В химии термин период относится к горизонтальному ряду таблицы Менделеева. Периодический закон – один из важнейших законов химии, был сформулирован Дмитрием Ивановичем Менделеевым в 1869 году. строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки.
Периодический закон
это перечень химических элементов,сформирован ный по принципу увеличения зарядов атома. Что такое периодическая таблица элементов Менделеева и как ей пользоваться? Основные группы периодической системы, периоды и атомная масса химических элементов. Металлы и неметаллы в ПСХЭ — их структура в системе. Закономерности изменений свойств химических элементов в группах и периодах: слева направо по периоду, сверху вниз по группе. Период — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. В третьей группе побочной подгруппе (IIIB) шестого и седьмого периодов находятся сразу несколько металлов, сходных по строению внешнего энергетического уровня и близких по химическим свойствам.
Соединения натрия
- Периодический закон |
- Что такое период в химии кратко
- Период в химии: что это такое?
- Классификация химических элементов
- Периодические закономерности в химии: что такое период?
Что такое период в химии и какие варианты периодов существуют?
Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом особый случай - первый период ; каждый период содержит строго определённое число элементов. Первый период периодической системы элементов Специфика первого периода заключается в том, что он содержит всего 2 элемента: H и He. Место H в системе неоднозначно: водород проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia-, либо предпочтительнее в VIIa-подгруппу. Гелий - первый представитель VIIa-подгруппы однако долгое время Не и все инертные газы объединяли в самостоятельную нулевую группу. Второй период периодической системы элементов Второй период Li - Ne содержит 8 элементов. Он начинается щелочным металлом Li, единственная степень окисления которого равна I. Затем идёт Be - металл, степень окисления II. Металлический характер следующего элемента В выражен слабо степень окисления III. Идущий за ним C - типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, O, F и Ne - неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne.
Третий период периодической системы элементов Третий период Na - Ar также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща амфотерность. Si, Р, S, Cl, Ar - типичные неметаллы, но все они кроме Ar проявляют высшие степени окисления, равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов малых, по его терминологии типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и O являются наряду с H основными элементами органической материи органогенами. Все элементы первых трёх периодов входят в подгруппы а. Современная терминология - элементы этих периодов относятся к s-элементам щелочные и щёлочноземельные металлы , составляющим Ia- и IIa-подгруппы выделены на цветной таблице красным цветом , и р-элементам В - Ne, At - Ar , входящим в IIIa - VIIIa-подгруппы их символы выделены оранжевым цветом. Для элементов малых периодов с возрастанием порядковых номеров сначала наблюдается уменьшение атомных радиусов, а затем, когда число электронов в наружной оболочке атома уже значительно возрастает, их взаимное отталкивание приводит к увеличению атомных радиусов. Очередной максимум достигается в начале следующего периода на щелочном элементе.
Примерно такая же закономерность характерна для ионных радиусов. Четвёртый период периодической системы элементов Четвёртый период K - Kr содержит 18 элементов первый большой период, по Менделееву. После щелочного металла K и щёлочноземельного Ca s-элементы следует ряд из десяти так называемых переходных элементов Sc - Zn , или d-элементов символы даны синим цветом , которые входят в подгруппы б соответствующих групп П. Большинство переходных элементов все они металлы проявляет высшие степени окисления, равные номеру группы. Исключение - триада Fe - Co - Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI. Элементы, начиная с Ga и кончая Kr р-элементы , принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать химические соединения главным образом с F , но степень окисления VIII для него неизвестна. Пятый период периодической системы элементов Пятый период Rb - Xe построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов Y - Cd , d-элементов. Специфические особенности периода: 1 в триаде Ru - Rh - Pd только рутений проявляет степень окисления VIII; 2 все элементы подгрупп а проявляют высшие степени окисления, равные номеру группы, включая и Xe; 3 у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале порядковых номеров.
Шестой период периодической системы элементов Шестой период Cs - Rn включает 32 элемента. В нём помимо 10 d-элементов La, Hf - Hg содержится совокупность из 14 f-элементов, лантаноидов, от Ce до Lu символы чёрного цвета. Элементы от La до Lu химически весьма сходны. В короткой форме П. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П. Особенности периода: 1 в триаде Os - Ir - Pt только осмий проявляет степень окисления VIII; 2 At имеет более выраженный по сравнению с 1 металлический характер; 3 Rn, по-видимому его химия мало изучена , должен быть наиболее реакционноспособным из инертных газов. Если таблица Менделеева кажется вам сложной для понимания, вы не одиноки! Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе.
