Такое случается раз в 80 лет: на Земле увидят взрыв «полыхающей звезды». Моделирование процесса образования сверхновых звезд говорит о том, что непосредственно перед взрывом яркость звезды должна падать.
Ученые раскрыли секрет гигантских взрывов на звездах
Звезда стала новостью последних дней, поскольку явила необычный по глубине минимум яркости. И когда пройден критический предел, атомные ядра в ядре звезды начинают бешеную реакцию синтеза в огромном количестве, что приводит к взрыву. Причиной взрыва стала звезда, в десяток раз тяжелее Солнца. Ученые предполагают, что «Тасманийский дьявол» произошел из-за «неудавшихся» сверхновых — то есть звезд, которые превратились в черную дыру или нейтронную звезду, прежде чем взорваться. звезда бетельгейзе взорвалась, взрыв бетельгейзе, бетельгейзе взорвалась Бетельгейзе – звезда в созвездии Ориона, одна из ярчайших на ночном небосклоне.
Телескоп Джеймса Уэбба зафиксировал очень редкий взрыв в космосе
Бетельгейзе взорвалась. Анализируя данные космического телескопа Хаббла НАСА и нескольких других обсерваторий, астрономы пришли к выводу, что ярко-красная звезда-сверхгигант Бетельгейзе буквально взорвала поверхность в 2019 году, потеряв значительную часть своей видимой поверхности и вызвав гигантский выброс поверхностной массы SME. Это то, чего никогда раньше не видели в обычном поведении звезды. Солнце обычно сдувает части своей разреженной внешней атмосферы, короны, в результате события, известного как выброс корональной массы CME.
Звезда-монстр все еще медленно восстанавливается после этого катастрофического потрясения. Эти новые наблюдения дают ключ к пониманию того, как красные звезды теряют массу в конце своей жизни, когда их печи ядерного синтеза выгорают, прежде чем взорваться как сверхновые. Величина потери массы значительно влияет на их судьбу.
Однако удивительно капризное поведение Бетельгейзе не является доказательством того, что звезда вот-вот взорвется в ближайшее время. Таким образом, событие потери массы не обязательно является сигналом неминуемого взрыва.
Изображение взято с: pixabay. Важным моментом выступает замер параллакса. Так именуют видимое движение светила на фоне более далеких объектов. Трудности в случае с Бетельгейзе обусловлены ее внушительными размерами и ассиметричностью внешнего диска, который периодически словно меняет габариты.
Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется. Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений.
Дата появления сверхновой Кассиопея A определялась по световому эху от туманности , в то время как возраст остатка сверхновой RX J0852. В 2009 году в антарктических льдах были обнаружены нитраты , соответствующие времени взрыва сверхновой. Остаток сверхновой SN 1987A, снимок телескопа « Хаббл », опубликованный 19 мая 1994 года [17] 23 февраля 1987 года в Большом Магеллановом Облаке на расстоянии 168 тыс. Впервые был зарегистрирован поток нейтрино от вспышки. Вспышка интенсивно изучалась с помощью астрономических спутников в ультрафиолетовом, рентгеновском и гамма-диапазонах. Ни нейтронная звезда , ни чёрная дыра , которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены.
