза животных на примере лягушки. Типы дробления. Особенности дробления млекопитающих. Зародышевые листки гаструляция. Закладка органов и тканей из зародышевых листков. Взаимное влияние частей развивающегося зародыша эмбриональная индукция.
Закладка плана строения животного как результат иерархических взаимодействий генов. Влияние на эмбриональное развитие различных факторов окружающей среды. Рост и развитие животных. Постэмбриональный период. Прямое и непрямое развитие. Развитие с метаморфозом у беспозвоночных и позвоночных животных. Биологическое значение прямого и непрямого развития, их распространение в природе. Типы роста животных.
Факторы регуляции роста животных и человека. Стадии постэмбрионального развития у животных и человека. Периоды онтогенеза человека. Размножение и развитие растений. Гаметофит и спорофит. Мейоз в жизненном цикле растений. Образование спор в процессе мейоза. Гаметогенез у растений.
Оплодотворение и развитие растительных организмов. Двойное оплодотворение у цветковых растений. Образование и развитие семени. Механизмы регуляции онтогенеза у растений и животных 3. Гомологичные хромосомы, аллельные гены, альтернативные признаки, доминантный и рецессивный признак, гомозигота, гетерозигота, чистая линия, гибриды, генотип, фенотип. Основные методы генетики: гибридологический, цитологический, молекулярно-генетический 3. Первый закон Менделя — закон единообразия гибридов первого поколения. Правило доминирования.
Второй закон Менделя — закон расщепления признаков. Цитологические основы моногибридного скрещивания. Гипотеза чистоты гамет. Анализирующее скрещивание. Промежуточный характер наследования. Расщепление признаков при неполном доминировании. Дигибридное скрещивание. Третий закон Менделя — закон независимого наследования признаков.
Цитологические основы дигибридного скрещивания. Сцепленное наследование признаков. Работы Т. Сцепленное наследование генов, нарушение сцепления между генами. Хромосомная теория наследственности. Генетика пола. Хромосомный механизм определения пола. Аутосомы и половые хромосомы.
Гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом. Генотип как целостная система. Плейотропия — множественное действие гена. Множественный аллелизм. Взаимодействие неаллельных генов. Полимерия 3.
Изменчивость признаков. Качественные и количественные признаки. Виды изменчивости: ненаследственная и наследственная. Модификационная изменчивость. Роль среды в формировании модификационной изменчивости. Норма реакции признака. Вариационный ряд и вариационная кривая В. Свойства модификационной изменчивости.
Генотипическая изменчивость. Свойства генотипической изменчивости. Виды генотипической изменчивости: комбинативная, мутационная. Комбинативная изменчивость. Мейоз и половой процесс — основа комбинативной изменчивости. Роль комбинативной изменчивости в создании генетического разнообразия в пределах одного вида. Мутационная изменчивость. Виды мутаций: генные, хромосомные, геномные.
Спонтанные и индуцированные мутации. Ядерные и цитоплазматические мутации. Соматические и половые мутации. Причины возникновения мутаций. Мутагены и их влияние на организмы. Закономерности мутационного процесса. Закон гомологических рядов в наследственной изменчивости Н. Внеядерная изменчивость и наследственность 3.
Международная программа исследования генома человека. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, популяционно-статистический, молекулярно-генетический. Современное определение генотипа: полногеномное секвенирование, генотипирование, в том числе с помощью ПЦР-анализа. Наследственные заболевания человека. Генные и хромосомные болезни человека. Болезни с наследственной предрасположенностью. Значение медицинской генетики в предотвращении и лечении генетических заболеваний человека. Стволовые клетки 3.
Зарождение селекции и доместикации. Учение Н. Вавилова о Центрах происхождения и многообразия культурных растений. Роль селекции в создании сортов растений и пород животных. Сорт, порода, штамм. Вавилова, его значение для селекционной работы. Методы селекционной работы. Искусственный отбор: массовый и индивидуальный.
Этапы комбинационной селекции. Испытание производителей по потомству. Отбор по генотипу с помощью оценки фенотипа потомства и отбор по генотипу с помощью анализа ДНК. Искусственный мутагенез как метод селекционной работы. Радиационный и химический мутагенез как источник мутаций у культурных форм организмов. Использование геномного редактирования и методов рекомбинантных ДНК для получения исходного материала для селекции. Получение полиплоидов. Внутривидовая гибридизация.
Близкородственное скрещивание, или инбридинг. Неродственное скрещивание, или аутбридинг. Гетерозис и его причины. Использование гетерозиса в селекции.
Сложная была биология даже для тех,кто с репами готовился.
Anonymous 15. У моей хбио класс,она большой любитель химии,поэтому вариантов не было. С чисто химией и хотела поступать,а сейчас вот решила на мечту замахнуться- на химфак МГУ. Там биологию надо хорошо хоть записалась,убедили и ДВИ,не готовилась. Изначально в группу дочь не пошла, так как были накладки в расписании с обществом и русским.
