по использованию алгоритмов искусственного интеллекта для решения научных и прикладных задач в области офтальмологии.
Искусственный интеллект в медицине: главные тренды в мире
Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов. В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют.
Обзор Российских систем искусственного интеллекта для здравоохранения
Ученые обнаружили в её ДНК странные повторяющиеся последовательности, но не смогли выяснить их предназначение. Бактерии производят специальные ферменты, когда пытаются бороться с вирусами. Это помогает бороться с будущими вирусными атаками. Бактерия использует сохраненный генетический материал и производит белки Cas9, которые способны при совпадении генов с геном вируса быстро его нейтрализовать. По той же схеме, белок ищет совпадающий генетический материал и разрезает его вне зависимости от того, принадлежит он бактерии, животному или человеку.
Например, в сельском хозяйстве технологию используют для изменения свойств продуктов: можно удалить из арахиса ген, который вызывает аллергическую реакцию, можно создавать необычные сорта. Ученые даже занимались созданием комаров, не способных переносить малярию.
Применение ИИ в клинической медицине ИИ может работать непрерывно, что позволяет обеспечить более эффективное использование медицинского персонала и ресурсов. Системы искусственного интеллекта могут учиться на основе накопленного опыта и становиться все более точными и эффективными с течением времени. Регулярно расширяемые базы данных для обучения моделей ИИ позволяют повышать точность подобных систем. В современной клинической медицине системы искусственного интеллекта находят применение во многих областях. Одной из них является диагностика заболеваний. Системы ИИ могут анализировать медицинские изображения например, снимки рентгена, МРТ, КТ , выявлять аномалии и помогать врачам в постановке диагноза.
А во время операционного вмешательства эти факторы, которые ведут к потере управления процессом, могут стать фатальными для пациента".
По словам эксперта, в связи с этим сейчас на первый план выходит вопрос обеспечения безопасных условий во время операций с использованием роботов, и недавно российские учёные представили своё решение данной проблемы: в условиях возникновения чрезвычайной ситуации манипулятор сможет автономно завершить оперативное вмешательство, без контроля со стороны хирурга. Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире. По данным сайта Da Vinci, с 2007 по 2022 год в России американскими роботами—хирургами было выполнено около 28 тыс. Однако в ближайшее время в больницах страны появятся первые роботы—хирурги отечественного производства, разработанные учёными Института конструкторско—технологической информатики РАН. Российские роботы—хирурги смогут делать операции в брюшной полости, в области гинекологии и урологии, а также в сфере нейро— и кардиохирургии. Одним из ключевых преимуществ отечественной разработки станет её стоимость: она примерно в 3 раза ниже американской, благодаря чему операции войдут в программы ОМС и будут бесплатны для пациентов. Роботизированные системы в медицине, несомненно, с каждым годом будут всё активнее применяться. Однако пока есть ряд факторов, которые сдерживают развитие рынка автоматизированной медицины. По мнению Дениса Банного, одними из ключевых являются большие финансовые затраты на покупку оборудования и эксплуатационные расходы, а также расходы на обучение персонала.
AiCure контролирует прием лекарства Алгоритмы, основанные на том, как повышаются или понижаются значения глюкозы, используются пациентами с диабетом. Они помогли предотвратить эпизоды гипогликемии. Таким образом, распространенные хронические состояния, такие как гипертония, депрессия и астма, теоретически можно лучше контролировать с помощью приложений. Проблемы и ограничения Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных. Существует риск выявления конфиденциальных данных пациента из истории болезни. Более того, есть риск преднамеренного взлома алгоритма для нанесения вреда людям в больших масштабах, например передозировки инсулина у диабетиков.
Вторая проблема — неточная работа алгоритмов. Используемый сотнями больниц по всему миру для рекомендаций по лечению больных раком, алгоритм был основан на небольшом количестве синтетических случаев и очень ограниченом количестве реальных данных. Многие из его рекомендаций по лечению были ошибочными, например, предлагали использовать несовместимое лекарство для пациента с сильным кровотечением, что представляет явное противопоказание. Еще одна проблема — предвзятость.
Полная роботизация: как искусственный интеллект помогает врачам
Будущее рядом: как нас будет лечить искусственный интеллект? | В 2023 году искусственный интеллект произвел фурор в качестве полезной технологии во многих отраслях, особенно в медицине. |
Вас вылечит… искусственный интеллект. Как ИИ-решения применяются в медицине | Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья. |
Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ | «Открытие Центра искусственного интеллекта ознаменовало важный шаг движения в сторону пациента, движения в сторону той медицины, которая называется персонализированной. |
Искусственный интеллект в медицине. Настоящее и будущее | Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. |
Искусственный интеллект в медицине: новая эпоха в диагностике и лечении
- Искусственный интеллект создал новое лекарство всего за 21 день -
- Национальная база медицинских знаний
- Нейросеть для медиков: искусственный интеллект научился ставить диагнозы
- Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли
- Искусственный интеллект в медицине | Обрфм
Для чего в российских регионах используют ИИ в медицине
Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Сбор данных и искусственный интеллект в медицине.
Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли
Кроме того, использование ИИ позволяет выявлять людей, подверженных риску заболеваний, с более высокой вероятностью предсказывать хронические заболевания у пациентов, чтобы принимать соответствующие профилактические меры и давать рекомендации пациентам. Ещё одно преимущество — повышение эффективности управления оказанием медпомощи. Анализ исторических данных, электронных медкарт и данные о потоках пациентов позволяют предотвращать скопление заражённых и здоровых людей в помещениях или нехватку коек в стационарах. Создание цифровых двойников пациентов. Виртуальные пациенты могут использоваться для изучения различных патологий, тестирования лекарств и методов лечения. На данный момент уже есть симуляции отдельных органов или систем, однако в ближайшей перспективе возможно создание моделей, имитирующих целые тела. Созданием цифровых двойников группы наиболее распространенных заболеваний в области кардиологии и онкологии занимаются ученые Сеченовского университета. Разработку прототипов цифровых двойников планируется завершить к 2025 году. Обучение медперсонала. Медики осваивают новые навыки благодаря симуляции реальных обстоятельств, без риска нанести травму пациенту или испортить оборудование.
Например, уже разработана технология виртуальной реальности для обучения специалистов по рентгенографии. Разработка новых лекарств.
Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире. По данным сайта Da Vinci, с 2007 по 2022 год в России американскими роботами—хирургами было выполнено около 28 тыс. Однако в ближайшее время в больницах страны появятся первые роботы—хирурги отечественного производства, разработанные учёными Института конструкторско—технологической информатики РАН. Российские роботы—хирурги смогут делать операции в брюшной полости, в области гинекологии и урологии, а также в сфере нейро— и кардиохирургии. Одним из ключевых преимуществ отечественной разработки станет её стоимость: она примерно в 3 раза ниже американской, благодаря чему операции войдут в программы ОМС и будут бесплатны для пациентов. Роботизированные системы в медицине, несомненно, с каждым годом будут всё активнее применяться. Однако пока есть ряд факторов, которые сдерживают развитие рынка автоматизированной медицины.
По мнению Дениса Банного, одними из ключевых являются большие финансовые затраты на покупку оборудования и эксплуатационные расходы, а также расходы на обучение персонала. Со временем этот вопрос будет решён. Пока же сложные роботизированные системы доступны только крупным медицинским центрам и клиникам.
Специалисты получат надежных цифровых помощников, уйдет в прошлое бумажная рутина, врачи будут пользоваться проактивным подходом, когда нейросети будут подсвечивать риски возникновения у пациентов различных болезней. Также в ближайшем будущем обычной практикой станет телемедицина. Большинство проблем со здоровьем пациенты смогут решать без личного посещения врача. Работы много, но все поставленные нами цели — абсолютно конкретны и достижимы», — подытожил Собянин.
Нейронные сети влияют на состояние медицины на трех уровнях: помогают врачам быстро и точно интерпретировать изображения; уменьшают количество врачебных ошибок; помогают пациентам самостоятельно анализировать данные с помощью датчиков, чтобы контролировать свое состояние. Однако пока исследователи находятся на начальном этапе использования нейронных сетей в медицинской практике из-за ограничений, которые не позволяют применять их в полной мере. Какие возможности и проблемы есть у нейронных сетей в медицине сегодня? Нейронные сети в помощь врачам Глубокие нейронные сети DNN могут помочь в интерпретации медицинских сканов патологий, электрокардиограмм, эндоскопии. Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами.
Первое в истории ИИ-лекарство
- Разработка и синтез лекарственных препаратов
- Искусственный интеллект в медицине и здравоохранении
- Искусственный интеллект в медицине
- Полная роботизация: как искусственный интеллект помогает врачам
Обзор Российских систем искусственного интеллекта для здравоохранения
Национальная база медицинских знаний | Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. |
Журнал «Московская медицина» - Применение искусственного интеллекта в московском здравоохранении | Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ. |
ИИ в медицине: тренды и примеры применения
Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Многие россияне опасаются применения ИИ в медицине. Искусственный интеллект на рынке медицины прогнозируемая нехватка врачей и специалистов в единицах, США, 2032 г. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Использование искусственного интеллекта в медицине для автоматизации данных о пациентах Информация о пациентах обычно хранится в медицинских карточках. У каждого медучреждения своя картотека. Из-за этого процесс сбора анамнеза и постановки диагноза затягивается на неопределенное время. Врачу не всегда удается правильно интерпретировать результаты анализов, тестов и других видов обследований, потому что у него нет полной картины со всеми необходимыми данными.
