Ядерный буксир «Зевс». Ядерный буксир «Зевс». Фото: Во время визита Владимира Путина на космодром Восточный глава Роскосмоса Дмитрий Рогозин представил ему макет ядерного буксира, который планируется запустить в 2030 году. Разрабатываемый в России космический буксир «Зевс» не имеет отношения к ядерному оружию. Он не предназначен для борьбы со спутниками других стран, сообщил РИА Новости ведущий научный сотрудник Института космических исследований (ИКИ) РАН Натан Эйсмонт. Образец проекта Зевс, в составе которого будет применяться мегаваттная ядерная установка, продемонстрирован общественности будет в 2030 году.
Ядерный буксир "Зевс" в 2030 г.? - Россия снова - первая в космосе?
Рогозин рассказал о строительстве российской орбитальной станции с помощью ядерного буксира "Зевс" | Сам же космический буксир называется "Зевс", а не "Нуклон", как пишут многие. |
Космический корабль Зевс колоссальный прорыв от Роскосмоса! | Разрабатываемый космический ядерный буксир «Зевс» можно будет использовать в системе ПВО России. |
«Роскосмос» работает над ионными двигателями для ядерного буксира «Зевс»
В середине апреля Борисов рассказал , что корпорация рассматривает использование «Зевса» для очистки орбит от космического мусора. По словам директора, с помощью буксира планируется либо утилизировать космический мусор, либо уводить его фрагменты дальше от орбит Земли. Он отметил, что «Зевс» будет выступать в качестве дополнительной функции к научным задачам. Стоимость соглашения составила свыше 4,17 млрд руб. Создание элементов для ядерного буксира началось еще в 2010 г.
Ответ прост — газ и электричество, если с газом всё понятно используется ксенон, как самый эффективный вариант , то вопрос электричества решили радикально — воспользовались мирным атомом. На Нуклоне будет стоять ядерный реактор. Его мощность будет составлять от 300 до 1000 киловатт электроэнергии. Такого колоссального количества энергии будет хватать на долгосрочную работу ионных двигателей и на снабжение энергией всей системы буксира.
Всё же, я предлагаю сравнить химические и ионные двигатели на нескольких дистанциях: ближней Луна , средней Марс и дальней Юпитер. В качестве объектов сравнения возьмём наш ядерный буксир Нуклон и американскую ракету Starship. Чтобы попасть к естественному спутнику Земли ракете нужно меньше недели а нашему ядерному буксиру понадобятся чудовищные 200 дней 100 дней разгона, 100 дней торможения. В то же время на средней, марсианской дистанции, время полёта практически сравнивается со Старшипом и занимает около одного года против 4-9 месяцев. Но есть один нюанс, Нуклон может за такой же промежуток вернуться обратно на Землю, а вот все экспедиции Старшипа на Марс — это пока билет в один конец, так как детище SpaceX израсходует всё топливо во время полёта, а по итогу совершит мягкую посадку на поверхность Красной планеты. Далее берём Юпитер, до него нашему ракете-носителю лететь не менее 3 лёт, в то же время Нуклон справляется в 2 раза быстрее, добираясь до газового гиганта за 1. И чем дальше от Земли, тем очевиднее это выгода по времени становится. В итоге можно охарактеризовать концепцию ядерного буксира старинной русской поговоркой: «Тише едешь — дальше будешь».
Как устроен ядерный планетолёт? Вот он, в разобранном состоянии. КТМ — конструкторско-технологический макет. ОНФ — отсек несущих ферм правый верхний угол. ЭБ — энергоблок по центру. БОС — блок обеспечивающих систем правее ЭБ. Как я уже писал выше, на Нуклоне стоит ядерный реактор. Он — центральная часть всей системы ядерного буксира.
От него зависит не только работа двигателей, но и работа всего остального оборудования, включая блок полезной нагрузки. Казалось бы, зачем использовать реактор, если есть старые добрые солнечные батареи? Проблема в том, что самые мощные солнечные панели, находящиеся в космосе, могут вырабатывать лишь порядка 150 киловатт энергии. Эти батареи — на МКС. Почему бы их не поставить на Нуклон? Во-первых, для питания 4 маршевых и 4 маневренных двигателей ИД-500, каждый из которых потребляет по 35 киловатт энергии, этого явно не будет достаточно. Во-вторых, мощность излучения солнца с расстоянием снижается. Поэтому при дальних перелётах выработка энергии будет существенно сокращаться у Нептуна лучи в 900 раз слабее чем у Земли.