Поэтому биологию решили онлайн. Очень "удобный экзамен", там картинку поставь другую, там задание дай с 1 курса Меда - вот и завались детки... Про алкалоз было задание, дети делились, ну вот как?... Моя говорит нет,но она и биологию не любит. Поэтому решили Умскул.
Но к апрелю поняли, что надо подключить ещё живые занятия с преподавателем... Порог бы пройти.
Аналогично только зиготы, содержащие чч, будут иметь красную масть. Суммировав все одинаковые зиготы получим, что в потомстве наблюдается расщепление 9:3:3:1. Гетерозиготную самку дрозофиллы скрестили с самцом, имевшим темное тело и миниатюрные крылья. От этого скрещивания было получено: 249 мух с темным телом и нормальными крыльями, 20 мух с нормальной окраской тела и нормальными крыльями, 15 мух с темным телом и миниатюрными крыльями, 216 мух с нормальной окраской тела и миниатюрными крыльями. Считаете ли вы, исходя из этих данных, две эти пары генов сцепленными или несцепленными? Если вы решили, что они сцеплены, то укажите, какое из двух приведенных ниже утверждений правильно описывает сцепление у самки: а гены темной окраски тела и миниатюрных крыльев лежат в одной хромосоме, а гены нормальной окраски тела и нормаль- ных крыльев — в ее гомологе. Во время мейоза произошли крос-синговеры; б гены темной окраски тела и нормальных крыльев лежат в одной хромосоме, а гены нормальной окраски тела и миниатюрных крыльев в ее гомологе.
Во время мейоза произошли крос-синговеры. Такое расщепление в потомстве, когда два фенотипа значительно преобладают над двумя другими фенотипами, бывает при сцепленном наследовании. Причем, по закону Моргана, гены, локализованные в одной хромосоме, сцеплены, то есть наследуются преимущественно вместе. Следовательно, в этом случае в одной хромосоме находятся гены темного тела и нормальных крыльев, а в другой нормальной окраски тела и миниатюрных крыльев, таккак в потомстве мухи с такими фенотипами значительно преобладают. Другие же фенотипы могли возникнуть в результате кроссинговера. Значит, правильным является утверждение б. Отец девушки страдает гемофилией, тогда как мать ее в этом отношении здорова и происходит из семьи, благополучной по этому заболеванию. Девушка выходит замуж за здорового юношу. Что можно сказать об их будущих сыновьях, дочерях, а также внуках обоего пола при условии, что сыновья и дочери не будут вступать в брак с носителями гена гемофилии?
Отец девушки гемофилик, значит, единственная X-хромосома в его генотипе несет ген этой болезни. И эту хромосому он обязательно передал своей дочери. Мать девушки и ее предки здоровы, следовательно, полученная от нее дочерью вторая Х-хро-мосома не отягощена геном гемофилии. Таким образом, в генотипе невесты только одна из двух хромосом несет ген гемофилии. Единственная же Х-хромосома в генотипе здорового жениха такой ген не содержит иначе он был бы болен. Сыновья от этого брака получают от отца Y-хромосому, нейтральную в отношении гемо филии, а от матери — с одинаковой вероятностью — либо «болезнетворную» Х-хромосому, либо «здоровую». В зависимости от этого сыновья либо будут страдать гемофилией, либо нет. Дочери же получат от отца Х-хромосому, свободную от гена гемофилии. Если здоровый сын женится на здоровой девушке, ни один их ребенок не будет страдать гемофилией.
Если в брак со здоровым мужчиной вступит дочь, не являющаяся носительницей гена гемофилии, то все дети будут здоровы. Если же в такой брак вступит дочь гетерозиготная носительница гена гемофилии, то половина ее сыновей окажется гемофиликами, а все ее дочери будут фенотипически здоровы. При решении всех задач на наследственность у человека необходимо помнить о статистическом вероятностном характере получаемых выводов: число детей даже в многодетных семьях недостаточно для того, чтобы фактическое расщепление по фенотипам было наверняка близким к теоретическому. Но если рассматривать не отдельный брак, а все браки такого типа, то согласие теории с практикой будет хорошим. Могут ли дети унаследовать группу крови одного из своих родителей? Генотип матери 00, генотип отца — АВ. Ребенок обязательно получит от матери ген 0, а отца — один и только один! Поэтому ребенок будет иметь генотип АО или ВО, но ни в коем случае ни 00, ни АВ, иными словами, он будет обладать второй или третьей группой крови, но не первой, и не четвертой. Как видим, в этом случае ребенок не может унаследовать группу крови ни от своего отца, ни от своей матери.
В этой задаче мы будем иметь в виду только два вида слепоты, причина каждого из которых определяется своим рецессивным геном. Сколь вероятно, что ребенок родится слепым, если отец и мать его оба страдают одним и тем же видом наследственной слепоты? А если различными? Свяжите полученный ответ с необходимостью, особенно тщательно следите за тем, чтобы вступающие в брак не состояли даже в отдаленном родстве.