Расчеты, составленные по такой модели Млечного пути, ранее предположили, что в среднем по одной звезде умирает где-то в выпуклости или диске каждые несколько десятилетий. Но не все взрывы привлекают внимание звездочётов. Пыль и газ, выброшенные из звезд предыдущих поколений, делают всю галактику — и особенно ее центр — «затуманенной», из-за чего сверхновые на другой стороне диска могут быть трудноразличимы с Земли. При этом, чтобы войти в историческую хронику, сверхновая должна быть не просто видимой, но, как выразился Филдс, «сверкать как новогодняя елка». Его команда подсчитала, что в лучшем случае только одна из пяти сверхновых вспыхивает достаточно ярко, чтобы прожечь пыльную дымку и светить в течение 90 дней, а это означает, что такое исключительное событие можно ожидать в лучшем случае раз в пару столетий — о чем и свидетельствуют исторические записи. Остаток Сверхновой Кеплера SN 1604 — последней яркой сверхновой в Млечном пути, которую можно было наблюдать полтора года. Конечным результатом их работы была карта, показывающая, где в небе наиболее вероятно возникновение самых ярких сверхновых. Для ее составления группа исследователей проследила местонахождение около 300 известных астрономам остатков после взрывов сверхновых, группирующихся в галактическом диске и особенно вблизи центра Млечного Пути. Но, что интересно, описанные древними астрономами сверхновые нередко находились максимально далеко от центра нашей галактики. Так, сверхновая 1054 году оставила после себя туманность максимально далеко от нас, с другой стороны Млечного пути. К сожалению, имея всего несколько исторически подтвержденных взрывов сверхновых, исследователи не могут сделать сильных статистических заявлений. Но они подозревают, что своеобразное расположение исторических сверхновых подрывает одно или несколько их предположений. Например, рассматривать Млечный Путь как два жареных яйца — не самая лучшая идея.
Маленькая чёрная дыра уничтожила звезду и устроила сверхмощный взрыв
Предполагается, что вспышка T CrB будет видна с Земли невооруженным глазом. В документах астрономы нашли описания того же явления в 1787, 1866 и 1946 годах. То есть, звезда взрывается примерно каждые 80 лет, притом яркость ее увеличивалась более чем в 600 раз. Ученые полагают, что T CrB — двойная звезда. Состоит она из белого карлика и красного гиганта.
Они сумели заснять редкое и уникальное астрономическое явление - вспышку звезды явление, когда звезда резко увеличивает свою яркость в соседней галактике. Такие редкие кадры можно получить один раз за век.
Его наличие ещё раз доказывает, что изменения в облике Бетельгейзе могут быть связаны не только с процессами внутри звезды, но и с эволюцией газопылевых образований рядом с ней.
Изображение Бетельгейзе, полученное в 2009 году с помощью Очень большого телескопа. Здесь хорошо виден газовый «хвост» eso. Бетельгейзе часто упоминается в фантастике. Например, она стала целью космических перелётов в романе Жерара Клейна «Звёздный гамбит» 1958 и Пьера Буля «Планета обезьян» 1963. Воображение фантастов подпитывает неизбежность взрыва красного сверхгиганта. В повестях Роберта Чейза «Транзит Бетельгейзе» 1990 и «Индевор» 2005 рассказывается о спасательной экспедиции к одной из планет системы Бетельгейзе, на которой остались колонисты, перед взрывом звезды. В романе Роберта Сойера «Вычисление Бога» 2001 угроза гибели обитаемых миров из-за превращения Бетельгейзе в сверхновую заставляет Творца явить чудо и тем самым подтвердить своё существование.
Постепенно ожидания фантастов перекочевали в паранаучную литературу, а оттуда — на страницы «жёлтой» прессы. Позже они стали основой катастрофических сценариев. Первую волну паники в информационном пространстве спровоцировали публикации 2009 года о том, что, по наблюдениям астрономов, радиус звезды уменьшается. Они очень «удачно» наложились на ожидание конца света по календарю майя, который должен был наступить 21 декабря 2012 года. Конспирологи и ясновидцы всех мастей пытались убедить общественность, что именно взрыв Бетельгейзе разрушит нашу планету. В декабре 2011 года учёные из NASA в отдельном пресс-релизе развенчали все эти мифы. Изменение формы и яркости фотосферы Бетельгейзе за 2019 год, зарегистрированное Очень большим телескопом eso.