Именно в силу этих факторов было принято решение разместить на буксире ядерный реактор. Но и у этого решения есть определенные технические сложности. Во-первых, проблема охлаждения реактора. Казалось бы, космос и так холодный, в чем проблема? А проблема заключается в том, что в отличии от Земли, в космосе нет воздуха, молекулы которого могут забрать излишки тепла. Поэтому он крайне слабо может поглощать тепло. То есть нельзя разместить голый ядерный реактор, он попросту сгорит. Поэтому на буксире размещены огромные панели, которые принимают на себя всё тепло оно будет передаваться через теплоносители, собственно, панели это они и есть из реактора и рассеивают его в космическом пространстве.
Панели охлаждения. Покрытие отражающее, то есть солнечный свет не будет их нагревать. Эта система работает только «на выход». Во-вторых, проблема его конструкции. Первое — его радиация не должна причинять вреда полезной нагрузке. Второе — он должен быть гораздо скромнее своих земных аналогов. Первую проблему решили, что называется, «отодвинув» реактор от полезной нагрузки, то вторую проблему решили благодаря многолетнему опыту отечественных инженеров в построении подобных систем. В советское время было построено не менее 3 серий ядерных энергетических установок, которые были успешно запущены в космос.
Пользуясь этими наработками, российские инженеры в 2009 году начали работу над созданием ядерной энергетической установки мегаваттного класса ЯЭДУ. ЯЭДУ — это обычный атомный реактор, который собирается для космических полётов. Его мощность на несколько порядков меньше, чем у земных электростанций. Но и его габариты гораздо скромнее и приспособлены под тяжелую ракету Ангара-А5В, как и, собственно, вся система. Кстати, о габаритах и характеристиках всего буксира. Общая его масса будет составлять больше 20 тонн, из которых на ядерный реактор приходится 7, на топливо 1 тонна.
Ранее сообщалось о разработке космической ядерной установки мощностью до 1 мегаватта. Проект получил название "Зевс". Разработку ведет Центр Келдыша.
Они заинтересованы в наших компетенциях по двигателям, очень хотят получить их и разобраться, как они сделаны, чтобы их повторить», — добавил Борисов. При этом глава государственной корпорации напомнил, что подобного рода партнёрские отношения у России заключены ещё и с Индией — «Роскосмос» на текущий момент активно работает над организацией первой пилотируемой миссии по выводу космического корабля Индии на околоземную орбиту. С Китае же «Роскосмос» работает над вопросом совместного создания Международной научной лунной станции — её строительство должно завершиться в три этапа, в каждом из которых страна принимает весьма активное участие.
Зачем России ядерный буксир?
Ошибка в тексте?
Об этом говорится в материалах Исследовательского центра им. В центре отмечают, что ядерный буксир с мегаваттной энергодвигательной установкой позволит отслеживать летательные аппараты. По планам центра Келдыша, буксир сможет подсвечивать воздушные цели с орбиты, а информация о засеченных объектах будет передаваться средствам ПВО. Как подчеркивают специалисты, буксир «Зевс» сможет прикрыть зону радиусом от 2200 километров до 4300 километров — в зависимости от мощности радиолокационной аппаратуры.
Затем при помощи турбин турбомашинного преобразования этот "продукт" будет трансформироваться в электрическую энергию.
А вот это электричество пойдет на питание маршевых ионных электрических реактивных двигателей, которые и используются для движения ядерного буксира. Набирает скорость такая система многократно медленнее, чем уже привычные химические двигатели. Например, до Луны ядерный буксир будет добираться значительно дольше. Тем не менее такому ядерному буксиру не требуется возить с собой большой и тяжелый запас топлива. В итоге он сможет быстрее, чем обыкновенный космический корабль, добраться до Марса или Юпитера, еще и затормозить на орбите, а потом без дозаправки вернуться обратно. Для Starship от компании SpaceX, да и для другой системы на химических ракетных двигателях, такой вариант невозможен.