Затем можно приступить к изучению свойств каждого элемента. И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента. Шаги Часть 1 Структура таблицы Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы в нижнем правом углу. Элементы в таблице расположены слева направо в порядке возрастания их атомного номера.
Это объясняется увеличением ядерного заряда и сокращением размера атомов, что затрудняет удаление электрона. Металлические свойства: Слева от периодической системы находятся металлы, а справа — неметаллы. По мере перехода от металлов к неметаллам по периоду, металлические свойства уменьшаются, а неметаллические — увеличиваются.
Температура плавления и кипения: В пределах периода температура плавления и кипения элементов обычно увеличивается слева направо. Связано это с увеличением электроотрицательности и энергии ионизации элементов. Исключением в свойствах периода являются элементы группы инертных газов группа 18 , которые по своим свойствам мало зависят от положения в периоде. Химическая активность Период в химии имеет прямое отношение к химической активности элементов. Химическая активность определяется способностью элемента образовывать химические соединения. Периодическая система химических элементов включает в себя семь периодов, где каждый период соответствует электронной оболочке атома. В пределах одного периода, химическая активность элементов увеличивается от газообразных элементов с крайней левой стороны периодической системы до неметаллов и металлов с крайней правой стороны.
Самыми активными элементами в периоде являются неметаллы, такие как кислород, фтор и хлор. Они обладают высокой электроотрицательностью и способностью к образованию соединений с другими элементами. В то же время, металлы находятся в нижней части периода и обычно менее активны, хотя существуют исключения. Различные свойства элементов в периоде объясняются изменением заряда ядра атома и количеством электронов во внешней электронной оболочке. По мере увеличения заряда ядра и добавления электронов в оболочку, элементы становятся более активными и имеют большую способность к химическим реакциям. Важно отметить, что химическая активность элементов может быть изменена в различных условиях, таких как температура, давление и наличие катализаторов.
Учение о строении атома подтвердило глубинный смысл периодического закона и скорректировало его формулировку. Свое выражение периодический закон нашел в построенной Д. Менделеевым периодической системе. Периодическая система — одна, а форм периодических таблиц — более 500. Наиболее известны длинный, полудлинный и короткий варианты периодической таблицы. Как показали достижения физики в области квантовой механики строения атома, периодичность свойств элементов обусловлена периодической повторяемостью расположения валентных электронов на уровнях и подуровнях по мере роста заряда ядра атома. Закономерности периодической системы элементов широко используются современными интегрированными науками: геохимией, космохимией, физхимией, биохимией, при подборе катализаторов и т. После открытия строения атома главной характеристикой атома становится заряд ядра. Он численно равен количеству протонов в ядре и определяет число электронов в электронной оболочке атома, ее строение, а значит свойства элемента и его положение в периодической системе. В периодах и группах периодической системы химические элементы располагаются в порядке возрастания заряда их атомных ядер, то есть порядкового номера элемента. Последовательное увеличение заряда ядра определяет периодичность повторения структуры внешнего энергетического уровня атома, а значит и периодичность повторения свойств элементов и их соединений. В этом — физический смысл периодического закона. Прямую связь со строением атома имеют также номер периода и группы. Всего в периодической системе семь периодов и восемь групп короткая форма таблицы. Вспомните и дайте толкование: что такое период? Какие периоды бывают? Что такое группа? Какие бывают подгруппы? Что показывает номер периода? Номер группы? В чем их физический смысл? Говоря о физическом смысле номера группы, важно помнить, что каждая из них делится на главную и побочную подгруппы.