Сегодня этот взрыв уже не виден на снимках, но полученные «Хабблом» данные позволяют исследователям понять последствия этого события Галактика UGC 2890, находящаяся в созвездии Жираф и расположенная в 30 миллионах световых лет от Земли, была запечатлена телескопом "Хаббл". Похожая на Млечный Путь, галактика выглядит на снимке как спираль с выпуклостью в центре и звездным диском. В 2009 году астрономы заметили сильный взрыв в галактике Жираф.
Произойдет еще один мощный взрыв: хабаровский астроном рассказал, что ждать в небе и на Земле
Она уничтожит потенциальную жизнь на планетах, которые находятся в радиусе поражения взрыва сверхновой. Ученые рассказали об угрозе, которая исходит от звезд. Астрономы Университета Иллинойса выявили новую космическую опасность для жизни на планетах, аналогичных Земле, сообщает статья в журнале The Astrophysical Journal. Установлено, что сверхновые звезды излучают интенсивные рентгеновские лучи, которые могут оказывать негативное воздействие на планеты, находящиеся на расстоянии более 100 световых лет. Сверхновые возникают, когда звезда взрывается и их ударные волны сталкиваются с окружающим плотным газом. В результате столкновения генерируются рентгеновские лучи, которые могут достигать планет и воздействовать на них в течение продолжительного времени — от месяцев до десятилетий.
Пишет Теперь Внимание! Взрыв произошел в созвездии Лисички еще в 2020 году, но известно о нем стало только сейчас. Специалистов насторожил характер явления - они не понимают, как объект кодовым названием AT2021lwx может «полыхать» так долго. В космосе происходят взрывы и помощнее например, при столкновении и слиянии черных дыр , но они мгновенны - вся энергия высвобождается за доли секунды, а здесь речь идет о нескольких годах.
Поэтому их относят к типу I. Кроме того, в их спектрах присутствуют линии гелия. Изучение сверхновых дало нам понимание того, как эволюционируют звезды и через какие этапы жизненного пути они проходят, прежде чем взорвутся. Благодаря исследованиям ученые поняли важность и роль, которую сверхновые играют в формировании новых звезд, планет и других объектов нашей Вселенной. На фото взрывающаяся сфера.
Сверхновые типа Ic, как правило, не имеют в своих спектрах водорода и гелия, так как оба этих элемента были "утеряны" во время жизненного цикла звезды. Кроме этих видов сверхновых существуют еще несколько подкатегорий типа I и II, включая сверхновые типа Ic - BL, которые относятся к гамма-всплескам и сверхновым с очень высокой светимостью. Жизненный цикл звезды, заканчивающийся рождением сверхновой Звезды, подобно живым существам, проходят через определенные фазы жизненного цикла, начиная с рождения и заканчивая смертью. Правда, в отличие от живых организмов, срок жизни звезды может составлять несколько миллиардов лет. Прежде чем произойдет вспышка сверхновой, звезда должна "пережить" несколько стадий.
Ниже рассмотрим этапы звездной эволюции. Звездная туманность Рождение формирование звезды происходит в туманности - облаке пыли и газообразного вещества, включая водород и гелий. По этой причине некоторые туманности получили название "звездных яслей. Сами туманности образуются из газа и пыли, выброшенных взрывом умирающей звезды, например, при вспышке сверхновой. Россия, Иран и Китай намерены "перезагрузить" систему коллективной безопасности в Персидском заливе В туманностях частицы газа и пыли сильно рассеяны, но со временем под воздействием сил гравитации они начинают собираться в сгустки.
По мере роста сгустков их гравитация также увеличивается, притягивая к себе все новые и новые частицы. В конце концов, фрагмент пыли и газа становится достаточно плотным, чтобы схлопнуться под действием собственной гравитации. Это приводит к нагреванию материала и формированию протозвезды. Протозвезда Следующим этапом или циклом жизни звезды является образование протозвезды. На этой стадии происходит дальнейшее сгущение газа и пыли, содержащихся в туманности.