Им для дозаправки потребуется садиться на поверхность планеты или же проводить длительную процедуру орбитальной дозаправки. Странник открытого космоса В связи с этим ядерный буксир "Зевс" можно назвать птицей открытого космоса. Скорее всего, его окончательная сборка будет проводиться прямо на орбите Земли, и садиться на нашу планету или какую-либо другую он не будет. Как гигантский челнок, он станет перемещаться между космическими объектами и перевозить грузы, модули или даже целые орбитальные станции. Специфика его механизмов позволит медленно разгоняться и так же степенно тормозить в космическом пространстве, обеспечивать пищей, водой и топливом межпланетные миссии, перемещать огромные объемы — возможно, даже небольшие астероиды. При этом сам по себе "Зевс" не сможет совершить прорыв.
Ошибка в тексте?
Рогозин рассказал о строительстве российской орбитальной станции с помощью ядерного буксира "Зевс"
ВЗГЛЯД / Роскосмос впервые показал схему работы ядерного буксира «Зевс» :: Новости дня | Космический буксир «Зевс», обладающий ядерной энергетической установкой («ядерным» двигателем), не станет оружием против спутников и не является ядерным оружием. |
Центр Келдыша: ядерный буксир "Зевс" можно использовать в системе ПВО РФ | «Роскосмос» опубликовал схему работы космического ядерного буксира «Зевс» с мегаваттной энергодвигательной установкой в журнале «Русский космос». |
Россия планирует испытать на МКС холодильник-излучатель для ядерного буксира «Зевс» | Дмитрий Рогозин придумал способ, как спасти российские перспективные космические проекты Разработка перспективного космического ядерного буксира «Зевс» оказалась под угрозой. |
Тянем-потянем: что известно о ядерном буксире «Зевс» - Мир 2051 | Космический корабль Зевс невероятный проект России. |
Ядерный буксир Зевс | Руководитель "Роскосмоса" Юрий Борисов заявил, что в 2030 году планируется использовать ядерный буксир "Зевс" в освоении поверхности Луны. |
Российский транспортно-энергетический модуль "Зевс" ("Нуклон", "Ядро", ТЭМ, "Геркулес").
Ядерный буксир Зевс В конце июля 2021 года в подмосковном Жуковском состоялся 15-й авиационно-космический салон МАКС 2021. Космический корабль Зевс невероятный проект России. Гендиректор «Роскосмоса» Дмитрий Рогозин сообщил, что корпорации не хватает одного триллиона рублей для завершения проекта ядерного буксира «Зевс».
Стало известно предназначение космического буксира «Зевс»
Космический буксир «Зевс» с ядерной энергоустановкой, который разрабатывается в России, не является ядерным оружием, заявил ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт. С 2009 года Роскосмос работает над созданием ядерного буксира «Зевс» в рамках программы «Нуклон». С такой помпой разрекламированный проект ядерного буксира «Зевс» отменяется, дескать, у Роскосмоса нет на него денег. Сам же космический буксир называется "Зевс", а не "Нуклон", как пишут многие.
Россия создаст космический ядерный буксир: он нужен Китаю для создания лунной станции
В течение этого срока модуль способен совершить несколько миссий, возвращаясь на околоземную орбиту для стыковки с очередной полезной нагрузкой и дозаправки рабочим телом для электроракетных двигателей. После исчерпания ресурса аппарат остается на радиационно-безопасных орбитах вокруг Земли или направляется в дальний космос. Путями неизбитыми Реализовать ядерный буксир «Зевс» в «железе» по силам за шесть-семь лет, а летные испытания могут начаться в конце этого десятилетия, когда космический комплекс «Нуклон», включающий наземную космическую инфраструктуру и необходимые средства выведения, будет полностью готов к работе. Александр Блошенко сообщил, что первый образец орбитальной ядерной установки «Зевс» будет готов к 2030 г.