Технология блокчейн — это новый подход в хранении и управлении данными пациентов. Позволяет сегментировать и защитить информацию, быстро обмениваться всеми необходимыми медицинскими данными. В фармацевтике и медицине блокчейн применяют в следующих направлениях: управление цепочками поставок лекарственных препаратов; борьба с контрафактной продукцией; заполнение электронных медкарт и управление ими; анализ результатов обследования; улучшение процессов страхования и выставление счетов; удаленный мониторинг состояния пациентов; проведение исследований разного характера.
Приложение от Google Deepmind Health быстро анализирует все симптомы и результаты диагностики, предлагает несколько диагнозов, соответствующих полученным результатам. ИИ помогает диагностировать даже редкие, плохо изученные патологии. Сервис MedClueRx может не только проанализировать клинические проявления и диагностировать заболевание.
Он также ориентирован на подбор эффективных лекарственных препаратов с учетом индивидуальных особенностей пациента. ИИ для автоматизации процессов в медицине Практически во всех странах наблюдается дисбаланс и нехватка квалифицированного медицинского персонала среднего и высшего звена. По статистике ВОЗ, чтобы каждый человек, даже в странах с низким уровнем доходов, к 2030 году имел доступ к услугам здравоохранения, потребуется 18 млн.
Перспективы улучшить ситуацию с доступностью медицинского обслуживания ничтожны: население растет, общество стареет. Проблема усугубляется еще и тем, что многие патогены мутируют, меняется клиническая картина заболеваний. Все эти факторы увеличивают спрос на квалифицированных врачей и медицинский медперсонал, пациентам становится все сложнее быстро получить необходимую медицинскую помощь.
ИИ и другие инновационные технологии помогают освободить врачей от многих повседневных рутинных задач. Внедрение технологий ИИ позволяет быстро и правильно вносить данные в медкарту, проводить детальный анализ проведенных исследований, формировать историю болезни, отслеживать и корректировать ход лечения. Это позволит специалисту больше времени уделять каждому пациенту, заниматься решением серьезных диагностических вопросов, сконцентрироваться на поиске причин патологии и эффективной схемы лечения.
Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Удаленные консультации Консультации врачей онлайн — это возможность получить качественную медицинскую помощь большему количеству людей. Удаленные консультации особенно актуальны для жителей малонаселенных пунктов или во время эпидемий и пандемий.
Вещества, которые могут ухудшить состояние больного, компьютер подсветит красным. Более того, лекарственные средства взаимодействуют друг с другом. Если врач попытается назначить несовместимые препараты, то «Джейн» и об этом просигнализирует. Так алгоритм подбирает лекарство, наилучшим образом подходящее конкретному пациенту. Это наглядный пример персонализированной медицины. Её можно модифицировать под другие болезни, не только для эпилепсии? Это отдельный модуль, который был встроен в «Джейн» и работал очень успешно. Кстати, им пользовались не только неврологи, но и врачи других специализаций. Как «Джейн» помогала предсказать приступы эпилепсии — Из каких частей состояла «Джейн»?
Перечислю основные модули: диагностика; разработка плана лечения и подбор лекарств; контроль принятия лекарств; Также был дневник пациента. Поскольку эпилепсия требует пристального внимания к состоянию пациента, были необходимы инструменты контроля. Сегодня все системы делаются с веб-доступом. Я не могу себе представить стационарную программу такого рода, которую нужно было бы устанавливать как отдельное приложение. Естественно, «Джейн» тоже имела веб-доступ, а чат-бот — это просто дополнительный интерфейс к базе данных, в которой аккумулировались данные о пациенте — история болезни, жизненные показатели, дневник наблюдений и так далее. Если назначены какие-то антиэпилептические вещества, то их надо принимать ровно так, как назначено, буквально минута в минуту. Любой пропуск — риск для жизни. И соответствующий модуль «Джейн» как раз напоминал ребёнку или его родителям о том, что прямо сейчас надо выпить ту или иную таблетку. И в качестве подтверждения требовал нажатия соответствующей кнопки на экране смартфона.
То есть осуществляла поиск скрытых закономерностей. Например, у одного ребёнка «Джейн» выявила жёсткую причинно-следственную зависимость между фазами Луны и обострениями болезни. Ни родители, ни врачи этой связи не чувствовали и не знали о ней. Они просто отмечали в электронном дневнике дни, в которые происходили приступы. Я, конечно, всё перепроверил, долго копался в научных трудах. И нашёл публикации, в которых учёные отмечали селенозависимость течения эпилепсии у отдельных людей. Но объяснить её, кстати, медики пока не могут. Зачастую эпилептики — очень метеозависимые люди. Циклолептическое течение эпилепсии встречается довольно часто, и система очень быстро научается прогнозировать интервалы этих циклов.
Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует. Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами. Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания. То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии. Врачи ей пользовались под моим контролем.
Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было.
Insilico использовали GENTRL для того, чтобы создать несколько а если быть точным, то 6 вариантов лекарств для лечения мышечного фиброза. Созданные лекарственные средства ингибируют рецептор DDR1, который участвует в развитии болезни. Для этого ИИ потребовался 21 день, после чего ученые выбрали наиболее подходящие варианты препаратов и протестировали их на лабораторных животных. На это ушло еще 25 дней. Таким образом на выбор потенциального лекарства потребовалось всего 46 дней.
Для сравнения, традиционный процесс разработки кандидатов на звание лекарства занимает около 8 лет и обходится компаниям в несколько миллионов долларов США. В то время как на создание ИИ ушло всего 150 тысяч долларов.
Разработка новых лекарств. По данным Калифорнийской ассоциации биомедицинских исследований, путь лекарства от исследовательской лаборатории до пациента занимает в среднем 12 лет. Только один из тысячи препаратов доходит до тестирования на людях, и только один из пяти тысяч препаратов утверждается для практического использования и выходит на рынок. Применение технологий ИИ значительно сократит как время вывода новых лекарств на рынок, так и их стоимость. Более того, она способна предсказывать токсикологические и физико-химические свойства соединений, а потенциально и вовсе снижать их токсичность. Сейчас платформа тестируется.
Данные обезличены. Медицину двигают технологии искусственного интеллекта Подробнее Уменьшение бумажной работы врачей. Внесение информации в медкарту, работа с документами и т. В итоге врач получает больше времени на работу с пациентом. Например, в Москве реализовали первое масштабное применение голосового ввода. В частности, рентгенологи столицы заполнили голосом уже более 210 тысяч медицинских протоколов.
Искусственный интеллект создал новое лекарство всего за 21 день
Для сравнения, в 2020 г. Одним из ключевых направлений стратегии является развитие рынка программных продуктов на основе ИИ для здравоохранения нашей страны. В настоящее время мы нашли информацию о 65 разнообразных ИИ-системах для медицины и здравоохранения, созданных и продвигаемых на рынке нашей страны. Условно существующие продукты можно объединить в несколько основных групп: Анализ медицинских изображений и цифровая диагностика Профилактика и лечение состояний, заболеваний и осложнений Прочие направления.
Но мы поняли, что для адекватной проверки нашей ИИ-платформы необходимо не только создать новые препараты с новым механизмом действия, но и довести их до клинической проверки. Только тогда можно будет сказать, что наша технология работает», — отметил Жаворонков. Фаза 2 В настоящее время лекарство проходит двойное слепое рандомизированное плацебо-контролируемое исследование, в котором участвуют 60 пациентов в 40 разных клиниках США и Китая. Если эта фаза пройдет успешно, испытание продолжится с большим количеством вовлеченных людей.
Текущее исследование займет около 12 недель, а его итоги планируется подвести в следующем году. Проблема в том, что он с той же эффективностью способен создавать и новые отравляющие вещества и оружие.
Искусственный интеллект превзошел человека по нескольким показателям, в том числе по классификации изображений, визуальным ассоциациям и пониманию английского языка. Промышленность продолжает доминировать в передовых исследованиях в области ИИ. В 2023 году в промышленности создали 51 новую модель машинного обучения, в то время как в академических целях были представлены только в 15.
Модели Frontier становятся намного дороже. В 2023 году 61 известная ИИ-модель была создана американскими учреждениями, что намного превышает 21 модель Европейского союза и 15 моделей Китая. Инвестиции в генеративный ИИ стремительно растут. Несмотря на снижение общих частных инвестиций в ИИ в прошлом году, финансирование генеративного ИИ резко выросло, увеличившись по сравнению с 2022 годом и достигнув 25,2 млрд долларов. ИИ повышает производительность труда сотрудников.
Только в США от этого заболевания сейчас страдают до 100 тыс. Без лечения оно способно свести пациента в могилу в течение 2-5 лет. Применяемые на сегодняшний день лекарства преимущественно нацелены на замедление развития заболевания, но нередко дают крайне неприятные побочные эффекты. Фото: ru. Цифровизация По словам Жаворонкова, когда компания создавалась, ее основатели сразу же сосредоточились на алгоритмах — на разработке технологии, способной самостоятельно обнаруживать и конструировать новые молекулы. Но мы поняли, что для адекватной проверки нашей ИИ-платформы необходимо не только создать новые препараты с новым механизмом действия, но и довести их до клинической проверки.