Изучая черные дыры, подобные Стрельцу А*, исследователи могут получить ценные сведения о том, как происходит формирование и эволюция галактик. Благодаря телескопу Event Horizon удалось сделать первый снимок сверхмассивной черной дыры Стрелец А* в центре нашей галактики.
Первый в истории снимок черной дыры
Ученые объединили мощности восьми длинноволновых радиотелескопов в разных точках планеты в один большой радиотелескоп-интерферометр, поскольку сеть радиотелескопов лучше всего подходит для подобных наблюдений. Радиотелескопы находятся, в частности, во Франции, Чили, на острове Гавайи, Южном полюсе. Телескоп горизонта событий получил свое название в честь границы пространства-времени, которое окружает черную дыру и является так называемой точкой невозврата. Непрерывные наблюдения продолжались в течение 10 суток в апреле 2017 года.
Наши результаты являются самым убедительным доказательством того, что черная дыра находится в центре нашей галактики. Черные дыры с небольшой звездной массой, образуются коллапсом огромных звезд в конце их жизненного цикла, а также черные дыры так называемой промежуточной массы. Сверхмассивные черные дыры, которые находятся в центр большинства галактик известной вселенной. Наша галактика Млечный Путь является спиральной и содержит не менее 100 миллиардов звезд. Если условно взглянуть сверху, то она напоминает вращающуюся ось колеса с множеством рукавов.
Знаменитый гравитационный монстр проживает в сверхгигансткой эллиптической галактике Messier 87 в 54 миллионах световых лет от нас в направлении созвездия Девы. Достигнуть успеха удалось благодаря объединению восьми радиообсерваторий по всей планете в один виртуальный телескоп «размером с Землю». Фотография сверхмассивной черной дыры в галактике Messier 87. Credit: Event Horizon Telescope Однако наиболее интригующей целью проекта «Event Horizon Telescope», старт которому был дан в 2012 году, являлось получение снимка центральной сверхмассивной черной дыры Млечного Пути. Ученые потратили пять лет, чтобы откалибровать и перепроверить гигантский объем информации и, в итоге, преобразовать его в изображение черной дыры.
Почти — потому что на самом деле наблюдается чуть более широкая область, так называемая тень зона, из которой черная дыра, так сказать, изымает фотоны. Грандиозный инструмент получил изображение с разрешением 20 угловых микросекунд. Оптический телескоп, имеющий такое разрешение, мог бы с Земли различить на Луне спичечный коробок, не то что отпечаток ботинка астронавта. Жаль, что таких оптических телескопов не существует. Зато существуют такие радиотелескопы и даже более зоркие. Правда, они изучают не следы астронавтов на Луне, а черные дыры, далекие галактики и природные космические лазеры точнее, мазеры. Но это, согласитесь, не менее интересно. Системы, приносящие столь удивительные результаты, называются интерферометрами. Разберемся, как они работают. Разрешение на любопытство Посмотрите в ночное небо. Насколько тусклые звезды вы можете заметить? Теперь переведите взгляд на Луну. Насколько тонкие детали вы различаете? Вот вы и познакомились с двумя главными характеристиками астрономического инструмента: чувствительностью и разрешением. Первая — про способность выделять из фона слабые объекты. Вторая — про возможность разглядеть мелкие подробности объектов ярких. Понятно, что астрономов интересует «и то, и другое и можно без хлеба», но в этой статье мы поговорим о разрешении. Как оно измеряется? Когда мы смотрим на далекий предмет, наш глаз оказывается в вершине треугольника, основание которого — этот самый предмет. Это проиллюстрировано ниже масштаб искажен с особой жестокостью. Разрешение, или угловое разрешение, — это минимальный угол, при котором предмет все еще различим. Угловое разрешение человеческого глаза — около одной угловой минуты. Это значит, что человек с идеальным зрением может с километрового расстояния разглядеть предмет размером 30 сантиметров. Чем он меньше, тем более тонкие детали мы различаем. Будь этот угол меньше в десять раз, с километровой дистанции мы разглядели бы и монету. От чего зависит разрешение радиотелескопа? Ответ дает простая приближенная формула будем надеяться, что она не уменьшит число читателей этой статьи вдвое, чем издатели традиционно пугают популяризаторов. Радиоастрономы, дай им волю, превратили бы в антенну всю Вселенную, после чего им стало бы нечего наблюдать. Однако реальность жестока: слишком большие конструкции технически нежизнеспособны. Самый большой действующий радиотелескоп — китайский 500-метровый FAST, но и он использует не всю свою площадь. Какое же разрешение обеспечивает этот великан?
