Новости фрактал в природе

Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической».

Содержание

  • Можно ли прибыльно торговать используя фрактальность?
  • Фракталы в природе презентация - 97 фото
  • Молния фрактал - 59 фото
  • Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать
  • Исследовательская работа: «Фракталы в нашей жизни». | Образовательная социальная сеть
  • Биофракталы

Математика в природе: самые красивые закономерности в окружающем мире

Особенностью этого фермента является его способность самопроизвольно собираться в структуру, напоминающую треугольник Серпинского. Этот фрактальный объект представляет собой треугольный узор, в котором каждый треугольник является уменьшенной копией целого. До сих пор ученым не встречались подобные молекулярные образования, сохраняющие самоподобие на разных масштабных уровнях. Уникальная сборка Изображение белковой молекулы было получено с помощью электронного микроскопа.

Она стала намного более сложной. А теперь посмотрим на эти ветви. От них отходят более мелкие ветки.

У своего основания они имеют ту же слегка деформированную цилиндрическую форму. Как тот же ствол. А потом и от них отходят куда более мелкие ветки. И так далее. Дерево воспроизводит само себя, на каждом уровне. При этом его структура постоянно усложняется, но остается себе подобной.

Это ли не фрактал? Кровообращение А вот кровеносная система человека. Она тоже имеет фрактальную структуру. Есть артерии и вены. По одним из них кровь подходит к сердцу вены , по другим поступает от него артерии. А далее, кровеносная система начинает напоминать то самое дерево, о котором мы говорили выше.

Сосуды, сохраняя свое строение, становятся все более тонкими и разветвленными. Они проникают в самые отдаленные участки нашего тела, доносят кислород и другие жизненно важные компоненты до каждой клетки. Это типичная фрактальная структура, которая воспроизводит саму себя все в более и более мелких масштабах. Стоки реки «Из далека долго течет река Волга». На географической карте это такая голубая извилистая линия. Ну, притоки крупные обозначены.

Ока, Кама. А если мы уменьшим масштаб? Выяснится, что притоков этих намного больше. Не только у самой Волги, но и у Оки и Камы. А у них есть и свои притоки, только более мелкие. А у тех — свои.

Возникает структура, удивительно похожая на кровеносную систему человека. И опять возникает вопрос. Какова протяженность всей этой водной системы? Если измерять протяженность только основного русла — все понятно. В любом учебнике можно прочитать. А если все измерять?

Опять в пределе бесконечность получается. Наша Вселенная Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно. Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики звездные скопления , где-то — пустота. Почему распределение материи подчиняется иррегулярным иерархическим законам.

А что происходит внутри галактик еще одно уменьшение масштаба. Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то — нет. Не проявляется ли здесь фрактальная сущность мира? Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой.

Плавное очертание берегов, со всех сторон — море.

Узнать протяженность береговой линии очень просто. Возьмите обычную нитку и аккуратно выложите ее по границам острова. Потом, измеряйте ее длину в сантиметрах и, полученное число, умножайте на масштаб карты — в одном сантиметре сколько-то там километров. Вот и результат. А теперь следующий эксперимент. Вы летите на самолете на высоте птичьего полета и фотографируете береговую линию.

Получается картина, похожая на фотографии со спутника. Но эта береговая линия оказывается изрезанной. На ваших снимках появляются небольшие бухты, заливы, выступающие в море фрагменты суши. Все это соответствует действительности, но не могло быть увиденным со спутника. Структура береговой линии усложняется. Допустим, прилетев домой, вы на основании своих снимков сделали подробную карту береговой линии.

И решили измерить ее длину с помощью той самой нитки, выложив ее строго по полученным вами новым данным. Новое значение длины береговой линии превысит старое. И существенно. Интуитивно это понятно. Ведь теперь ваша нитка должна огибать берега всех заливов и бухт, а не просто проходить по побережью. Мы уменьшили масштаб, и все стало намного сложнее и запутаннее.

Как у фракталов. А теперь еще одна итерация. Вы идете по тому же побережью пешком. И фиксируете рельеф береговой линии. Выясняется, что берега заливов и бухт, которые вы снимали с самолета, вовсе не такие гладкие и простые, как вам казалось на ваших снимках. Они имеют сложную структуру.

И, таким образом, если вы нанесете на карту вот эту «пешеходную» береговую линию, длина ее вырастет еще больше. Да, бесконечностей в природе не бывает. Но совершенно понятно, что береговая линия — это типичный фрактал. Она остается себе подобной, но ее структура становится все более и более сложной при ближайшем рассмотрении вспомните про пример с микроскопом. Это воистину удивительное явление. Мы привыкли к тому, что любой ограниченный по размерам геометрический объект на плоскости квадрат, треугольник, окружность имеет фиксированную и конечную длину своих границ.