Например, у атома хлора, расположенного в третьем периоде в главной подгруппе VII группы, количество валентных электронов равно семи: Элементы побочных групп имеют в качестве валентных электроны внешнего уровня или нередко электроны d-подуровня предыдущего уровня. Так, например, хром, находящийся в побочной подгруппе VI группы, имеет шесть валентных электронов — 1 электрон на 4s-подуровне и 5 электронов на 3d-подуровне: Общее количество электронов в атоме химического элемента равно его порядковому номеру. Другими словами, общее количество электронов в атоме с номером элемента возрастает. Тем не менее, количество валентных электронов в атоме изменяется не монотонно, а периодически — от 1-го у атомов щелочных металлов до 8-ми для благородных газов. Иными словами, причина периодического изменения каких-либо свойств химических элементов связана с периодическими изменениями в строении электронных оболочек. При движении вниз по подгруппе атомные радиусы химических элементов возрастают ввиду увеличения количества электронных слоев. Тем не менее, при движении по одному ряду слева направо, то есть с ростом количества электронов для элементов, расположенных в одном ряду, происходит уменьшение радиуса атома. Данный эффект объясняется тем, что при последовательном заполнении одной электронной оболочки атома ее заряд, как и заряд ядра, увеличивается, что приводит к усилению взаимного притяжения электронов, в результате чего электронная оболочка «поджимается» к ядру: Вместе с тем, внутри одного периода с ростом количества электронов происходит уменьшение радиуса атома, а также возрастает энергия связи каждого электрона внешнего уровня с ядром. Это означает, что, например, ядро атома хлора будет удерживать электроны своего внешнего уровня намного сильнее, чем ядро атома натрия единственный электрон внешнего электронного уровня. Более того, при столкновении атома натрия и хлора хлор «отберет» единственный электрон у атома натрия, то есть электронная оболочка хлора станет такой же, как у благородного газа аргона, а у натрия — такой же, как у благородного газа неона. Способность атома какого-либо химического элемента оттягивать на себя «чужие» электроны при столкновении с атомами другого химического элемента называется электроотрицательностью. Более подробно про электроотрицательность будет рассказано в главе, посвященной химическим связям, но нужно отметить, что, электроотрицательность, как и многие другие параметры химических элементов, также подчиняется периодическому закону Д. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает. Следует усвоить один полезный мнемонический прием, позволяющий восстановить в памяти то, как меняются те или иные свойства химического элемента.
Что такое период в химии определение. Что такое период в химии — domino22
Во всех периодах с увеличением относительных атомных масс элементов наблюдается усиление неметаллических и ослабление металлических свойств. Итогом чудесных сновидений ученого стала Периодическая таблица химических элементов, в которой Д.И. Менделеев выстроил химические элементы по возрастанию атомной массы. Следует отметить, что период полураспада первого порядка реакции постоянна и не зависит от исходной концентрации реагента. Ведь его Периодическая таблица химических элементов грубо не верна в окончаниях всех периодов! Современная формулировка периодического закона заключается в следующем: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элемента.
Период в химии: что это такое, периодический закон и таблица
Таблицу Менделеева можно найти практически в каждой школьной химической лаборатории, и ее знание является основой современных химических знаний. Итак, давайте узнаем, как читать таблицу Менделеева, чтобы извлечь из нее как можно больше информации? Интерактивная таблица элементов Посетите Таблица элементов — основные факты Первая система Менделеева не была похожа на таблицу химических элементов, которую мы используем сегодня. Это была простая по форме описательная таблица элементов, состоящая из нескольких десятков элементов. Сколько элементов в таблице Менделеева в XXI веке? В настоящее время периодическая таблица состоит из 118 элементов, которые делятся на следующие группы:.
Если T выражается в секундах, К выражается в секундах-1, Если T выражается в минутах, К выражается в минутах-1. Полураспада реакции является время, необходимое для преобразования исходной концентрации реагента до половины. Второй порядок реакции Реакции которых скорость определяется изменением концентрации двух слагаемых.
Например, для общей реакции Характеристики Реакции второго порядка я Скорость реакции прямо пропорциональна квадрату концентрации реагирующего вещества. Величина К зависит от единицы, в которой концентрация реагента s выражается. III Полураспада реакции второго порядка обратно пропорциональна первоначальной концентрации реагентов т.
Период полураспада первого порядка реакции обратно пропорциональна К и зависит от а. Нулевой порядок реакции Реакции скорость которых не зависят от концентрации или в которой концентрация реагентов не изменяется со временем. Таким образом, скорость таких реакций остается постоянная.
Характеристики Реакции нулевого порядка я Скорость реакции не зависит от концентрации реагирующего вещества. График концентрации продуктов со временем представляет собой прямую линию, проходящую через начало координат. III Полураспада прямо пропорциональна начальной концентрации реагентов.