Решение генетических задач
Возможно ли рождение в первом браке ребёнка, страдающего двумя названными заболеваниями? Рецессивный аллель гена куриной слепоты ночной слепоты наследуется сцепленно с полом. Женщина с пигментной ксеродермой и куриной слепотой вышла замуж за гетерозиготного мужчину без этих заболеваний. Родившаяся в этом браке дочь без указанных заболеваний вышла замуж за мужчину с пигментной ксеродермой и нормальным ночным зрением. Женщина с пигментной ксеродермой и отсутствием потовых желез вышла замуж за гетерозиготного мужчину без этих заболеваний. Родившаяся в этом браке дочь без указанных заболеваний вышла замуж за мужчину с пигментной ксеродермой и наличием потовых желез. Рецессивный аллель гена ихтиоза заболевание кожи наследуется сцепленно с полом.
Женщина с пигментной ксеродермой и ихтиозом вышла замуж за гетерозиготного мужчину без этих заболеваний. Родившаяся в этом браке дочь без указанных заболеваний вышла замуж за мужчину с пигментной ксеродермой и отсутствием ихтиоза. У человека аллели генов атрофии зрительного нерва и ихтиоза заболевание кожи находятся в одной хромосоме и наследуются сцепленно с полом. Женщина, не имеющая этих заболеваний, у матери которой был ихтиоз, а у отца - атрофия зрительного нерва, вышла замуж за мужчину без этих заболеваний. Родившаяся в этом браке гомозиготная здоровая дочь вышла замуж за мужчину, не имеющего этих заболеваний. В их семье родился ребенок, страдающий ихтиозом.
Составьте схемы решения задачи. Укажите генотипы, фенотипы родителей и генотипы, фенотипы, пол возможного потомства в двух браках. Возможно ли в первом браке рождение ребенка, страдающего двумя названными заболеваниями? У человека аллели генов куриной слепоты ночной слепоты и атрофии зрительного нерва находятся в одной хромосоме и наследуются сцепленно с полом. Женщина, не имеющая этих заболеваний, у матери которой была атрофия зрительного нерва, а у отца - куриная слепота, вышла замуж за мужчину без этих заболеваний. В их семье родился ребенок с атрофией зрительного нерва.
У человека аллели генов куриной слепоты ночной слепоты и ихтиоза заболевание кожи находятся в одной хромосоме и наследуются сцепленно с полом.
Какое при этом будет расщепление по генотипу и фенотипу в F2? В потомстве получится 1:1 АаВЬ белая окраска и дисковидная форма : aabb жёлтые шаровидные плоды. У собак чёрный цвет шерсти доминирует над кофейным, а короткая шерсть — над длинной. Обе пары генов находятся в разных хромосомах. Охотник купил чёрную с короткой шерстью собаку и хочет быть уверен, что его собака чистопородна. Напишите возможные генотипы собаки охотника и возможные варианты расщепления по генотипу и фенотипу при скрещивании, с помощью которого Вы будете проверять её генотип. Это будет анализирующее скрещивание.
У дрозофил серая окраска тела А доминирует над чёрной, а нормальная форма крыльев В — над скрюченной неаллельные гены расположены в разных аутосомах. При скрещивании серых мух с нормальными крыльями с серыми мухами со скрюченными крыльями одна четверть потомства имела чёрное тело. Какой тип наследования признаков проявляется в данном скрещивании? Для решения задачи используется правило единообразия гибридов первого поколения и анализи- рующеескрещивание. Гены обоих признаков не сцеплены. Схема решения задачи включает: 1 В брак вступают голубоглазая женщина-правша, отец которой был левшой, и кареглазый муж- чина-правша, мать которого была голубоглазой левшой. У детей «исчезают» признаки родителей — голубые глаза и леворукость, значит данные признаки рецессивные. А — карие глаза, a — голубые глаза B — праворукость , b — леворукость.
Курица с гороховидным гребнем и рябой окраской оперения была скрещена с петухом такого же фенотипа. Один цыплёнок от этого скрещивания получился с листовидным гребнем и чёрной окраской оперения. Самки птиц являются гетерогаметным полом. Определите генотипы родителей, возможные генотипы и фенотипы детей в этом браке. Какова вероятность рождения в этом браке детей с отсутствием потовых желёз? У них родились сын и дочь, оба умеют сворачивать язык в трубочку. Мать пробанда умеет сворачивать язык в трубочку, а отец — не умеет. Брат пробанда умеет сворачивать язык в трубочку.
У пробанда есть и сестра, которая не умеет сворачивать язык в трубочку, она дважды выходила замуж за мужчин, которые умеют сворачивать язык в трубочку. Сын от первого брака не умеет сворачи- вать язык в трубочку, дочь от первого брака и сын от второго брака умеют сворачивать язык в трубочку. Бабушка по материнской линии не умела сворачивать язык в трубочку, а дедушка — умеет. Определите характер наследования признака умение сворачивать язык в трубочку и укажите генотипы пробанда и её сестры. Признак «умение сворачивать язык в трубочку» является доминантным аутосомным, т. Если из двух родителей только один умеет сворачивать язык в тру- бочку, то признак проявляется. С одинаковой вероятностью встречается и у мужчин и у женщин не сцеплен с Х-хромосмой. Генотип пробанда: Аа, т.
