Обратимые заряд и разряд стали возможны благодаря наличию множества пор в катоде, которые могут аккумулировать образующийся хлор. Вот казалось бы, только вчера мы начали работу над проектом Заряд.
Химики впервые перезарядили тионилхлоридный аккумулятор
Он находится на 10-м месте по распространённости в природе. Титан обладает очень высокой коррозионной стойкостью. Основные титансодержащие реагенты легко доступны, устойчивы и не токсичны. Несмотря его преимущества, причиной, по которой его не могли применить в качестве катодных материалов, долгое время оставался низкий электрохимический потенциал, ограничивающий почти достижимую удельную энергию аккумулятора.
Немаловажным является также и тот факт, что помимо литиевых аккумуляторов нам удалось собрать также перспективные натрий- и калий-ионные ячейки на их основе», — отметил Обрезков. Понравился материал? Добавьте Indicator. Ru в «Мои источники» Яндекс.
За последние полгода завод увеличил выпуск электронно-оптических приборов в несколько раз. Губернатор Андрей Травников во время выездного совещания на площадке «Катода» отметил, что сейчас наблюдается очень высокий спрос на современное оборудование, которое производит завод.
Ведь кратное увеличение объёмов производства, в частности, на «Катоде», — это серьезный вклад в повышение эффективности работы наших бойцов», — сказал Травников.
Буквально за полгода предприятие увеличило выпуск электронно-оптических приборов в разы. Глава региона Андрей Травников провёл совещание о снабжении и оказании услуг воинским подразделениям-участникам СВО. В Новосибирской области предприятия, которые производят продукцию для военных нужд, поддерживают на уровне правительства региона. Бронежилеты «Архангел» шьют в Новосибирске для добровольцев элитного отряда «Вега» Уникальное производство оптико-электронных приборов налажено на заводе «Катод». На новосибирском предприятии производят оптические преобразователи, приборы ночного видения, фотоумножители и многое другое. Как заявляют на предприятии, серийный выпуск электронно-оптических преобразователей 3-го поколения сейчас налажен только в двух странах: на российском «Катоде» и в США.
КАТОД, сеть магазинов и СТО
В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность. Они сохраняли до трети своей ёмкости даже после 25 тысяч рабочих циклов - если бы обычный аккумулятор в телефоне обладал такой же стабильностью, то его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет. Таким образом, российские ученые показали, что разработанные полимерные катодные материалы можно использовать для создания эффективных литиевых и калиевых двухионных аккумуляторов.
Добавьте новости "Курьер. Бердск" в избранное - и Яндекс будет показывать их выше остальных. Если вы станете очевидцем чрезвычайного происшествия или чего-то необычного, вы можете делиться с нами новостями! Добавляйте в свои телефоны наш номер 8953-878-90-10 WhatsApp и подписывайтесь на аккаунт в Instagram.
Ru» сообщил представитель Сколтеха. Катоды батарей электромобилей обычно изготавливают из слоистых оксидов переходных металлов, в том числе обогащенных никелем. То есть катод будет меньше, вся батарея — компактнее. Значит, заняв тот же объем, аккумулятор сможет запасти больше энергии, и пробег на одной зарядке увеличится», — заявил руководитель исследования, профессор Центра энергетических технологий Сколтеха Артем Абакумов.
Одновременно катодный материал должен отдать или принять эквивалентное количество электронов, чтобы сохранить электронейтральность. В нашей работе показано, что кинетические затруднения и энергетические барьеры связаны не только с перемещением катионов лития, но в значительной степени с перемещением электронов. В особенности заторможенной может быть передача электронов между катионами переходного металла и атомами кислорода, что как раз и приводит к энергетическим потерям», — рассказывает директор Центра энергетических технологий CEST Сколтеха профессор Артём Абакумов. Мы убедительно показали отсутствие таких необратимых процессов с использованием просвечивающей электронной микроскопии высокого разрешения. Этот прибор обеспечивает пространственное разрешение до 0,06 нм, что позволяет получать изображения кристаллических структур с атомным разрешением», — отмечает аспирант Сколтеха Анатолий Морозов.
В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность.
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
Они показали, что такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. Построена модель термополевой электронной эмиссии из металлического катода с тонкой поверхностнойдиэлектрической пленкой при его температуре 200–400 К. Получено выражение. Ученые из Университета префектуры Осака разработали катод из сульфида лития с твердым электролитом, который отличается устойчивостью к окислению.