Химическая кинетика — раздел физической химии, который изучает влияние различных факторов на скорости и механизмы химических реакций. Под механизмом химической реакции понимают те промежуточные реакции, которые протекают при превращении исходных веществ в продукты реакции. Основным понятием химической кинетики является понятие скорости химической реакции.
В зависимости от системы, в которой протекает реакция, определение понятия «скорость реакции» несколько отличается. Гомогенными химическими реакциями называются реакции, в которых реагирующие вещества находятся в одной фазе. Это могут быть реакции между газообразными веществами или реакции в водных растворах.
Для таких реакций средняя скорость равна изменению концентрации любого из реагирующих веществ в единицу времени. Мгновенная или истинная скорость химической реакции равна. Знак минус в правой части говорит об уменьшении концентрации исходного вещества.
Значит, скоростью гомогенной химической реакции называют производную концентрации исходного вещества по времени. Гетерогенной реакцией называется реакция, в которой реагирующие вещества находятся в разных фазах. К гетерогенным относятся реакции между веществами, находящимися в разных агрегатных состояниях.
Скорость гетерогенной химической реакции равна изменению количества любого исходного вещества в единицу времени на единицу площади поверхности раздела фаз:. Кинетическим уравнением химической реакции называют математическую формулу, связывающую скорость реакции с концентрациями веществ. Это уравнение может быть установлено исключительно экспериментальным путём.
В зависимости от механизма все химические реакции классифицируют на простые элементарные и сложные. Простыми называются реакции, протекающие в одну стадию за счёт одновременного столкновения молекул, записанных в левой части уравнения. В простой реакции могут участвовать одна, две или, что встречается крайне редко, три молекулы.
Поэтому простые реакции классифицируют на мономолекулярные, бимолекулярные и тримолекулярные реакции. Так как с точки зрения теории вероятности одновременное столкновение четырёх и более молекул маловероятно, реакции более высокой, чем три, молекулярности не встречаются.
Элементы одного периода имеют близкие значения атомных масс, но разные физические и химические свойства, в отличие от элементов одной группы. Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических химических свойств элементов при увеличении атомного числа: новая строка начинается тогда, когда увеличивается количество энергетических уровней, что означает попадание элементов с аналогичными свойствами в тот же вертикальный столбец. Первый период содержит меньше всего. Упоминания в литературе Связанные понятия продолжение Твёрдые растворы — фазы переменного состава, в которых атомы различных элементов расположены в общей кристаллической решётке. Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических трендов в химических свойствах элементов при увеличении атомного числа: новая строка начинается тогда, когда химические свойства повторяются, что означает, что элементы с аналогичными свойствами попадают в один и тот же вертикальный столбец. Седьмой период содержит. Антиферромагнетик — вещество, в котором установился антиферромагнитный порядок магнитных моментов атомов или ионов.
В антиферромагнетиках спиновые магнитные моменты электронов самопроизвольно ориентированы антипараллельно друг другу. Такая ориентация охватывает попарно соседние атомы. В результате антиферромагнетики обладают очень малой магнитной восприимчивостью и ведут себя как слабые парамагнетики. Мультиферроиками или сегнетомагнетиками в советской литературе называют материалы, в которых сосуществуют одновременно два и более типов «ферро» упорядочения: ферромагнитное англ. Фракционированием природных веществ — разделение элементов из единого массива под влиянием изменения физико-химических параметров вмещающей среды. При анализе фракционирования рассматривается поведение как минимум двух элементов. Источник Период Период — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. Периодическая система имеет семь периодов. Первый период, содержащий 2 элемента, а также второй период и третий период, насчитывающие по 8 элементов, называются малыми.
Седьмой период не завершён. Эволюция периодической системы химических элементов Особым и важным для эволюции периодической системы химических элементов оказалось введённое Менделеевым представление о месте элемента в системе; положение элемента определяется номерами периода и группы. Опираясь на это представление, Менделеев пришёл к выводу о необходимости изменения принятых тогда атомных весов некоторых элементов U, In, Ce и его аналогов , в чём состояло первое практическое применение П. Классическим примером является предсказание «экаалюминия» будущего Ga, открытого П. Лекоком де Буабодраном в 1875 , «экабора» Sc, открытого шведским учёным Л. Нильсоном в 1879 и «экасилиция» Ge, открытого немецким учёным К. Винклером в 1886. Во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона и отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания атомных весов. Поэтому вплоть до физического обоснования периодического закона и разработки теории П.