Генотип сестры пробанда: аа, т. Схема задачи не требуется, т. Определите генотипы родителей и потомства, полученного в результате первого и анализирующего скрещиваний. Объясните формирование четырёх фенотипических групп в анализирующем скрещивании. Две другие фенотипические группы 149 и 150 образуются в результате кроссинговера между аллельными генами. У львиного зева красная окраска цветка неполно доминирует над белой. Гибридное растение имеет розовую окраску. Узкие листья частично доминируют над широкими у гибридов листья имеют среднюю ширину.
A — красные цветки; a — белые цветки; B — узкие листья; b — широкие листья. Родители: AABb 2. Белая рогатая корова скрещена с гомозиготным красным рогатым быком. Какой фенотип и генотип будет иметь их потомство? Составьте схему скрещивания и объясните полученные результаты. Схема решения задачи включает: 1 генотипы родителей: Самка АаВв. Гаметы АВ и ав; самец - аавв. Гаметы - ав; 2 генотипы потомства: АаВв - серое тело, нормальные крылья, аавв - чёрное тело, короткие кры- лья, Аавв - серое тело, короткие крылья, ааВв - чёрное тело, короткие крылья; 3 появление четырёх фенотипических групп обусловлено кроссинговером при образовании поло- вых клеток у самки и образованием дополнительных гамет - Ав и аВ.
Определите генотипы родителей, гибридов первого поколения, соотношение фенотипов во втором поколении, тип скрещивания и характер наследования признаков при условии, что гены не сцеплены. В потомстве появились светлокожие курицы с чёрным оперением. Определите генотипы родителей, генотипы и фенотипы возможного потомства. Схема решения задачи включает. У женщины с карими глазами и 3 группой крови и мужчины с голубыми глазами и 1 группой крови родился голубоглазый ребенок. Карий цвет глаз доминирует над голубым. Определите, какая группа крови может быть у этого ребенка? Какой закон наследственности проявляется?
По цвету глаз С - карие; с- голубые глаза. Генотип матери по цвету глаз Сс. Данная задача имеет два варианта решения. У рожденного ребенка может быть 3 группа крови. Какова сущность хромосомной теории наследственности Т. Две его дочери и 2 вариант. Рецессивная аллель этого гена обуславливает черную окраску меха. Серые овцы были покрыты серыми же баранами.
В результате получили 80 ягнят всего. АА - серый, летален Аа - серый Т. Определите вероятные генотипы всех детей, родителей,а также возможные генотипы дедушек этих детей. У матери, не являющейся носителем гена гемофилии, и больного гемофилией отца родились 2 дочери и 2 сына. У здоровых родителей сын болен гемофилией. Определите генотипы родителей, соотношение фенотипов и генотипов в потомстве. Скрестили нормальную курицу с гетерозиготным по этому гену петухом у птиц гетерогаметный пол — женский. Женщина, носительница рецессивного гена гемофилии, вышла замуж за здорового мужчину.
Со- отношение фенотипов 2 девочки здоровы : 1 мальчик здоров : 1 мальчик-гемофилик 9. В семье, где родители имеют нормальное цветовое зрение, сын — дальтоник. Гены нормального цветового зрения D и дальтонизма d располагаются в Х — хромосоме. У здоровой матери, не являющейся носителем гена гемофилии, и больного гемофилией отца рецессивный признак — h родились две дочери и два сына. Определите генотипы родителей, генотипы и фенотипы потомства, если признак свертываемости крови сцеплен с полом. У потомства проявляется только два фенотипа в соотношении 1 : 1. У человека наследование альбинизма не сцеплено с полом А — наличие меланина в клетках кожи, а — отсутствие меланина в клетках кожи — альбинизм , а гемофилии — сцеплено с полом XН — нормальная свёртываемость крови, Xh — гемофилия. Определите генотипы родителей, возможные генотипы и фенотипы детей.
Гомозиготную по обоим признакам серую А муху дрозофилу с нормальными крыльями В скрестили с чёрным а с зачаточными крыльями в самцом. Гены указанных признаков сцеплены и наследуются вместе. Определите генотипы и фенотипы F1 и F2. Объясните ответ. В этой задаче проявляется закон независимого наследования признаков и признака, сцепленного с 1 В F1 все потомки серые и с нормальными крыльями АаВв. Объясните формирование четырёх фенотипических групп. Такое сочетание фенотипов показывает, что признаки высокие — грушевидные Аb и карликовые — округлые аВ сцеплены, но не полностью. Появление 4 фенотипических групп объясняется процессом кроссинговера.