Из полимеров сделали катоды для литиевых аккумуляторов
Проект ориентирован на производителей батарей для мобильных телефонов, бытовой техники и автомобилей. Сегодня одним из самых существенных недостатков литий-ионных аккумуляторов, которыми мы пользуемся ежедневно, является риск их короткого замыкания и, как следствие, возгорания. В результате перепадов напряжения в аккумуляторе или механического воздействия на него между катодом и анодом образуется пробой. Заряд перестает передаваться по внешней цепи, оставаясь внутри аккумулятора. По нему циркулируют большие токи, и батарея разогревается. Плавится сепаратор, расположенный в месте пробоя, увеличивая его размер. В итоге происходит короткое замыкание, устройство возгорается и приходит в негодность, что влечет за собой не только финансовые потери, но и угрозу человеческой жизни, если взрыв происходит, например, в автомобиле. Сейчас существует несколько способов решения этой проблемы. Часто на аккумуляторе устанавливают выключатель, который реагирует на рост температуры и предотвращает перегревание батареи. Однако такая система может слишком поздно выявить неполадки.
Кальций, как пятый по распространённости элемент в земной коре, широко доступен и недорог, а также у него более высокий потенциал плотности энергии, чем у лития. Также считается, что его свойства помогают ускорить перенос ионов и диффузию в электролитах и катодных материалах, что даёт ему преимущество перед другими альтернативами литиевым батареям — такими, как магний и цинк. Однако на пути коммерческой жизнеспособности кальциевых батарей остаётся много препятствий. Основными препятствиями были отсутствие эффективного электролита и отсутствие достаточно качественных катодных материалов.
Команда ученых из Университета Гонконга сосредоточилась на решении этой задачи. Они разработали новый тип молекулы-акцептора Y6, которая в случае полимеризации проявляет свойства, необходимые для получения стабильных органических фотоэлементов. Статья об открытии была опубликована в журнале Nature Communications, пишет Science Daily.
Что умеют программные роботы Исследуя сверхбыструю динамику заряда при помощи фемтосекундных лазерных импульсов, ученые обнаружили, что критическую роль в усилении выработки электроэнергии играет контроль уровня агрегации полимеризированных акцепторов Y6 Y6-PAs. Кроме того, Y6-PAs проявляют повышенную способность к смешиванию с донорскими полимерами по сравнению с маленькими молекулярными акцепторами того же типа.
Фторид натрия и другие фтор-содержащие соли способствуют образованию пустот в этом слое и облегчают движение ионов натрия. Авторы также изготовили перезаряжаемый источник тока с литиевым анодом. Он показывал чуть более высокую емкость первого разряда 3250 миллиампер-час на грамм катода , но при последующих разрядах и зарядах емкость была такая же, как и у натриевого варианта. Впрочем, данных о сходстве и различии двух новых источников тока пока что недостаточно, и авторы собираются продолжить их изучение. Говорить о том, смогут ли подобные устройства в будущем выйти на рынок и составить конкуренцию литий-ионным аккумуляторам, тоже пока преждевременно. Пока что Дай и его коллеги отметили только, что за все время работы над статьей они собрали и испытали несколько сотен ячеек, но ни одна из них не взорвалась. В прошлом году корейские химики разработали новый подход для синтеза галогензамещенного тиофосфата лития со структурой аргиродита и получили электролит для твердотельного литий-ионного аккумулятора с рекордной проводимостью. А об устройстве и истории создания литий-ионных аккумуляторов можно почитать в нашем материале «Заряженный Нобель».
Наталия Самойлова.
Создан уникальный катод для металл-ионных аккумуляторов
Метка: катод. Литий-металлические аккумуляторы сохраняют 80% емкости после 6 000 циклов заряда-разряда – исследование. Новая литий-ионная батарея содержит катод на основе органических веществ вместо кобальта и никеля. "В катодах батарей для электромобилей, как правило, используются слоистые оксиды переходных металлов, в том числе богатые никелем. «В рамках нашего текущего исследования мы проверили долгосрочную работу металлической батареи Ca с катодом из наночастиц сульфида меди (CuS). Справиться с внешними угрозами и приблизить успешное завершение спецоперации российской армии помогают новосибирские предприятия, в числе них новосибирский завод «Катод». Автоматическое зарядное устройство КАТОДЪ-501 здорово всем народ сегодня решила разобрать и посмотреть что с этим зарядным устройством так как он работает неправильно.