Т Открытие в конце 19 в. Открытие многих «радиоэлементов» в начале 20 в. Это противоречие было преодолено в результате открытия изотопов. Наконец, величина атомного веса атомной массы как параметра, определяющего свойства элементов, постепенно утрачивала своё значение. Структура периодической системы химических элементов. Современная 1975 П. За всю историю П. Наибольшее распространение получили три формы П. Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А.
Лестничная форма предложена английским учёным Т. Бейли 1882 , датским учёным Ю.
В растворах электролитов, проводящих ток, за это отвечают свободные ионы. В 1882 году шведский химик С. Аррениус при изучении свойств растворов электролитов обратил внимание, что они содержат больше частиц, чем было в сухом веществе. Например, в растворе хлорида натрия 2 моля частиц, а NaCl в сухом виде содержит лишь 1 моль. Это позволило ученому сделать вывод, что при растворении таких веществ в воде в них появляются свободные ионы. Так были заложены основы теории электролитической диссоциации ТЭД — в химии она стала одним из важнейших открытий.
Готовимся к сдаче ЕГЭ по химии
- Периодическая система химических элементов: как это работает
- Что такое период в химии кратко
- Период (химия) — Карта знаний
- Периоды в химии — что это такое и какие бывают?
- Что такое периодичность?
Естествознание. 10 класс
Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы. Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру. Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно: Чем больше заряд ядра атома при одинаковом количестве заполняемых энергетических уровней , тем меньше атомный радиус. Например, в ряду Li — Be — B — C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается. В группах сверху вниз увеличивается число энергетических уровней у атомов.
Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома. В главных подгруппах сверху вниз увеличивается орбитальный радиус. В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.
В периодах слева направо орбитальный радиус атомов уменьшается. Выберите три элемента, которые в Периодической системе находятся в одной группе, и расположите эти элементы в порядке увеличения радиуса атома 1 O 2 Se 3 F 4 S 5 Na Решение: В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S. В группе снизу вверх атомный радиус уменьшается, а сверху вниз — увеличивается. Следовательно, правильный ответ: O, S, Se или 142. Ответ: 142 Свернуть Пример.
Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения радиуса атома 1 K 2 Li 3 F 4 B 5 Na Решение: В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na.
Номер периода, к которому относится химический элемент, определяется числом его электронных оболочек энергетических уровней. В первом периоде, кроме гелия , имеется только один элемент — водород , сочетающий свойства, типичные как для металлов, так и в большей степени для неметаллов.
У этих элементов заполняется электронами 1s-подоболочка. У элементов второго и третьего периода происходит последовательное заполнение s- и р-подоболочек. Для элементов малых периодов характерно достаточно быстрое увеличение электроотрицательности с увеличением зарядов ядер, ослабление металлических свойств и усиление неметаллических.
Сам Д. И Менделеев в 1869 году сформулировал свой закон как периодическую зависимость от величины атомных весов элементов, так как в XIX веке наука еще не имела сведений о строении атома. Однако гениальное предвидение ученого позволило ему более глубоко, чем все его современники, понять закономерности, которые обуславливают периодичность свойств элементов и веществ. Он учитывал не только возрастание атомной массы, но и уже известные свойства веществ и элементов и, взяв за основу идею периодичности, смог совершенно точно предсказать существование и свойства неизвестных на тот момент науке элементов и веществ, исправить атомные массы ряда элементов, правильно расположить элементы в системе, оставив пустые места и сделав перестановки.
Существует миф, что периодическая система приснилась Менделееву. Однако это только красивая история, которая не является доказанным фактом. Структура периодической системы Периодическая система химических элементов Д. Менделеева является графическим отражением его же закона.
Элементы расположены в таблице по определенному химическому и физическому смыслу.
Например, первая группа, также называемая щелочными металлами, содержит элементы с валентностью равной одному — литий Li , натрий Na , калий K и т. Поэтому, зная номер периода и группы элемента, можно предположить его основные химические свойства, в том числе его способность к реакции с другими элементами. Таким образом, период — это важное понятие в химии и играет ключевую роль в понимании периодических закономерностей в свойствах элементов и их взаимодействии. Изучение периодов и групп в таблице Менделеева позволяет сделать выводы о принципах химической связи, различных типах реакций и использовании элементов в промышленности и научных исследованиях.