В процессе уплотнения происходит постепенное повышение температуры и увеличение давления в ядре, после чего начинается ядерная реакция Протозвезда уже похожа на обычную звезду, но пока ее ядро еще недостаточно раскалено для начала термоядерного синтеза. Светимость протозвезды связана с нагреванием и сжатием ее ядра. Время гравитационного сжатия относительно невелико. Оно зависит от массы протозвезды. Чем больше масса, тем быстрее протекает процесс гравитационной конденсации.
Протозвезды с такой же массой, как у нашего Солнца, сжимаются за 100 млн. При взрыве сверхновых в космос выбрасываются такие важные элементы, как железо, калий, неон и т. И все начинается заново. Некоторые из высвободившихся элементов со временем могут образовать планеты, например такуе как наша Земля. На изображении вспышка сверхновой звезды.
LFBOT — это редкие астрономические события, впервые выявленные в 2018 году и характеризующиеся интенсивным, ярким взрывом — более мощным, чем вспышка сверхновой, после которого следует быстрое угасание. Однако «Тасманийский дьявол» продемонстрировал по меньшей мере 14 беспорядочных ярких вспышек, каждая из которых длилась по несколько минут. Они происходили в течение 120 дней с момента его первого зарегистрированного взрыва, причем многие последующие вспышки были ярче, чем предыдущие. МненияМаск оценил планы Роскосмоса повторно использовать «Амур-СПГ» до 100 раз Событие, которое произошло в сентябре 2022 года, было зафиксировано с помощью программного обеспечения, разработанного ведущим автором исследования Анной Хо из Корнеллского университета. Позже оно было идентифицировано 15 телескопами по всему миру.
В космосе впервые зафиксировали взрыв сверхновой в результате столкновения звезд
В космосе произошел взрыв ярче Млечного Пути | Это остаток сверхновой, взрыв которой был таким ярким, что в 1054 году ее заметили астрономы в Китае. |
Зафиксирован крайне редкий тип взрывов в космосе | И когда пройден критический предел, атомные ядра в ядре звезды начинают бешеную реакцию синтеза в огромном количестве, что приводит к взрыву. |
В космосе произошёл мощнейший взрыв повторной новой звезды | Новость о зафиксированном учеными огромном взрыве в космосе, который стал самым большим за всю историю наблюдений, вызвала широкий резонанс в научном сообществе. |
Что произойдет, когда Бетельгейзе станет сверхновой?
В 2022 году жители Земли смогут увидеть в небе взрыв звезды, точнее даже взрыв двух звезд. Звезда в созвездии Северной Короны находится от Земли довольно близко — на расстоянии всего 3000 световых лет. Возможно, в ближайшее время все жители планеты Земля станут свидетелями редчайшего события, происходящего раз в несколько тысяч лет – Самые лучшие и интересные новости по теме: Бетельгадзе, взрыв звезды, сверхновая на развлекательном портале Ученых встревожил странный взрыв в космосе, произошедший в восьми миллиардах световых лет от. Вы здесь: Главная» Все новости» Наука» В космосе впервые зафиксировали взрыв сверхновой в результате столкновения звезд. Этот взрыв, получивший название GRB 230307A, вероятно, возник, когда две нейтронные звезды — невероятно плотные остатки звезд после вспышки сверхновой — слились в галактике на расстоянии около одного миллиарда световых лет.
Опасность из космоса: к чему приводит взрыв звезд
Карлик то и дело вытягивает энергию из своего соседа, что в конечном итоге приводит к термоядерному взрыву, свет от которого напоминает рождение новой звезды. В гигантской галактике Вертушка взорвалась звезда, в результате чего образовалась удивительная сверхновая. Взрыв еще одной сверхновой был зафиксирован астрономами, он произошел в галактике М101 в 21 млн световых лет от Солнечной системы. А столкновение таких звезд и последующий космический взрыв распыляет эту материю, которая богата свободными нейтронами. Этот взрыв, получивший название GRB 230307A, вероятно, возник, когда две нейтронные звезды — невероятно плотные остатки звезд после вспышки сверхновой — слились в галактике на расстоянии около одного миллиарда световых лет.