В потомстве получается 4 фенотипических аа Вb — карликовых с округлыми плодами аа bb — карликовых с грушевидными плодами группы, что говорит о том, что идет кроссинговер. Составьте схему скрещивания, определите генотипы потомства. Такое сочетание фенотипов показывает, что признаки гладкие — неокрашенные Аb и морщини- стые — окрашенные аВ сцеплены, но не полностью. В потомстве получается 4 фенотипических Ааbb — с гладкими неокрашенными аа Вb — с морщинистыми окрашенными Аа Вb — гладкими окрашенными семенами аа bb — с морщинистыми неокрашенными группы, что говорит о том, что идет кроссинговер. При скрещивании растения душистого горошка с усиками и яркими цветками и растения без усиков и с бледными цветками в F1 все растения были с усиками и яркими цветками. Определите генотипы родителей, потомства F1 и F2. Схема решения задачи включает: В F1 все потомство получилось одинаковым. Данная задача решается и без сцепленного наследования, если во втором поколении скрещиваем с растением с усиками и яркими цветками по генотипу ААВb, образуется две фенотипические группы.
Известны случаи, когда выпускник к началу 11 класса ровным счетом не знал ничего, кроме яйцеклетки и сперматозоида и что, собственно, происходит после их встречи… В итоге же упорный труд приводил к вполне приличным баллам. И не надо спрашивать - хватит ли у меня времени на то, чтобы успеть подготовиться. Начните немедленно. Структура Каждый вариант экзаменационной работы включает 28 заданий и состоит из двух частей, различающихся по форме и уровню сложности. Часть 1 содержит 21 задание: 7 — с множественным выбором с рисунком или без него; 6 — на установление соответствия с рисунком или без него; 3 — на установление последовательности систематических таксонов, биологических объектов, процессов, явлений; 2 — на решение биологических задач по цитологии и генетике; 1 — на дополнение недостающей информации в схеме; 1 — на дополнение недостающей информации в таблице; 1 — на анализ информации, представленной в графической или табличной форме.
Определите генотипы родителей и потомков.
Объясните результаты скрещивания. Допускается иная генетическая символика, не искажающая смысла задачи. Ответ: Бесплатный интенсив Задача 14 У птиц самки гетерогаметны по полу. У канареек бывает оперение зелёной и коричневой окраски, также птицы между собой различаются наличием или отсутствием хохолка на голове.
Библиотека
- Задачи по генетике ЕГЭ по биологии с ответами и решениями
- Изменения ЕГЭ по биологии в 2024 году
- Задачи для практики
- Задания части 2 ЕГЭ по теме «Методы генетики человека»
- Основные изменения
- Какие бывают типы задач по генетике в ЕГЭ?
Московская олимпиада по генетике
• Анализ выполнения заданий линии 28 участниками ЕГЭ 2019 года. завтра экзамен по общей биологии на 2 курсе биофака, решила вспомнить про подготовку). «Сложные задания второй части ЕГЭ по. 3 задание из ЕГЭ по биологии представляет собой текстовую задачу. При решении задач по генетике необходимо придерживаться алгоритма: Определить виды скрещивания и взаимодействий аллельных и неалельных генов(определить характер скрещивания).
Привет! Нравится сидеть в Тик-Токе?
Новые задачи по генетике на ЕГЭ по биологии. Задачи на картирование хромосом и морганиды на экзамене в 2024 году. При решении задач по генетике необходимо придерживаться алгоритма: Определить виды скрещивания и взаимодействий аллельных и неалельных генов(определить характер скрещивания). Генетика — наука, изучающая наследственность и изменчивость организмов. При решении задач по генетике необходимо: Определить виды скрещивания и взаимодействий аллельных и неалельных генов(определить характер скрещивания). • Анализ выполнения заданий линии 28 участниками ЕГЭ 2019 года. Задания по биологии.
Как решать задачи по генетике на ЕГЭ?
О достоверности недостоверности этих «слухов» можно убедиться только на досрочном проведении экзаменов, когда до основного экзамена остается совсем немного времени. Но в предшествующих Демоверсиях об этих новшествах «ни гу-гу». Формулировка заданий по генетике совсем иная без указания в условии задания аутосомности или сцепленности с полом изучаемых признаков и сами задачи становятся сложнее крисс-кросс наследование, псевдоаутосомное наследование. Тонким намеком на то, что такие задачи могут появиться уже буквально в этом 2023 году хотя Демоверсия на 2023 год об этом упорно «молчит» , может являться включение в тестовую Часть 1 в 2022 году задания на знание свойств идеальной популяции.
Подробный разбор этого задания дан в моей статье «Почему в идеальной популяции большая доля рецессивных аллелей». Ознакомившись с этой статьей , я думаю вам теперь самим решать: «Есть ли жизнь на Марсе, нет ли жизни на Марсе …». Если решите, что «жизнь есть», то советую проработать с учащимися хотя бы сами основы закона Харди-Вайнберга, для каких популяций он применим.
Алгоритм решения задач «Сцепленное наследование» 2. Алгоритм решения задач «Генетика пола» 2. Алгоритм решения задач «Наследование признаков, сцепленных с полом» Глава 3. Примеры решения задач по генетике Заключение Литература Введение Разделы «Основы генетики» и «Молекулярная биология» являются одними из самых сложных для понимания в школьном курсе общей биологии. Облегчению усвоения этих разделов может способствовать решение задач по генетике разных уровней сложности. Решение задач, как учебно-методический прием изучения генетики, имеет важное значение.