Фото чёрной дыры в центре галактики: как оно сделано и почему важно
Этот горячий газ образуется из ветров, создаваемых дискообразным распределением молодых массивных звезд, наблюдаемых в инфракрасном диапазоне. Поэтому для получения его изображения требуется невероятно высокое разрешение. Первое изображение черной дыры было получено EHT в 2019 году. Это была сверхмассивная черная дыра в центре галактики Мессье 87.
EHT смог разрешить этот объект благодаря системе синхронизации нескольких телескопов, разбросанных по всей поверхности Земли. В частности, астрономы использовали Very-Long-Baseline-Interferometry VLBI — метод, который объединяет наблюдательную мощность и данные телескопов по всему миру для создания гигантского виртуального радиотелескопа. Наличие нескольких телескопов на разных широтах Земли в сочетании с вращением Земли приводит к созданию телескопа размером с Землю.
Каждый из этих телескопов оснащен антенной с чрезвычайно точными атомными часами для регистрации времени, в которое регистрируются радиосигналы от целевого объекта. И они предлагают новое понимание того, как эти гигантские черные дыры взаимодействуют со своим окружением.
Однако его предложение не получило поддержки в США [23]. В 1937 году построен первый радиотелескоп с параболическим зеркалом Гроутом Ребером , радиолюбителем из Уиттона англ. Радиотелескоп располагался в заднем дворе дома родителей Гроута, имел параболическую форму и диаметр антенны около 9 метров.
В 1960 году Ян Оорт и Г. В 1966 году Д. Даунс и А. Максвелл, обобщив данные по радионаблюдениям в дециметровом и сантиметровом диапазонах, пришли к выводу, что малое ядро Галактики представляет собой объект диаметром 10 пк, связанным с источником Стрелец-А [29]. К началу 1970-х годов благодаря наблюдениям в радиоволновом диапазоне было известно, что радиоисточник Стрелец-А имеет сложную пространственную структуру.
В 1974 году Б. Балик и С. Ситуация коренным образом изменилась благодаря развитию инфракрасной астрономии, для которой космическая пыль практически прозрачна. Ещё в 1947 году Стеббинс и А. Уитфорд, используя фотоэлемент, сканировали галактический экватор на длине волны 1,03 мкм, однако не обнаружили дискретного инфракрасного источника [33].
Мороз в 1961 году провёл аналогичное сканирование окрестностей Sgr A на волне 1,7 мкм и тоже потерпел неудачу [34]. В 1966 году Е. Беклин сканировал район Sgr A в диапазоне 2,0—2,4 мкм и впервые обнаружил источник, по положению и размерам соответствовавший радиоисточнику Стрелец-А.
Поскольку черная дыра находится на расстоянии около 27 000 световых лет от Земли, кажется, что в небе она имеет примерно такой же размер, как пончик на Луне. Чтобы отобразить его, команда создала мощный телескоп EHT, который соединил восемь существующих радиообсерваторий по всей планете, чтобы сформировать единый виртуальный телескоп размером с Землю.
Первое изображение черной дыры в центре Млечного Пути. Это первое прямое визуальное свидетельство присутствия этой черной дыры. Изображение получено Телескопом горизонта событий EHT , массивом, который соединил восемь существующих радиообсерваторий по всей планете, чтобы сформировать единый виртуальный телескоп «размером с Землю». Телескоп назван в честь «горизонта событий», границы черной дыры, за которую не может выйти свет.
То есть с обратной стороны есть второй точно такой же джет, просто его плохо видно. В плоскости экватора чёрной дыры вращается диск, а от полюсов идут такие струи плазмы. Полагают, что их порождает как раз магнитное поле. Чёрная дыра с летящими от её полюсов релятивистскими джетами художественная анимация. Примечательно, что джет М87 направлен почти прямо на нас, на Землю, а у центра Млечного Пути струи должны быть развёрнуты по отношению к нам совсем по-другому: они идут перпендикулярно плоскости галактики, а эту плоскость мы и наблюдаем в ночном небе, сами при этом в ней же и находясь. Значит, если у чёрной дыры в созвездии Стрельца эти джеты действительно есть, то в равной степени будут прослеживаться оба.
Первый в истории снимок черной дыры
Результаты подтверждают чрезмерно возросшую яркость объекта. В результате вспышки яркость звезды внезапно возросла в 75 раз, чего не наблюдалось раньше ни с одним космическим объектом. С чем это связано — ученые пока не могут сказать. Данные исследований, проведенных в мае этого года обсерваторией Кека показывают, что яркость соседней черной дыры значительно увеличилась в инфракрасном диапазоне. После этого она стала немного тусклее.