Если опираться на имеющиеся ракеты, то серьезно можно говорить только об «Ангаре-А5». И то с ее помощью можно вывести в космос систему не самой большой мощности из-за ограничений по габаритам радиаторов. Когда появится сверхтяжелая ракета, она может быть использована для запуска на орбиту установки мощностью мегаватт и выше.
Основная проблема, решение которой может занять продолжительное время, — подтверждение ресурса и надежности, доказательство, что ядерный буксир может работать так долго, как требуется. Если «железо» можно сделать вполне оперативно, то на его тестирование уйдет несколько лет. Такие испытания вполне реально провести на созданных в нашей стране уникальных стендах.
Весьма перспективным выглядит также использование цифровых методик, позволяющих имитировать работу ядерной энергодвигательной установки в широком диапазоне. Цифровое моделирование дает возможность выловить такие сочетания заданных параметров, при которых работоспособность системы не обеспечивается. Выгода здесь явная: нельзя позволить годами гонять стенды — это долго и дорого, надо использовать что-то более современное, компактное и совершенное.
Сбросить тепло Один из ключевых вопросов, который требует решения, — отвод излишнего, так называемого низкопотенциального, тепла. В космосе это можно сделать только излучением. При этом критичным становится вопрос размеров излучателя радиатора , когда при выработке сотен и тысяч киловатт электроэнергии необходимо сбросить огромные тепловые потоки.
Для этого нужно либо поднять температуру и уменьшить размеры излучателя, либо, наоборот, при умеренных температурах увеличивать его размер. Увы, в последнем случае излучатель занимает гигантские площади — чуть ли не с футбольное поле. Оптимальный способ радиационного сброса тепла еще предстоит выбрать.
Учитывая, что транспортно-энергетический модуль должен работать в космосе долгие годы и даже десятилетия, принципиальным был вопрос ресурса механических систем, принимая во внимание трение деталей. Трудно было достичь необходимой долговечности подшипников.
Запуск первого готового буксира «Зевс» планировалось осуществить в 2030-м году. После этого начнется серийное производство аппарата для коммерческого использования. Отметим, что согласно данным опубликованным на сайте госзакупок, создание аванпроекта «Зевса» завершится в июле 2024 года, а его стоимость составит 4,2 млрд рублей.
Только в этом случае миссия будет иметь смысл! Здесь надо понимать, что «аппетиты» запускаемых аппаратов в электрической мощности возрастают примерно вдвое каждые пять лет. В абсолютных цифрах потребности уже сегодня выражаются десятками киловатт.
В этой «гонке» солнечные батареи выглядят аутсайдерами — ведь их площадь не может расти бесконечно. Космическая система, построенная на ядерных технологиях, позволит многократно увеличить электрическую мощность по сравнению с конструкциями, использующими энергию солнца. Такие модули могут применяться для транспортировки тяжелых спутников с низкой околоземной орбиты на геостационарную, снабжения грузами лунных орбитальных станций, доставки оборудования для пилотируемых экспедиций на Марс, обеспечения перелетов сложных многофункциональных автоматических зондов с посещением нескольких планет одновременно. От киловатт до мегаватт В конце декабря 2020 г. Основные элементы орбитальной ядерной установки: развертываемая конструкция — силовые элементы, или, проще говоря, рама, позволяющая удалить ядерный реактор от полезной нагрузки на максимальное расстояние, измеряемое десятками метров; газоохлаждаемый высокотемпературный компактный реактор; система преобразования тепловой энергии в электрическую; радиаторы-излучатели для сброса избыточного тепла в космос; маршевая двигательная установка на основе блока электроракетных двигателей. В качестве основных рассматриваются ионные двигатели мощностью до нескольких десятков киловатт и с удельным импульсом свыше 7000 секунд. При электрической мощности на борту аппарата в 1 МВт электроракетная двигательная установка обеспечит тягу до 20 Н. Этого вполне достаточно для эффективного ускорения в космосе многотонных объектов.