Его применение способствует качественному усвоению знаний, получаемых теоретически, повышая их образность, развивает умение рассуждать и обосновывать выводы, существенно расширяет кругозор изучающего генетику, так как задачи, как правило, построены на основании документальных данных, привлеченных из области частной генетики растений, животных, человека. Использование таких задач развивает у школьников логическое мышление и позволяет им глубже понять учебный материал, а преподаватель имеет возможность осуществлять эффективный контроль уровня усвоенных учащимися знаний. Несмотря на это школьные учебники содержат минимум информации о закономерностях наследования, а составлению схем скрещивания и решению генетических задач в школьной программе по общей биологии отводится очень мало времени. Поэтому возникла необходимость в создании данного сборника. Учебное пособие составлено согласно обновленным ГОС, программе основного общего и среднего общего образования по биологии Метопредметные связи, реализуемые при составлении данного сборника: Математика — умение производить простейшие вычисления, анализировать и прогнозировать результаты. История — знание родословных основных персон мира для составления генеалогических древ при выполнении различных творческих работ.
Биология — основы цитологии, молекулярной биологии, строения клетки. Органическая химия — строение углеводов, белков, аминокислот, нуклеиновых кислот. Цель: развитие у учащихся умения и навыков решения задач по основным разделам классической генетики. Задачи: Развивать познавательный интерес к предмету; Показать практическую значимость общей биологии для различных отраслей производства, селекции, медицины; Создать условия для формирования и развития у учащихся УУД, интеллектуальных и практических умений в области генетики. Ликвидировать пробелы в знаниях учащихся; Результат работы со сборником основные понятия, термины и законы генетики; генетическую символику. Учащиеся умеют характеризовать: причины биологической индивидуальности на разных уровнях; модификационную, мутационную и комбинативную изменчивость, ее причины; норму реакции; значение генотипа и условий среды в формировании фенотипа; значение мутаций в эволюции, генетике, здравоохранении и экологической безопасности населения.
Учащиеся умеют характеризовать основные положения: закона гомологических рядов наследственной изменчивости; закономерностей модификационной изменчивости; Закона Харди — Вайнберга; Вклад Н. Вавилова, И.
Поясните генотипическое расщепление во втором скрещивании.
А живые занятия где? Там и биология. Кстати, занимаются девочки, которые в том году не прошли пороги. Вот в этом году сдавали. Умскул вебинары, теория и практика. Теория практически всегда в записи, практика - прямые эфиры. Если сейчас будет мало баллов. Дочь говорит,что нет. Биология всегда сложная,что с репом,что без. Пишут плохо. А в каком формате, решать вам с ребенком. Anonymous Школа в этом была,закончилась уже,там и готовилась. Anonymous 16.
Библиотека
- Биология 2023, обсудим?
- Задание 28. Генетика: Решение задач
- Курсы валюты:
- Курсы валюты:
- НОВЫЙ ТИП ЗАДАНИЙ ЕГЭ 2023. МИНИ-МОДЕЛЬ В ЛИНИЯХ 23-24. ОТРИЦАТЕЛЬНЫЙ КОНТРОЛЬ И НУЛЕВАЯ ГИПОТЕЗА.
Линия заданий 28, ЕГЭ по биологии
Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания. За выполение каждого из заданий 2, 4, 7, 9, 12, 15, 17, 21 выставляется 2 балла за полное правильное выполнение, 1 балл — за выполнение задания с одной ошибкой одной неверно указанной, в том числе лишней, цифрой наряду со всеми верными цифрами ИЛИ неполное выполнение задания отсутствие одной необходимой цифры ; 0 баллов — во всех остальных случаях. За выполнение каждого из заданий 5, 8, 10, 13, 16, 18, 20 выставляется 2 балла, если указана верная последовательность цифр, 1 балл, если допущена одна ошибка, 0 баллов во всех остальных случаях. За выполнение каждого из заданий 11, 14, 19 выставляется 2 балла, если указана верная последовательность цифр, 1 балл, если в последовательности цифр допущена одна ошибка переставлены местами любые две цифры , 0 баллов во всех остальных случаях. В части 2 задание 22 оценивается максимально в 2 балла; остальные задания 23—28 оцениваются максимально в 3 балла.
Так как частью решения задачи является построение участка карты хромосомы, делаем выводы о сцепленном наследовании с кроссинговером без кроссинговера образуются две фенотипические группы.
О сцеплении генов также можно судить по отклонению расщепления от третьего закона Менделя по нему расщепление должно было соответствовать ряду 9:3:3:1. Чтобы понять, какие гены находятся в одной хромосоме А сцеплено с B или с b , составим схему скрещивания: Решение задачи на морганиды и картирование хромосом Появление двух групп с большим количеством особей — результат сцепленного наследования, а двух групп с небольшим количеством особей — результат кроссинговера. Если вам трудно определить, какие гены сцеплены, пользуйтесь следующим методом: Второе растение дает только один сорт гамет — ab, в генотипах потомков выбираем эти гены, оставшиеся будут принадлежать растению с исследуемым генотипом. Отсюда мы делаем вывод о том, что А и B, а и b — попарно сцеплены, а появление гамет с А и b, а и В — результат кроссинговера. Данную часть задачи удобнее оформить иначе: Рассчитаем расстояние между генами вероятность кроссинговера.