Периодическая система химических элементов
В периоде с ростом атомной массы металлические свойства уменьшаются, неметаллические — увеличиваются. Вертикальные столбцы образуют группы. Это условно компании, где собираются единомышленники. Точнее, располагаются элементы, подобные по своим свойствам.
Обратите внимание, что подобие характерно только в пределах подгруппы. Так, натрий и медь принадлежат одной I группе, но располагаются в разных подгруппах. Натрий — элемент главной подгруппы, медь — побочной.
Именно по этой причине они будут иметь разные физические и химические свойства. В пределах группы с ростом атомной массы металлические свойства увеличиваются, неметаллические — уменьшаются. Таким образом, периодическую систему можно условно назвать домом химических элементов, где каждый из них занимает своё определённое место порядковый номер согласно его свойствам.
Рассмотрим подробнее на примере 2 и 3 периода. Что показывает сравнение: оба периода начинаются с активных металлов Li и Na, для которых характерно существование в виде соединений, в свободном виде могут находиться только под слоем керосина. Они относятся к группе щелочных металлов.
Анализируя схему, мы видим, что первые три группы образованны металлами. Но из-за их количества они вынесены за пределы системы. Периодический закон Д.
Менделеев записал в виде периодического закона. Благодаря периодическому закону, зная расположение элемента в периодической системе, мы можем прогнозировать свойства веществ. Элементы входят в состав как простых, так и сложных веществ, влияя при этом на их свойства.
Обобщить данные тезисы можно в виде таблицы. Таблица 1. При взаимодействии с водой образуют щёлочь.
Эти характеристики их объединяют. Теперь рассмотрим отличия. Вам уже известно, что в пределах группы с ростом атомной массы металлические свойства увеличиваются.
Как это сказывается на реакционной способности данных металлов? Интенсивность и скорость реакции калия и лития с водой будет отличаться. Реакция калия будет сопровождаться бурным выделением водорода, в то время как литий будет спокойно реагировать с водой.
Водород помещён в 17-ю группу таблицы. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по две строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток. Водород помещён в 7-ю группу таблицы. Короткая форма таблицы была официально отменена ИЮПАК в 1989 году, но её продолжают иногда использовать. Существует несколько сотен вариантов таблицы, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона. Например, Нильс Бор разрабатывал лестничную пирамидальную форму периодической системы. Многие учёные до сих пор предлагают всё новые варианты таблицы [3] [4].
Группы Группа, или семейство — одна из колонок периодической таблицы. Для групп, как правило, характерны более выраженные периодические тенденции, нежели для периодов или блоков. Современные квантово-механические теории атомной структуры объясняют групповую общность тем, что элементы в пределах одной группы обыкновенно имеют одинаковые электронные конфигурации на их валентных оболочках. Соответственно, элементы, которые принадлежат к одной и той же группе, традиционно располагают схожими химическими особенностями и демонстрируют явную закономерность в изменении свойств по мере увеличения атомного числа. Впрочем, в некоторых областях таблицы, например, в d-блоке и f-блоке, горизонтальные сходства могут быть столь же важны или даже более заметно выражены, нежели вертикальные. Ранее для их идентификации использовались римские цифры. Изменение свойств элементов в зависимости от положения в периодической таблице Менделеева.
Стрелки указывают на повышение Некоторым из этих групп были присвоены тривиальные, несистематические названия например, « щёлочноземельные металлы », « галогены » и т. Группы с третьей по четырнадцатую включительно такими именами не располагают, и их идентифицируют либо по номеру, либо по наименованию первого представителя «титановая», «кобальтовая» и так далее , поскольку они демонстрируют меньшую степень сходства между собой или меньшее соответствие вертикальным закономерностям. Элементы, относящиеся к одной группе, как правило, демонстрируют определённые тенденции по атомному радиусу , энергии ионизации и электроотрицательности. По направлению сверху вниз в рамках группы радиус атома возрастает чем больше у него заполненных энергетических уровней, тем дальше от ядра располагаются валентные электроны , а энергия ионизации снижается связи в атоме ослабевают, и, следовательно, изъять электрон становится проще , равно как и электроотрицательность что, в свою очередь, также обусловлено возрастанием дистанции между валентными электронами и ядром. Случаются, впрочем, и исключения из этих закономерностей — к примеру, в группе 11 по направлению сверху вниз электроотрицательность возрастает, а не убывает. Периоды Период — строка периодической таблицы. Хотя для групп, как уже говорилось выше, характерны более существенные тенденции и закономерности, есть также области, где горизонтальное направление более значимо и показательно, нежели вертикальное — например, это касается f-блока, где лантаноиды и актиноиды образуют две важные горизонтальные последовательности элементов.