В зависимости от космической миссии полезная нагрузка может быть различной. Масса и габариты базовых элементов должны обеспечивать их размещение в космических головных частях российских ракет-носителей класса «Ангара-А5» и выше. В широком диапазоне Интересно, что концепция транспортной системы за годы проектирования не изменилась, но результаты позволили cделать вывод о целесообразности создания ядерных энергодвигательных систем различного уровня мощности. Например, если нужно осуществлять какие-то межпланетные транспортировки тяжелых грузов, что требует большой энергетики, система будет иметь мощность в мегаватт и выше. Если миссия менее энергоемкая, то подойдет аппарат, вырабатывающий несколько сот киловатт. Достигнутые материаловедческие и технологические решения помогут создавать энергодвигательные системы широкого диапазона мощности и сложности. В частности, 25 января 2022 г. На дальних рубежах В настоящее время прорабатывается следующая схема работы аппарата.
Накануне межпланетной миссии модуль полностью собирается и испытывается на Земле. Затем он — с компактно сложенными под головным обтекателем ракеты-носителя раскладными элементами и при выключенном ядерном реакторе — выводится на радиационно-безопасную орбиту высотой свыше 800 км.
Космический корабль сможет развить гораздо большую скорость, чем существующие образцы. Об этом со ссылкой на сайт госзакупок сообщают РИА Новости.
Ядерный буксир предназначен для полетов к Луне и планетам Солнечной системы.
Рогозин заявил о нехватке средств на ядерный буксир «Зевс»
Россия планирует отправить к Юпитеру ядерный буксир «Зевс» | Российский космический ядерный буксир "Зевс" можно использовать для выведения из строя электромагнитным импульсом космических аппаратов потенциальных. |
Предназначение космического буксира «Зевс» объяснили в РАН на фоне американской паники | Космический буксир «Зевс» с ядерной энергоустановкой, который разрабатывается в России, не является ядерным оружием, заявил ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт. Так он прокомментировал «РИА Новости» сообщения. |
Рогозин: 1 трлн рублей форсировал бы создание перспективной транспортной системы «Зевс»
Расчетный ресурс ядерной энергодвигательной установки составляет десять лет. В течение этого срока модуль способен совершить несколько миссий, возвращаясь на околоземную орбиту для стыковки с очередной полезной нагрузкой и дозаправки рабочим телом для электроракетных двигателей. После исчерпания ресурса аппарат остается на радиационно-безопасных орбитах вокруг Земли или направляется в дальний космос. Путями неизбитыми Реализовать ядерный буксир «Зевс» в «железе» по силам за шесть-семь лет, а летные испытания могут начаться в конце этого десятилетия, когда космический комплекс «Нуклон», включающий наземную космическую инфраструктуру и необходимые средства выведения, будет полностью готов к работе. Александр Блошенко сообщил, что первый образец орбитальной ядерной установки «Зевс» будет готов к 2030 г. Если опираться на имеющиеся ракеты, то серьезно можно говорить только об «Ангаре-А5». И то с ее помощью можно вывести в космос систему не самой большой мощности из-за ограничений по габаритам радиаторов.
Когда появится сверхтяжелая ракета, она может быть использована для запуска на орбиту установки мощностью мегаватт и выше. Основная проблема, решение которой может занять продолжительное время, — подтверждение ресурса и надежности, доказательство, что ядерный буксир может работать так долго, как требуется. Если «железо» можно сделать вполне оперативно, то на его тестирование уйдет несколько лет. Такие испытания вполне реально провести на созданных в нашей стране уникальных стендах. Весьма перспективным выглядит также использование цифровых методик, позволяющих имитировать работу ядерной энергодвигательной установки в широком диапазоне. Цифровое моделирование дает возможность выловить такие сочетания заданных параметров, при которых работоспособность системы не обеспечивается.
Выгода здесь явная: нельзя позволить годами гонять стенды — это долго и дорого, надо использовать что-то более современное, компактное и совершенное. Сбросить тепло Один из ключевых вопросов, который требует решения, — отвод излишнего, так называемого низкопотенциального, тепла. В космосе это можно сделать только излучением. При этом критичным становится вопрос размеров излучателя радиатора , когда при выработке сотен и тысяч киловатт электроэнергии необходимо сбросить огромные тепловые потоки. Для этого нужно либо поднять температуру и уменьшить размеры излучателя, либо, наоборот, при умеренных температурах увеличивать его размер. Увы, в последнем случае излучатель занимает гигантские площади — чуть ли не с футбольное поле.