Группа "Катод" усиливает заряд
Специалисты из США разобрались, как сделать так, чтобы перспективный материал не сокращал срок службы аккумулятора. Новое открытие делает возможным быструю зарядку и высокую производительность литий-ионных аккумуляторов Литий-ионная батарея заряжается и разряжается в процессе движения ионов лития между двумя электродами — анодом и катодом. Обычно анод делается из графита, а катод — из оксида лития-кобальта. Эти материалы хорошо сочетаются вместе, но специалисты Ренсселерского политехнического института считают, что эффективность системы можно увеличить.
Для этого команда ученых заменила оксид лития-кобальта на дисульфид ванадия. Поскольку этот материал легче, это позволило увеличить плотность энергии.
Полученная ячейка показала довольно высокую разрядную емкость — 2800 миллиампер-час на грамм катода. После этого авторы неожиданно обнаружили, что батарею можно перезарядить и затем разрядить снова. Емкость такого цикла оказалась ниже, чем емкость первого разряда — 1200 миллиампер-час на грамм катода при токе 100 миллиампер — однако в дальнейшем емкость больше не снижалась. Батарея пережила 200 циклов заряда и разряда, сохраняя кулоновскую эффективность отношение заряда, который батарея отдает при разряде, к тому, который необходим для заряда около 99 процентов. Чтобы выяснить причины такой неожиданной стабильности, авторы аккуратно вскрыли батарею и изучили ее содержимое с помощью сканирующей электронной микроскопии, рентгеновской фотоэлектронной спектроскопии и масс-спектрометрии. Они обнаружили, что во время первого разряда образующийся NaCl в основном осел на пористом углеродном катоде, а при последующем заряде хлорид ионы из NaCl окислились до молекулярного хлора Cl2.
При последующем разряде хлор снова восстанавливается до хлорид-иона Cl-. Обратимые заряд и разряд стали возможны благодаря наличию множества пор в катоде, которые могут аккумулировать образующийся хлор. Хлор — активный газ, который может вступить в реакцию и с анодом и с компонентами электролита, но пока он находится в порах катода, вся система остается стабильной. Причем, судя по всему, для удерживания хлора лучше всего подходят микропоры размером менее 2 нанометров.
О новой работе учёные рассказали в журнале Energy Storage Materials. Название статьи говорит само за себя: «Проводящий анод с S-легированием из многовалентного сульфида железа с низкой кристалличностью и катод из 3D-пористого графитового углерода с высоким содержанием N [натрия] для высокопроизводительных натриево-ионных гибридных накопителей энергии».
Понятно, что нельзя просто взять и объединить в новом устройстве аноды от обычных аккумуляторов и катоды от суперконденсаторов. Необходимо изменить свойства как анодов, так и катодов. У первых хромает скорость заряда, а вторые не отличаются высокой ёмкостью.
Несмотря на то, что литий-ионные аккумуляторы на основе неорганических материалов занимают доминирующее положение на рынке, дальнейшее улучшение их рабочих характеристик затруднено, так как в их составе используются тяжелые элементы, ограничивающие удельные электрохимические емкости материалов. Решить проблему можно путем применения в качестве материалов для катодов органических соединений на основе легких элементов — углерода, гелия, азота, кислорода, серы.
Среди их плюсов по сравнению с неорганическими материалами можно выделить высокую удельную энергоемкость, высокие скорости зарядки и разрядки, устойчивость к механическим деформациям, а также высокую экологичность — переработать их можно так же, как и обычный бытовой пластик. Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия.
Разработка российских ученых позволила увеличить пробег электрокаров на одной зарядке
Новости электроники, справочник радиолюбителя, электронные компоненты, радиодетали. Заряд перестает передаваться по внешней цепи, оставаясь внутри аккумулятора. Катод это электрод, имеющий отрицательный или положительный заряд в зависимости от типа прибора или процесса.
Долговечные литий-металлические аккумуляторы разработали в KIT
Электрохимические процессы в LiIon аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду. Они показали, что такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. Знание того, какой заряд имеет катод, является ключевым для понимания его функции и влияния на электролитические. В электрохимии катод — электрод, на котором происходят реакции восстановления. Он отличается беспрецедентной стабильностью работы при высоких скоростях заряда и разряда, а также имеет высокий электрохимический потенциал.