Возможно, это явление связано с тем, что объект G2 еще в 2014 году подошел к черной дыре на расстояние 36 световых лет. Этого оказалось достаточным для того, чтобы на черную дыру попало облако звездного газа.
Поэтому для получения его изображения требуется невероятно высокое разрешение. Первое изображение черной дыры было получено EHT в 2019 году.
Это была сверхмассивная черная дыра в центре галактики Мессье 87. EHT смог разрешить этот объект благодаря системе синхронизации нескольких телескопов, разбросанных по всей поверхности Земли. В частности, астрономы использовали Very-Long-Baseline-Interferometry VLBI - метод, который объединяет наблюдательную мощность и данные телескопов по всему миру для создания гигантского виртуального радиотелескопа. Наличие нескольких телескопов на разных широтах Земли в сочетании с вращением Земли приводит к созданию телескопа размером с Землю.
Каждый из этих телескопов оснащен антенной с чрезвычайно точными атомными часами для регистрации времени, в которое регистрируются радиосигналы от целевого объекта. И они предлагают новое понимание того, как эти гигантские черные дыры взаимодействуют со своим окружением. Однако вблизи края эти черные дыры выглядят удивительно похожими", — говорит Сера Маркофф, сопредседатель научного совета EHT и профессор теоретической астрофизики Амстердамского университета.
Credit: Event Horizon Telescope Однако наиболее интригующей целью проекта «Event Horizon Telescope», старт которому был дан в 2012 году, являлось получение снимка центральной сверхмассивной черной дыры Млечного Пути. Ученые потратили пять лет, чтобы откалибровать и перепроверить гигантский объем информации и, в итоге, преобразовать его в изображение черной дыры. Стоит отметить, что результирующий снимок был получен путем усреднения тысяч визуализаций, созданных с использованием различных вычислительных методов и точно соответствующих данным наблюдений «Event Horizon Telescope». Он сохраняет особенности, которые чаще всего наблюдаются на различных изображениях, и подавляет те, что с наибольшей долей вероятности являются артефактами. Сравнение размеров сверхмассивных черных дыр в галактике Messier 87 и Млечном Пути с Солнечной системой.
Космический прорыв ученых. Впервые получен снимок черной дыры в центре Млечного Пути (фото)
Занимаясь изучением черной дыры Стрелец А*, расположенной в самом центре нашей с вами галактики Млечный путь, ученые обнаружили аномальную активность. Стрелец А* значительно меньше чёрной дыры галактики M87. Изображение черной дыры (сверху) получилось путем комбинации снимков с разных телескопов (снизу). Астрофизики считают, что менее 1 % материала, находящегося под гравитационным влиянием черной дыры Стрелец А, достигает точки невозврата, потому что большая его часть выбрасывается. Самые четкие изображения области вокруг сверхмассивной черной дыры Стрелец А* в центре Млечного Пути получили астрономы.
Черную дыру Стрелец А* сфотографируют
Получено первое фото черной дыры в сердце нашей Галактики | Из-за того, что практически рядом находится звезда Стрелец А*, непонятным образом изменился путь поступления звездного газа на поверхность черной дыры. |
Прорыв года: астрономы представили первое изображение черной дыры в центре нашей галактики | Как я отметил, обе черные дыры были открыты довольно давно. Объект Стрелец A* плотно изучается уже свыше тридцати лет методами инфракрасной астрономии. |
Первый в истории снимок черной дыры
Благодаря телескопу Event Horizon удалось сделать первый снимок сверхмассивной черной дыры Стрелец А* в центре нашей галактики. Астрономам из Южноафриканской радиоастрономической обсерватории (SARAO) удалось заглянуть в центр нашей Галактики и увидеть там вспыхивающие звезды, «звездные ясли», магнитные полосы и сверхмассивную черную дыру под названием Стрелец А. Стрелец A, сверхмассивная черная дыра в центре галактики Млечный Путь, гораздо менее яркая, чем другие черные дыры в центрах галактик, которые мы можем наблюдать, что означает. Стрелец А* значительно меньше чёрной дыры галактики M87. Несмотря на внушительную разницу в размерах двух чёрных дыр, в целом изображение тени Стрельца А* вполне согласуется со снимком М87. Фотография стала прямым визуальным доказательством черной дыры Стрелец А* в центре нашей галактики.