Ответ: Бесплатный интенсив Задача 13 У кур тёмная окраска кожи доминирует над белой окраской, полосатое оперение над чёрным. Ген, обусловливающий окраску оперения, локализован в Х-хромосоме. Скрещивали чёрную курицу с тёмной кожей с полосатым петухом со светлой кожей. Составьте схему решения задачи. Определите генотипы родителей и потомков.
Мало просто кажется justiban1695 До егэ 1 день, самое время узнать, кто такие эти генетические задачи Anzor.
Решаю все типы заданий по теме: «Генетика» | Биология ЕГЭ – Ксения Напольская
Геохронология и её методы. Относительная и абсолютная геохронология. Геохронологическая шкала: эоны, эры, периоды, эпохи. Начальные этапы органической эволюции. Появление и эволюция первых клеток. Эволюция метаболизма. Возникновение первых экосистем. Современные микробные биоплёнки как аналог первых на Земле сообществ. Прокариоты и эукариоты. Происхождение эукариот симбиогенез.
Эволюционное происхождение вирусов. Происхождение многоклеточных организмов. Возникновение основных групп многоклеточных организмов. Основные этапы эволюции высших растений. Основные ароморфозы растений. Выход растений на сушу. Появление споровых растений и завоевание ими суши. Семенные растения. Происхождение цветковых растений.
Основные этапы эволюции животного мира. Основные ароморфозы животных. Вендская фауна. Кембрийский взрыв — появление современных типов. Первые хордовые животные. Жизнь в воде. Эволюция позвоночных. Происхождение амфибий и рептилий. Происхождение млекопитающих и птиц.
Принцип ключевого ароморфоза. Освоение беспозвоночными и позвоночными животными суши. Развитие жизни на Земле по эрам и периодам: архей, протерозой, палеозой, мезозой, кайнозой. Общая характеристика климата и геологических процессов. Появление и расцвет характерных организмов. Углеобразование: его условия и влияние на газовый состав атмосферы. Массовые вымирания — экологические кризисы прошлого. Причины и следствия массовых вымираний. Современный экологический кризис, его особенности 6.
Методы антропологии. Становление представлений о происхождении человека. Современные научные теории. Сходство человека с животными. Систематическое положение человека. Свидетельства сходства человека с животными: сравнительно-морфологические, эмбриологические, физиолого-биохимические, поведенческие. Отличия человека от животных. Прямохождение и комплекс связанных с ним признаков. Развитие головного мозга и второй сигнальной системы.
Движущие силы факторы антропогенеза: биологические, социальные. Соотношение биологических и социальных факторов в антропогенезе. Основные стадии антропогенеза. Австралопитеки — двуногие предки людей. Человек умелый, первые изготовления орудий труда. Человек прямоходящий и первый выход людей за пределы Африки. Человек гейдельбергский — общий предок неандертальского человека и человека разумного. Человек неандертальский как вид людей холодного климата. Человек разумный современного типа, денисовский человек, освоение континентов за пределами Африки.
Эволюция современного человека. Естественный отбор в популяциях человека. Мутационный процесс и полиморфизм. Популяционные волны, дрейф генов, миграция и «эффект основателя» в популяциях современного человека. Человеческие расы. Понятие о расе. Большие расы: европеоидная евразийская , австрало-негроидная экваториальная , монголоидная азиатско-американская. Время и пути расселения человека по планете. Единство человеческих рас.
Научная несостоятельность расизма. Приспособленность человека к разным условиям окружающей среды. Влияние географической среды и дрейфа генов на морфологию и физиологию человека 7 Экосистемы и присущие им закономерности 7. Связь экологии с другими науками. Методы экологии. Полевые наблюдения. Эксперименты в экологии: природные и лабораторные. Моделирование в экологии. Мониторинг окружающей среды: локальный, региональный и глобальный 7.
Классификация экологических факторов: абиотические, биотические, антропогенные. Общие закономерности действия экологических факторов. Правило минимума К. Шпренгель, Ю. Эврибионтные и стенобионтные организмы. Абиотические факторы. Свет как экологический фактор. Действие разных участков солнечного спектра на организмы. Экологические группы растений и животных по отношению к свету.
Сигнальная роль света. Температура как экологический фактор. Действие температуры на организмы. Пойкилотермные и гомойотермные организмы. Эвритермные и стенотермные организмы. Влажность как экологический фактор. Приспособления растений к поддержанию водного баланса. Классификация растений по отношению к воде. Приспособления животных к изменению водного режима.
Среды обитания организмов: водная, наземно-воздушная, почвенная, глубинная подпочвенная, внутриорганизменная. Физико-химические особенности сред обитания организмов. Приспособления организмов к жизни в разных средах. Биологические ритмы. Внешние и внутренние ритмы. Суточные и годичные ритмы. Приспособленность организмов к сезонным изменениям условий жизни. Жизненные формы организмов. Понятие о жизненной форме.