Оптимальный способ радиационного сброса тепла еще предстоит выбрать. Учитывая, что транспортно-энергетический модуль должен работать в космосе долгие годы и даже десятилетия, принципиальным был вопрос ресурса механических систем, принимая во внимание трение деталей.
Химический или ионный Большинство современных космических аппаратов получают скорость для полета за счет химических процессов в двигателях ракет-носителей и разгонных блоков. Дальше космический аппарат летит сам.
Проблема этого механизма в том, что химические двигатели очень быстро расходуют топливо а значит, баки должны быть весьма велики и работают буквально десятки секунд. Таким образом, космические аппараты для межпланетных миссий, беря разгон во время вывода, затем используют топливо химических ракетных двигателей только для маневрирования или торможения. Как подспорье существует возможность использовать гравитационное ускорение, пролетев мимо какой-нибудь планеты и получив дополнительную скорость.
Сейчас известно, что идёт работа над перспективной ракетой "Амур-СПГ", у которой будет многоразовой первая ступень. Со слов главы "Роскосмоса", такой модуль можно будет использовать повторно не менее 50 раз.
Это позволит российским космонавтам выполнять работы по обслуживанию буксира. Первое: наклонение орбиты станции должно быть точно таким же, как наклонение орбиты "Зевса", а наклонение орбиты "Зевса" должно быть таким, каким необходимо его иметь с точки зрения оптимальной отлётной траектории к Луне и далее», — приводит «РИА Новости» слова руководителя «Роскосмоса». Таким образом, новая станция, вероятно, будет размещена не на орбите с наклонением 97—98 градусов, которая была выбрана ранее.
Космический ядерный буксир сможет выводить из строя спутники
По сравнению с ионными, плазменные двигатели обладают большей тягой, но меньшим коэффициентом полезного действия. Подобные двигатели обладают существенно меньшей тягой по сравнению с химическими, однако отличаются малым расходом топлива и продолжительностью функционирования - срок непрерывной работы может исчисляться годами. Всю эту конструкцию Зевса, в сложенном виде будет выводить на орбиту Земли наша супертяжёлая ракета Ангара-5В с третьей водородной ступенью на двигателе РД-0150. В этой версии А5В "Ангара" станет мощнее "Протона" в два раза! Небольшая лекция от Дмитрия Конаныхина, она хоть и древняя, он тогда многого не знал, да и, знать не мог -- всё под 7-ю замками, но она даёт общее представление о работе ядерного космического буксира и предшествующие ему наработки в нашей стране по созданию ядерного реактора для космоса.
Проект получил название "Зевс". Разработку ведет Центр Келдыша. Ядерная энергетика уже использовалась в космосе: в период с 1970 по 1988 годы в СССР был осуществлен запуск 32 космических аппаратов с термоэлектрической ядерной энергоустановкой, а в период с 1960 по 1980 годы разработан и прошел испытания на Семипалатинском полигоне ядерный ракетный двигатель.
И такие проработки ведутся. В частности, если говорить о практическом использовании будущей российской орбитальной станции РОС , по словам Борисова, "нам, действительно, нужно транспортное средство, которое достаточно оперативно могло бы доставлять и спускать грузы, то есть результаты научных исследований на Землю. Сейчас российские корабли могут доставить на МКС сотни килограммов, а вернуть всего единицы.
В России идут научно-исследовательские работы по проектам кораблей для возврата грузов, Борисов уточнил, что основные технические проблемы, в частности, создание изоляционных термостойких покрытий, решаемы. По словам Юрия Борисова, ее можно будет запускать в космос более 50 раз. А, может быть, даже более 100.
Начались испытания ТВЭЛов [53]. В декабре 2014 были изготовлены трубы из молибденового сплава для рабочих органов системы и защиты реакторной установки [54].