Астрофизики выяснили, с какой скоростью вращается черная дыра в центре Млечного Пути
Черная дыра с туманностью над разноцветными звездами и облачными полями в космическом пространстве. Эти всплески от десятков до сотен раз ярче обычных импульсов, посылаемых сверхмассивной черной дырой в сердце нашей галактики, но они не соответствуют определенным закономерностям. Данные с 2006 по 2008 год показывают высокую активность гамма-излучения, за которым последовал быстрый четырехлетний спад, после чего активность снова возросла, начиная с 2012 года. Это ренгеновский снимок центра галактики объединяет все наблюдения орбитальной обсерватории Swift с 2006 по 2013 год.
В процессе также возникло уплотнённое образование на «вершине» кластера из-за пыли, окружающей кластер. Повышение плотности пыли стимулировало дальнейшее звёздообразование. Это объясняет, почему молодые звёзды находятся в основном в «верхней части» или спереди кластера. Помимо IRS13, существует ещё один звёздный кластер — так называемый S-кластер, который ещё ближе к чёрной дыре и также состоит из молодых звёзд. Они тоже значительно моложе, чем это возможно согласно принятым теориям», — говорит доктор Пайсскея. Полученные результаты о звёздном кластере IRS13 предоставляют открытую возможность дальнейших исследований связи между близостью к чёрной дыре и регионами в нескольких световых годах от неё.
Первое изображение черной дыры было получено EHT в 2019 году. Это была сверхмассивная черная дыра в центре галактики Мессье 87. EHT смог разрешить этот объект благодаря системе синхронизации нескольких телескопов, разбросанных по всей поверхности Земли. В частности, астрономы использовали Very-Long-Baseline-Interferometry VLBI — метод, который объединяет наблюдательную мощность и данные телескопов по всему миру для создания гигантского виртуального радиотелескопа. Наличие нескольких телескопов на разных широтах Земли в сочетании с вращением Земли приводит к созданию телескопа размером с Землю. Каждый из этих телескопов оснащен антенной с чрезвычайно точными атомными часами для регистрации времени, в которое регистрируются радиосигналы от целевого объекта. И они предлагают новое понимание того, как эти гигантские черные дыры взаимодействуют со своим окружением.
Однако вблизи края эти черные дыры выглядят удивительно похожими«, — говорит Сера Маркофф, сопредседатель научного совета EHT и профессор теоретической астрофизики Амстердамского университета. Экстраординарный результат и его последствия Результат, полученный с помощью EHT, является экстраординарным.
Снимок тени сверхмассивной чёрной дыры Стрелец А в центре галактики Млечный путь. И в какой-то момент сработал триггер о появлении в поле зрения яркого события. Примерно одновременно аналогичный триггер сработал и на обсерватории SWIFT, после чего в автоматическом режиме информация о событии была распространена среди ученых. Ценность и уникальность данных, полученных обсерваторией ИНТЕГРАЛ, заключается в том, что в них содержится информация о первых часах развития рентгеновской вспышки — фактически мы в реальном времени видим ее рост в жестком рентгене. Например, телескоп ART-XC зарегистрировал примерно 30 миллионов фотонов с ее стороны и так называемые квазипериодические осцилляции колебания или мерцания рентгеновского излучения астрономического объекта на определенных частотах — Авт. Это происходит после определенных эволюционных процессов на светиле, когда оно вдруг начинает переполнять так называемую полость Роша это область где находится точка равновесия между двумя астрономическими объектами , и вещество начинает перетекать на черную дыру. Однако по силе вспышки последней сравнится с ней могут далеко не все.
Первое фото черной дыры в центре нашей галактики: когда его сделали на самом деле
Коллаборация Event Horizon Telescope (EHT) получила новый снимок сверхмассивной черной дыры Стрелец А* (Sgr A*), расположенной в центре нашего Млечного Пути. Большую часть времени черная дыра ведет себя сдержанно, проявляя минимальные колебания в яркости. В центре нашей галактики, в сверхмассивной чёрной дыре Стрелец А*, происходят уникальные процессы. Черная дыра Стрелец A*, которая находится в центре нашей галактики, является относительно спокойной. Тегипо наблюдениям за движением звезды вокруг черной дыры, сколько черных дыр в нашей галактике, масса нашей черной дыры в центре галактики, аниме черный полюс брунхильды.
Опубликован первый в истории снимок черной дыры
нейтронная звезда Скорпион X-1. Несмотря на внушительную разницу в размерах двух чёрных дыр, в целом изображение тени Стрельца А* вполне согласуется со снимком М87. Большую часть времени черная дыра ведет себя сдержанно, проявляя минимальные колебания в яркости.