Для элементов главных групп количество валентных электронов всегда равно номеру группы. Например, у атома хлора, расположенного в третьем периоде в главной подгруппе VII группы, количество валентных электронов равно семи: Элементы побочных групп имеют в качестве валентных электроны внешнего уровня или нередко электроны d-подуровня предыдущего уровня. Так, например, хром, находящийся в побочной подгруппе VI группы, имеет шесть валентных электронов — 1 электрон на 4s-подуровне и 5 электронов на 3d-подуровне: Общее количество электронов в атоме химического элемента равно его порядковому номеру. Другими словами, общее количество электронов в атоме с номером элемента возрастает. Тем не менее, количество валентных электронов в атоме изменяется не монотонно, а периодически — от 1-го у атомов щелочных металлов до 8-ми для благородных газов.
Иными словами, причина периодического изменения каких-либо свойств химических элементов связана с периодическими изменениями в строении электронных оболочек. При движении вниз по подгруппе атомные радиусы химических элементов возрастают ввиду увеличения количества электронных слоев. Тем не менее, при движении по одному ряду слева направо, то есть с ростом количества электронов для элементов, расположенных в одном ряду, происходит уменьшение радиуса атома. Данный эффект объясняется тем, что при последовательном заполнении одной электронной оболочки атома ее заряд, как и заряд ядра, увеличивается, что приводит к усилению взаимного притяжения электронов, в результате чего электронная оболочка «поджимается» к ядру: Вместе с тем, внутри одного периода с ростом количества электронов происходит уменьшение радиуса атома, а также возрастает энергия связи каждого электрона внешнего уровня с ядром. Это означает, что, например, ядро атома хлора будет удерживать электроны своего внешнего уровня намного сильнее, чем ядро атома натрия единственный электрон внешнего электронного уровня.
Более того, при столкновении атома натрия и хлора хлор «отберет» единственный электрон у атома натрия, то есть электронная оболочка хлора станет такой же, как у благородного газа аргона, а у натрия — такой же, как у благородного газа неона. Способность атома какого-либо химического элемента оттягивать на себя «чужие» электроны при столкновении с атомами другого химического элемента называется электроотрицательностью. Более подробно про электроотрицательность будет рассказано в главе, посвященной химическим связям, но нужно отметить, что, электроотрицательность, как и многие другие параметры химических элементов, также подчиняется периодическому закону Д. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает.
Номер периода, к которому относится химический элемент, определяется числом его электронных оболочек энергетических уровней. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядру химического элемента в таблице Менделеева. Группа периодической системы химических элементов — последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением. Номер группы определяется количеством электронов на внешней оболочке атома валентных электронов и, как правило, соответствует высшей валентности атома. В короткопериодном варианте периодической системы, группы подразделяются на подгруппы — главные или подгруппы A , начинающиеся с элементов первого и второго периодов, и побочные подгруппы В , содержащие d-элементы.
Периодический закон
это группа элементов, расположенных в одной горизонтальной строке периодической таблицы. Период — это строка Периодической системы Д. И. Менделеева, отражающая возрастание заряда ядра и заполнение электронами внешнего уровня. Периодическая система химических элементов — это таблица, в которой все химические элементы расположены в порядке возрастания атомных номеров. Период в химии — это горизонтальная строка в таблице элементов, в которой расположены химические элементы с одинаковым количеством энергетических уровней электронной оболочки. Пери́од — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. Найди верный ответ на вопрос«Что означает Nn в химии (нулевой период) » по предмету Химия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Структура периодической системы химических элементов.
- Изменение свойств химических элементов для ЕГЭ 2022
- Период в химии: что это такое?
- Понятие периода в химии: что это такое и как оно влияет на элементы
- Что такое период в периодической системе элементов?