А здесь все по-другому. Длина береговой линии в пределе оказывается бесконечной. Дерево А вот представим себе дерево. Обычное дерево. Какую-нибудь развесистую липу. Посмотрим на ее ствол.

Около корня. Он представляет собой такой слегка деформированный цилиндр. Поднимем глаза выше. От ствола начинают выходить ветви. Каждая ветвь, в своем начале, имеет такую же структуру, как ствол — цилиндрическую, с точки зрения геометрии. Но структура всего дерева изменилась.

Она стала намного более сложной.

Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: 1. Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур таких как окружность, эллипс, график гладкой функции : если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину. Является самоподобным или приближённо самоподобным.

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

Парк онлайн весной 2021. Фракталы в природе. Автор Мануйленко Никита. Фрактальная геометрия природы. Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию. Фото: Фракталы в природе молния. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Биофракталы

  • Фракталы вокруг нас
  • Содержание
  • ФРАКТАЛ • Большая российская энциклопедия - электронная версия
  • Фракталы – Красота Повтора
  • Фракталы в природе (53 фото) - 53 фото

Что такое фрактал?

Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым». Деревья, как и многие другие объекты в природе, имеют фрактальное строение. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. Фракталы в природе (53 фото).

Фракталы — потрясающая красота математики в природе

  • Фракталы в природе
  • 9 Удивительных фракталов, найденных в природе
  • Воспроизведение эволюции в лаборатории
  • Содержание
  • Фракталы – Красота Повтора
  • Основная навигация

Фракталы в природе (53 фото)

Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. В данном разделе вы найдете много статей и новостей по теме «фрактал». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых журналов. Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья. ПРОСТО ФРАКТАЛ. Фракталы в природе.

Войти на сайт

До 1975 года, фракталы встречались в истории время от времени, но после работы Бенуа Мандельброта, изучение фракталов начало приобретать массовый характер, все больше интегрируясь в мир. Изучение фракталов вызвало новый виток в изучении разных сфер жизни: в компьютерной графике, в передаче данных, в радиотехнике, в производстве, в работе мозга, в движениях человека, в росте живых существ и многом другом. Представьте, насколько упрощается построение графических моделей, зная, что они самоподобны и вычисляются по одной простой формуле. Насколько становиться проще кодирование и передача информации, когда есть понимание, что их можно «сжать» по определённой фрактальный закономерности. И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития. Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже? Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности.

Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба.

Фото: Yale University, www. В начале 60-х годов Мандельброт занимался экономикой, изучал динамику цен на хлопок. В то время почти все экономисты считали, что в долгосрочной перспективе цены зависят от внешних факторов, а в краткосрочной колеблются случайным образом.

Однако Мандельброт сумел разглядеть в динамике цен закономерность — она практически не зависела от масштаба! Говоря другими словами, изменения цен за год и за месяц на графиках выглядели как две практически одинаковые кривые, несмотря на прошедшие за рассматриваемый период две мировые войны. Множество Жюлиа, www. В то же время научным сообществом его исследования воспринимались как нечто недостойное внимания. Отчасти это происходило из-за недостаточной на тот момент формальности теории, отчасти — из-за ее разрозненности.

Большинство ученых просто не понимали, как и для чего можно применять эту теорию. Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса. Иллюстрация: Eeyore22, www. Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач.

Например, одно из свойств фракталов основано на их способности иметь дробную размерность. Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной. Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие. Способность поглощать кислород напрямую зависит от площади дыхательной поверхности легких, но при этом они должны занимать относительно небольшой объем.

Именно поэтому небольшие человеческие легкие имеют дыхательную поверхность большую, чем стандартный теннисный корт. Теорию фракталов используют в материаловедении. Шероховатости и неровности, остающиеся на поверхности любого металла после его полировки или изготовления, имеют фрактальную природу. И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла. Аналогичные результаты были в исследованиях полимеров.

Оказалось, что полимерные цепочки образуют сложные и запутанные структуры, которые определяют ключевые показатели полимеров. И эти запутанные цепочки — тоже фракталы!

Это правило, видимо, справедливо для любых систем, производящих информацию.

Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям. И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - иными словами, следует принципу "... Хаотические компьютеры Чего нам не хватает в современных компьютерах?