Взорвётся ли Бетельгейзе и чем это нам грозит?
Зафиксирован крайне редкий тип взрывов в космосе: Космос: Наука и техника: | Произойди сейчас взрыв сверхновой, различные астрономы быстро бы скооперировались, делясь данными с телескопов и детекторов гравитационных волн, чтобы превратить даже тусклую и невидимую глазом сверхновую в самую изученную звезду в истории человечества. |
В космосе произошел взрыв ярче Млечного Пути ᐈ новость от 09:21, 29 октября 2023 на | Как астрономы обнаружили остатки взрывов первых звезд в истории космоса. |
Астрономы зафиксировали самый мощный взрыв во Вселенной | Звезда за короткое время быстро потускнела — появилось предположение. что она может взорваться и превратиться в сверхновую. Произойдёт ли взрыв и, если да, чем это нам грозит? |
Новости Рубцовска | Взрыв произошел на безопасном для нас расстоянии — около 20 тысяч световых лет внаправлении центра нашей Галактики, но по яркости сверхновая не уступала Юпитеру и сияла на небе около 1 года, постепенно угасая. |
К космосе нашли странную звезду: она вспыхивает каждые 80 лет и все равно остается целой | И одна из возможных в ближайшее время катастроф — взрыв звезды Бетельгейзе. |
Ученые впервые увидели взрыв умирающей звезды. Он приблизит человечество к раскрытию тайн космоса
Авторы исследования предполагают, что существует несколько объяснений уникальной формы взрыва: звезда сформировала диск непосредственно перед смертью, или же это может быть недоформированная сверхновая, ядро которой коллапсирует в черную дыру или нейтронную звезду, а затем поглощает остаток светимости. Ожидается, что это открытие послужит толчком для дальнейших исследований и поможет астрономам лучше понять, как умирают звезды и как они могут образовывать черные дыры.
Уже на памяти человечества, в 1054 году, взрывалась сверхновая звезда, превратившаяся в Крабовидную туманность. Произошло это в шести тысячах световых годах от Земли, то есть в десять раз дальше по сравнению с Бетельгейзе. Взорвавшаяся в 1054 году сверхновая стала самой яркой звездой на небе, блеск которой угас спустя два года. Китайские астрономы подробно описали это событие. Если звезда с массой Бетельгейзе а масса эта оценивается астрономами в двадцать масс Солнца взорвется как сверхновая в шестистах световых годах от Земли, звезда будет похожа на зеркальную точку, яркую, как полная Луна, и цвета раскалённого стекла ночью.
Под открытым небом ночью вполне можно будет читать газету. Также сверхновая будет легко заметна в дневном свете. После собственно взрыва, который будет длиться около шести месяцев, свечение звезды будет постепенно уменьшаться, и в течение нескольких месяцев или лет она перестанет быть видимой невооружённым глазом. Насколько опасно такое событие для Земли? Если в небе появится источник света, сопоставимый с Луной, на землю будет приходить не только свет При взрыве сверхновой происходит примерно следующее: плотность звезды и температура внутри нее растет, протоны и электроны, прежде существовавшие по отдельности, начинают превращаться в нейтроны. Это приводит к быстрой потере энергии звезды, уносимой нейтрино, поэтому ядро звезды еще более сжимается и охлаждается. Звезда сбрасывает свою оболочку, в которой происходят мощные термоядерные реакции.
Проще говоря, сверхновая — это мощный взрыв, который происходит на последних стадиях эволюции массивной звезды - или когда в звезде меньшего размера -белом карлике- запускается необратимый процесс термоядерного синтеза. Вспышки сверхновых — это самые масштабные явления, наблюдаемые в космосе. Они носят как разрушительный, так и созидательный характер, поскольку являются основным источником тяжелых элементов во Вселенной. В галактиках размером с Млечный Путь взрывы сверхновых случаются примерно каждые 50 лет.