Жизненные формы растений: деревья, кустарники, кустарнички, многолетние травы, однолетние травы. Жизненные формы животных: гидробионты, геобионты, аэробионты. Особенности строения и образа жизни. Биотические факторы. Виды биотических взаимодействий: конкуренция, хищничество, симбиоз и его формы. Паразитизм, кооперация, мутуализм, комменсализм квартирантство, нахлебничество. Нетрофические взаимодействия топические, форические, фабрические. Значение биотических взаимодействий для существования организмов в среде обитания. Принцип конкурентного исключения 7.
Популяция как биологическая система. Роль неоднородности среды, физических барьеров и особенностей биологии видов в формировании пространственной структуры популяций. Основные показатели популяции: численность, плотность, возрастная и половая структура, рождаемость, прирост, темп роста, смертность, миграция. Экологическая структура популяции. Оценка численности популяции. Динамика популяции и её регуляция. Биотический потенциал популяции. Моделирование динамики популяции. Кривые роста численности популяции.
Кривые выживания. Регуляция численности популяций: роль факторов, зависящих и не зависящих от плотности. Экологические стратегии видов r- и K-стратегии. Понятие об экологической нише вида. Многомерная модель экологической ниши Дж. Размеры экологической ниши. Потенциальная и реализованная ниши. Вид как система популяций. Ареалы видов.
Виды и их жизненные стратегии. Закономерности поведения и миграций животных. Биологические инвазии чужеродных видов 7. Биоценоз и его структура. Связи между организмами в биоценозе. Экосистема как открытая система А. Функциональные блоки организмов в экосистеме: продуценты, консументы, редуценты. Трофические уровни. Трофические цепи и сети.
Абиотические блоки экосистем. Почвы и илы в экосистемах. Круговорот веществ и поток энергии в экосистеме. Основные показатели экосистемы. Биомасса и продукция. Экологические пирамиды чисел, биомассы и энергии. Направленные закономерные смены сообществ — сукцессии. Первичные и вторичные сукцессии и их причины. Антропогенные воздействия на сукцессии.
Климаксное сообщество. Биоразнообразие и полнота круговорота веществ — основа устойчивости сообществ. Природные экосистемы. Антропогенные экосистемы. Различия между антропогенными и природными экосистемами. Основные компоненты урбоэкосистем. Городская флора и фауна. Синантропизация городской фауны. Биологическое и хозяйственное значение агроэкосистем и урбоэкосистем.
Закономерности формирования основных взаимодействий организмов в экосистемах. Перенос энергии и веществ между смежными экосистемами. Устойчивость организмов, популяций и экосистем в условиях естественных и антропогенных воздействий 7. Учение В. Вернадского о биосфере. Области биосферы и её состав. Живое вещество биосферы и его функции. Закономерности существования биосферы. Особенности биосферы как глобальной экосистемы.
Динамическое равновесие в биосфере. Круговороты веществ и биогеохимические циклы углерода, азота. Ритмичность явлений в биосфере.
Казалось бы, а чего спрашивать? Демоверсии будущих экзаменов каждую осень на сайте ФИПИ публикуются.
Да, публикуются. Рохлова, оказывается, не всегда можно безоговорочно ориентироваться на этот «замечательный» документ. Наступает весна и по каким-то таинственным каналам просачиваются слухи о значительных изменениях в самих подходах к составлению заданий некоторых линий КИМов. О достоверности недостоверности этих «слухов» можно убедиться только на досрочном проведении экзаменов, когда до основного экзамена остается совсем немного времени. Но в предшествующих Демоверсиях об этих новшествах «ни гу-гу».
Это гены, которые находятся в одной хромосоме, а потому передаются вместе друг с другом. Чаще всего это задания на гемофилию — болезнь крови, носителями которой могут быть люди обоих полов, но болеющими — только мужчины. Давайте посмотрим на задачу с единорогами: длинный рог — доминантный признак А, короткий — рецессивный а. И у нас есть пара мелких единорожков, у одного из которых рог длинный, а у другого — короткий. Какие гены у их родителей? У единорожка с коротким рогом не может быть гена с длинным, так как он бы проявился, значит, его генотип — аа. Следовательно, у мамы-единорога с длинным рогом должен быть ген короткого рога иначе такого детеныша просто не было бы! Генотип мамы — Аа. Генотип короткорогого папы — как и у его короткорогого детеныша, потому что любой доминантный признак бы проявился. Следовательно, генотип папы — аа.
Мама — черная, с длинным рогом.
Поясните генотипическое расщепление во втором скрещивании.
2024 год. Структура и особенности ЕГЭ по биологии
С каждым годом в ЕГЭ по Биологии становится заданий и вопросов по генетике, которые нужно уметь быстро и правильно решать. Разбор заданий №22 (примеры и задачи для самостоятельного решения). Такие задачи могут появиться в в Части 2 линии 29 на ЕГЭ в 2023 году, поскольку в 2022 году в тестовую Часть 1 уже входило задание на знание свойств идеальной популяции.