Если живой организм для существования в изменчивой среде должен обладать элементами хаотического поведения, то можно предположить, что и искусственные системы, способные адекватно взаимодей ствовать с меняющимся окружением, должны быть в той или иной степени хаотичными. Современные компьютеры таковыми не являются. Они представляют собой замкнутые системы с очень большим, но конечным числом состояний.

Возможно, в будущем на основе динамического хаоса создадут компьютеры нового типа - открытые с термодина мической точки зрения системы, способные адаптироваться к условиям внешней среды. Однако уже сегодня хаотические алгоритмы могут успешно применять ся в компьютер ных технологиях для хранения, поиска и защиты информации. При решении некоторых задач они оказываются более эффективными по сравнению с традиционными методами.

Это относится, в частности, к работе с мультимедийными данными. В отличие от текстов и программ мультимедийная информация требует иного способа организации памяти. Голубая мечта пользователей - возможность поиска мелодии, видеосюжета или нужных фотографий не по их атрибутам названию директории и файла, дате создания и т.

Оказывается, такой ассоциативный поиск можно осуществить с помощью технологий на основе детерминированного хаоса. Каким образом? Мы уже обсуждали генерацию информации хаотическими системами.

Теперь зададимся вопросом: а нельзя ли поставить в соответствие траектории конкретные данные, записанные в виде определенной последовательностей символов? Тогда часть траекторий системы находилась бы во взаимно однозначном соответствии с нашими информаци онными последовательностями. А поскольку каждая траектория - это решение уравнений движения системы при определенных начальных условиях, то и любую последователь ность символов можно было бы восстановить путем решения этих уравнений, задав в качестве начальных условий небольшой ее фрагмент.

Таким образом появилась бы возможность ассоциативного поиска информации, то есть поиска по содержанию. Коллективом сотрудников нашего института были созданы математические модели записи, хранения и поиска информации с помощью траекторий динамических систем с хаосом. Хотя алгоритмы казались очень простыми, их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете.

Развитие идеи привело к созданию технологии, позволяющей обрабатывать любые типы данных: изображения, текст, цифровую музыку, речь, сигналы и т. Пример использования технологии - программный комплекс "Незабудка", предназначен ный для работы с архивами неструктурированной информации как на персональных компьютерах, так и на информационных серверах. Вся информация в архиве записывается и хранится в виде траекторий хаотической системы.

Для поиска необходимых документов пользователь составляет запрос путем набора в произволь ной форме нескольких строк текста, относящегося к содержанию требуемого документа. В ответ система выдаст искомый документ, если входной информации достаточно для его однозначного поиска, либо предложит набор вариантов. При необходимости можно получить и факсимильную копию найденного документа.

Наличие ошибок в запросе не оказывает существенного влияния на качество поиска. Связь с помощью хаоса В большинстве современных систем связи в качестве носителя информации используются гармонические колебания. Информационный сигнал в передатчике модулирует эти колебания по амплитуде, частоте или фазе, а в приемнике информация выделяется с помощью обратной операции - демодуляции.

Наложение информации на носитель осуществляется либо за счет модуляции уже сформированных гармонических колебаний, либо путем управления параметрами генератора в процессе его работы. Аналогичным образом можно производить модуляцию хаотического сигнала. Однако возможности здесь значительно шире.

Гармонические сигналы имеют всего три управляемые характеристики амплитуда, фаза и частота. В случае хаотических колебаний даже небольшие вариации в значении параметра одного из элементов источника хаоса приводят к изменениям характера колебаний, которые могут быть надежно зафиксированы приборами. Это означает, что у источников хаоса с изменяемыми параметрами элементов потенциально имеется большой набор схем ввода информационного сигнала в хаотический носитель схем модуляции.

Кроме того, хаос принципиально обладает широким спектром частот, то есть относится к широкополосным сигналам, интерес к которым в радиотехнике традиционно связан с их большей информационной емкостью по сравнению с узкополосными колебаниями. Широкая полоса частот несущей позволяет увеличить скорость передачи информации, а также повысить устойчивость системы к возмущающим факторам. Широкополосные и сверхширокополосные системы связи, основанные на хаосе, имеют потенциальные преимущества перед традиционными системами с широким спектром по таким определяющим параметрам, как простота аппаратной реализации, энергетическая эффективность и скорость передачи информации.

Хаотические сигналы могут также служить для маскировки передаваемой по системе связи информации без использования расширения спектра, то есть при совпадении полосы частот информационного и передаваемого сигналов. Совокупность перечисленных факторов стимулировала активные исследования хаотических коммуникационных систем. В настоящее время уже предложено несколько подходов к расширению спектра информационных сигналов, построению простых по архитекту ре передатчиков и приемников.