Типы сверхновых реклама Существует два основных типа сверхновых - тип I и тип II, которые классифицируются в зависимости от способа их детонации. Сверхновые типа I подразделяются на три подгруппы - Ia, Ib и Ic - на основе их спектров. Это явление происходит на последней стадии жизни массивной звезды. Звезды, заканчивающие свою жизнь в виде сверхновой II типа, отличаются огромной массой, обычно в восемь-пятнадцать раз больше массы нашего Солнца.
Когда у таких звезд заканчивается топливо - сначала водород, а затем гелий, - у них еще остается достаточно энергии и давления для синтеза углерода. Постепенно в ядре накапливаются более тяжелые элементы. Когда масса ядра звезды превышает предел Чандрасекхара максимальная масса, теоретически возможная для стабильного белого карлика, около 1,44 солнечных масс , происходит его имплозия. В конце концов, имплозия отскакивает от ядра и выбрасывает звездный материал в космос — это и есть вспышка сверхновой.
В результате остается сверхплотная нейтронная звезда. Существуют две различные подкатегории сверхновых типа II, определяемые изменениями их светимости в течение времени. Свет сверхновой подтипа II-Liner после резкого максимума быстро и линейно затухает, в то время как сверхновые подтипа II-Plateau продолжают светить довольно ярко в течение длительного периода времени. Оба этих типа имеют в своих спектрах сигнатуру водорода.
Все сверхновые первого типа не имеют в своем световом спектре линии водорода. Подтип Ia: Считается, что сверхновые данной категории образуются в бинарных звездных системах, включающих умеренно массивную звезду и белый карлик. В таких системах звездный материал перетекает к белому карлику от более крупной звезды-компаньона. Когда белый карлик накопит достаточно материала, чтобы его масса превысила предел Чандрасекхара, происходит взрыв.
Сверхновые типа Ia встречаются довольно часто, и все они в момент своего пика имеют одинаковую светимость. Поэтому они нередко используются астрофизиками для оценки космических расстояний. Подтип Ib: Так же как и сверхновые второго типа, эта подкатегория сверхновых тоже переживает коллапс ядра, однако без участия водорода. Поэтому их относят к типу I.
Кроме того, в их спектрах присутствуют линии гелия. Изучение сверхновых дало нам понимание того, как эволюционируют звезды и через какие этапы жизненного пути они проходят, прежде чем взорвутся. Благодаря исследованиям ученые поняли важность и роль, которую сверхновые играют в формировании новых звезд, планет и других объектов нашей Вселенной. На фото взрывающаяся сфера.
Сверхновые типа Ic, как правило, не имеют в своих спектрах водорода и гелия, так как оба этих элемента были "утеряны" во время жизненного цикла звезды. Кроме этих видов сверхновых существуют еще несколько подкатегорий типа I и II, включая сверхновые типа Ic - BL, которые относятся к гамма-всплескам и сверхновым с очень высокой светимостью.
Новая звезда слева и тот же участок неба четырьмя днями ранее.
Когда две звезды вращаются друг вокруг друга, плотный белый карлик откачивает водород из своего более крупного компаньона. Этот водород попадает в атмосферу меньшей звезды, где нагревается. Когда водород становится достаточно горячим и плотным, на поверхности белого карлика запускается ядерный синтез, высвобождая огромное количество энергии, которое взрывным образом выбрасывает несгоревший водород в космос.
В отличие от сверхновой типа Ia, в которой взрывается белый карлик, обе звезды выживают и продолжают свои отношения, чтобы снова взорваться в другой раз.