На заседании главных конструкторов проекта от 5 августа разбирались вопросы по организации работ, разработке дополнения к проекту и созданию испытательного комплекса Ресурс [56]. В октябре в ходе заседания совета по проекту, рассматривались вопросы по опытно-конструкторским работам его составных частей, схемы деления ТЭМ, возможные технические средства в составе модуля, обеспечение радиационной безопасности при выводе на орбиту [57]. Однако летом 2016 года стало известно, что Роскосмос заказал Центру имени Келдыша разработку транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса стоимостью в 3,8 миллиарда рублей [59]. В конце марта на выставке «Госзаказ — ЗА честные закупки 2016» вновь был показан макет ядерной энергодвигательной установки мегаваттного класса [60]. Он напомнил, что речь идёт об устройстве, способном вырабатывать 1 мегаватт энергии, что откроет принципиально новые возможности в освоении космоса, а также о том, что ни США , ни Европа на данный момент не обладают подобной технологией.
Лётный прототип должен появиться в 2022-2023 годах [19]. Дмитрий Рогозин « Это уникальная работа, она идёт, развивается, но мы хотим понять, как и для чего мы будем использовать эти новые возможности [59]. В конце апреля 2017 года генеральный конструктор Роскосмоса Виктор Хартов подтвердил успешный ход работ по ТЭМ, сообщив некоторые технические подробности [35]. Прежде всего о том, что есть готовый реактор, системы преобразовывают вырабатываемую им тепловую энергию в электрическую, которая поступает на ионные двигатели [35]. Двигатели мощностью 30 кВт сейчас испытываются в камере.
По его словам уже есть около 10 ключевых технологий, которые сейчас воплощают в жизнь [35]. В октябре 2017 года стало известно, что, согласно утверждённой программе развития космодромов, планируется создать технический комплекс подготовки космических аппаратов на основе транспортно-энергетических модулей [61]. В 2017 году весь бюджет подпрограммы «Приоритетные инновационные проекты ракетно-космической промышленности» размером 2,2 миллиарда рублей был расписан на единственный проект — «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса» [62]. В августе на главной странице официального сайта Исследовательского центра имени М. Келдыша в тексте программного меморандума к 85-летию предприятия появилось подтверждение продолжения работ по ЯЭДУ [64].
В октябре Роскосмос дал поручение специалистам « КБ Арсенал » рассмотреть эскизные предложения, провести расчётно-экспериментальные исследования и проработать облик буксира не только с ядерной энергодвигательной установкой, но и с электроракетными двигателями [65]. В марте госкорпорация Роскосмос оштрафовала « Центр имени Келдыша » на 154,9 миллиона рублей за срыв сроков выполнения работ по производству ТЭМ, которые должны были завершится к ноябрю 2018 года [67]. В годовом отчёте Роскосмоса за август сообщалось, что были выполнены испытания отдельных частей макета наземного прототипа модуля [68]. Со слов присутствующих рядом со стендами лиц, масса сухого аппарата составляет около 6 тонн, фермы конструкции и панели излучателей уже протестированы [69]. Самая безопасная орбита для выведения буксира — не менее 800 километров, скорость его будет невысока, но работать он сможет очень долго [70].
В сентябре из информации на сайте госзакупок стало известно, что Роскосмос заказал работы по прикладным инновационным исследованиям технологий создания ракетных двигателей. Исполнитель по контракту должен предоставить предложения по проектному облику электроракетного роторного двигателя в составе ядерной энергодвигательной установки межорбитального буксира. Сумма контракта составляет 525,6 млн рублей.
Что за ядерный буксир «Зевс» показывали Путину?
Генеральный директор АО ГНЦ «Центр Келдыша» (входит в «Роскосмос») Владимир Кошлаков сообщил, что его предприятие работает над ионными двигателями для перспективного российского ядерного буксира «Зевс». С такой помпой разрекламированный проект ядерного буксира «Зевс» отменяется, дескать, у Роскосмоса нет на него денег. Ядерный буксир по имени "Зевс". Опыт эксплуатации в космосе реакторных ядерных энергоустановок есть только у нашей страны. Речь идет о космическом буксире с ядерной энергодвигательной установкой (ЯЭДУ) мегаваттного класса – потенциально прорывном проекте, слухи о котором ходят уже без малого десять лет.