Одна из последних идей в этом направлении - так называемые прямохаотические схемы связи. В прямохаотической схеме связи информация вводится в хаотический сигнал, генерируемый непосредственно в радио- или СВЧ-диапазоне длин волн. Информацию вводят либо путем модуляции параметров передатчика, либо за счет ее наложения на хаотический носитель уже после его генерации.

Соответственно, извлечение информационного сигнала из хаотического также осуществляют в области высоких или сверхвысоких частот. Оценки показывают, что широкополосные и сверхширокополосные прямохаотические системы связи способны обеспечить скорости передачи информации от десятков мегабит в секунду до нескольких гигабит в секунду. Хаос и компьютерные сети В коммуникационных схемах хаос может использоваться как носитель информации, как динамический процесс, обеспечивающий преобразование информации к новому виду, и, наконец, как комбинация того и другого.

Устройство, преобразующее с помощью хаоса сигнал в передатчике из одного вида в другой, называется хаотическим кодером. С его помощью можно изменять информацию таким образом, что она окажется недоступной стороннему наблюдателю, но в то же время будет легко возвращена к исходному виду специальной динамической системой - хаотическим декодером , находящимся на приемной стороне коммуникационной системы. В каких процессах может использоваться хаотическое кодирование?

Во-первых, с его помощью можно принципиально по-новому организовать общее информационное пространство, создавая в нем большие открытые группы пользователей - подпространства. В рамках каждой группы вводится свой "язык" общения - единые для всех участников правила, протоколы и другие признаки данной "информационной субкультуры". Для желающих освоить этот "язык" и стать членом сообщества имеются относительно простые средства доступа.

В то же время для сторонних наблюдателей участие в подобном обмене будет затруднено. Таким образом, хаотическое кодирование может служить средством структуризации "народонаселения" общего информационного пространства. Во-вторых, подобным же образом можно организовать многопользовательский доступ к информации.

Наличие глобальной сети Интернет и магистральных информационных потоков Highways предполагает существование общих протоколов, обеспечивающих прохождение информации по единым каналам. Однако в рамках определенных групп участников например, в рамках корпоративных сетей существует острая необходимость доставки информации конкретным потребителям, без разрешения доступа "чужим" участникам. Методы хаотического кодирования являются удобным средством организации таких виртуальных корпоративных сетей.

Кроме того, они могут использоваться и непосредственно для обеспечения определенного уровня конфиденциальности информации, переходя в область традиционной криптографии. Наконец, еще одна функция хаотического кодирования очень актуальна в связи с развитием электронной коммерции и обострением проблемы авторских прав в Интернете. В особенности это касается продажи через сеть мультимедийных товаров музыки, видео, цифровой фотографии и др.

На основе детерминированного хаоса можно обеспечить такой способ защиты авторских прав и прав на интеллектуальную собственность, как снижение качества информационного продукта при общем доступе. Например, музыкальные треки, закодированные с помощью хаоса, будут распространяться в сети без каких-либо ограничений, так что каждый пользователь сможет воспользоваться ими. Однако при прослушивании без специального декодера качество звука будет низким.

В чем смысл такого подхода? Распространяемая информация остается открытой и не подпадает под ограничения, накладываемые применением криптографических методов защиты. Кроме того, потенциальный покупатель имеет возможность ознакомиться с продуктом, а уже потом решить, стоит ли приобретать его высококачественную версию.

Следует отметить, что вышеперечисленные функции хаотического кодирования далеко не исчерпывают потенциальные возможности его применения в современных информационных технологиях. В ходе дальнейшего изучения и развития этой проблематики, по всей видимости, могут открыться новые грани и перспективные области использования. Таким образом, использование динамического хаоса и фракталов в информационных технологиях не экзотика, как могло показаться еще несколько лет назад, а естествен ный путь для разработки новых подходов к созданию систем, эффективно работающих в изменчивой окружающей среде.

Читайте в любое время Другие статьи из рубрики «Информационные технологии» Детальное описание иллюстрации Деревья, как и многие другие объекты в природе, имеют фрактальное строение. Слева - фотография ели. Справа - искусственная фрактальная структура, генерируемая итерационными уравнениями.

По внешнему виду она очень напоминает живое дерево. Отчетливо видна структура ветвей, повторяющаяся во все более и более мелких масштабах.

Одним из таких исследований является изучение фракталов в природе. Благодаря спутниковым снимкам мы также можем полюбоваться красотой нашей планеты и необычными рисунками, сделанными природой в разных странах. Для ученых это, конечно, больше, чем просто красивая картинка, но сейчас не об этом.

Похожие новости:

Оцените статью
Добавить комментарий