Ученые зафиксировали очень редкий тип взрывов в космосе
Особенно наблюдательные любители космоса в течение нескольких недель смогут невооружённым глазом рассмотреть в ночном небе уникальное событие — взрыв звезды RS Змееносца. Звезда в космосе. Новости окружающая среда Бетельгейзе может взорваться в сверхнову. Взрывы сверхновых происходят, когда у массивных звезд заканчивается топливо для ядерного синтеза. Остаток Cas A расположен на расстоянии 11 000 световых лет в созвездии Кассиопеи, а с Земли взрыв стал виден совсем недавно — около 340 лет назад. Звезда в созвездии Северной Короны находится от Земли довольно близко — на расстоянии всего 3000 световых лет.
В космосе произошел самый мощный гамма-всплеск за всю историю человечества
Лишь два российских прибора и несколько других смогли определить источник и посчитать мощность взрыва. Источник фото: Фото редакции Одним из приборов оказался аппарат «Конус» отечественного производства. После этого учены смогли посмотреть параметры гамма-всплеска.
Трудности в случае с Бетельгейзе обусловлены ее внушительными размерами и ассиметричностью внешнего диска, который периодически словно меняет габариты. Неприятностью считается и чрезмерная яркость светила, на фоне чего изучить его нельзя даже посредством телескопа Gaia, обычно использующегося для соответствующих целей. Сотрудники Австралийского национального университета предложили новый подход.
Они проанализировали сведения, собранные в течение последних 100 лет астрономами-любителями.
Земное магнитное поле отклонит заряженные частицы, и до поверхности планеты они дойдут в минимальном количестве. Мы примерно в 10 раз дальше, чем нужно, чтобы почувствовать какие-либо последствия взрыва. Она будет будет соперничать с Луной за звание второго по яркости объекта на небе, возможно, даже будет самым ярким объектом на ночном небе более года, пока окончательно не померкнет. Это будет одно из самых зрелищных космических событий всех времен, наблюдаемое с Земли. Когда это произойдет? На данный момент мы не можем ответить на ключевой вопрос "когда". Тысячи других звезд в Млечном Пути могут стать сверхновыми раньше, чем Бетельгейзе. Пока мы не разработаем чрезвычайно мощный нейтринный телескоп для изучения нейтрино, испускаемых звездой типа Бетельгейзе, в сотнях световых лет от нас, мы не узнаем, насколько близка она к тому, чтобы стать сверхновой. Ставьте палец вверх и подписывайтесь на канал, чтобы видеть в своей ленте больше статей о космосе и науке!
Но удалось зафиксировать, что эти материалы выбрасываются в космическое пространство. И ученые считают, что в будущем из них сформируются новые звезды и планеты.
Hobart На кадрах, собранных из наблюдений 2000-2019 годов, видно, как внешняя область туманности расширяется — как и положено взрывной волне. Она состоит из волн, подобных звуковым ударам, создаваемым сверхзвуковым самолетом. Эти волны — места, где частицы ускоряются, превышая энергию самого мощного ускорителя на Земле — Большого адронного коллайдера.
Но когда поток этих ускоренных частиц сталкивается с окружающей средой, наполненной космической пылью, он замедляется и начинает откатываться обратно. Так создается вторая волна. Второй объект, для которого собран таймлапс из кадров 2000-2022 годов, — Крабовидная туманность Crab Nebula.
Зафиксирован взрыв звезды, которая в 2,5 миллиарда раз ярче Солнца
Всё это будет происходить совсем рядом, а вот увидеть взрыв в глубоком космосе очень тяжело. В последний раз сверхновая взрывалась неподалеку в 1572 году, это была звезда в нашей Галактике, и всего в 7500 световых лет от нас. А столкновение таких звезд и последующий космический взрыв распыляет эту материю, которая богата свободными нейтронами. На этих снимках астрономам не удалось обнаружить характерных вспышек и послесвечения, которые должны были возникнуть, если бы вспышка GRB 231115A появилась в результате слияния нейтронных звезд, взрыва сверхновой или других космических катаклизмов.