Новости когда минус на минус дает плюс

Плюс на минус даёт правило. Согласно правилу знаков: «”плюс” на “минус” – будет “минус”», а, значит, путем такого преобразования – сложение превращается в вычитание положительных чисел. При вычитании из определенного числа отрицательное число получается плюс (правило: два минуса дают плюс). С просьбой объяснить все «плюсы» и «минусы» майских платежек редактор портала обратился к бухгалтеру центра расчетов с потребителями Алевтине Мальцевой.

Следующая пословица

  • Сложение и вычитание отрицательных чисел
  • Минус На Минус Дает Плюс!
  • Когда минус дает плюс
  • Как умножать отрицательные числа
  • Общие понятия

Плюс на плюс дает плюс

Это связано с тем, что умножение числа на отрицательное число приводит к изменению его знака. Первое минус перед числом 3 указывает на то, что это число отрицательное. Затем мы умножаем это число на второе число, которое также является отрицательным. При умножении отрицательных чисел, мы получаем положительный результат. Почему так происходит? Если мы взглянем на числовую ось, то увидим, что отрицательные числа находятся слева от нуля, а положительные числа — справа. При умножении двух отрицательных чисел, мы перемещаемся вправо на числовой оси, то есть отрицательное перемещение приводит к положительному результату. Таким образом, минус на минус дает плюс, потому что умножение двух отрицательных чисел приводит к получению положительного результата. Минус на минус в алгебре и арифметике Минус на минус может показаться странным математическим выражением, так как два отрицательных числа кажутся противоречащими друг другу.

Однако, в алгебре и арифметике минус на минус дает плюс и имеет свои математические обоснования. Отрицательные числа Для понимания, почему минус на минус равно плюс, нужно осознать, что отрицательные числа — это числа, которые находятся слева от нуля на числовой прямой. Они имеют отрицательный знак и используются для представления долгов, убытков, или отрицательных величин в математических моделях и физических явлениях. Положительные числа на числовой прямой находятся справа от нуля и имеют положительный знак. Они представляют доли, прибыль, или положительную величину в математических операциях. Умножение отрицательных чисел Когда мы умножаем два положительных числа, результатом является положительное число, так как оно представляет произведение положительных величин. Когда мы умножаем положительное число на отрицательное, результатом является отрицательное число. Это связано с тем, что в процессе умножения происходит смена знака одного из множителей.

Таким образом, когда мы умножаем отрицательное число на отрицательное, происходит смена знака у обоих чисел, и результатом является положительное число. Математически это обосновывается тем, что минус на минус превращается в плюс. Например, -2 умножить на -3 равно 6, так как смена знака происходит у обоих чисел и получается 2 умножить на 3.

А обратное минус пяти будет пять.

Со сменой знака меняются стороны на числовой прямой.

Источник изображения: istockphoto. Так что в 15 часов термометр покажет 6 градусов. Усложним вопрос: а какая температура была в 8 часов утра, при условии, что ее рост был точно таким же? Спустимся по температурной шкале по 2 градуса вниз от 0 градусов 4 раза. Мы получим 8 градусов мороза, или попросту -8 градусов Цельсия. Пока все просто и логично.

Не важно, что по математическим правилам минус на плюс дает минус. Изменим правила. Итак, если... От некоторых расходов можно действительно отказаться без ущерба для сотрудников и самой компании. Такие меры не удивительны. В то время, когда источник доходов значительно поиссяк, приходится прибегать к формуле по доходам и расходы. Для кого-то эти меры покажутся лишними. Нужно не тратить меньше, а зарабатывать больше — подумают они. К сожалению, сегодня это высказывание к категории мотивирующих не отнесешь. Условия диктует ситуация на рынке... И все же именно сейчас наблюдается самый подходящий период для поиска новых решений и идей. Применительно к расходам — поиск способов сократить издержки. Эти способы пригодятся и на будущее. Однако не стоит ограничиваться сокращением расходов на персонал и «чисткой» кадров. Иначе оптимизация расходов может перерасти в кадровый «голод». При этом оставшиеся сотрудники как никогда раньше дорожат своей работой. Это отличная возможность направить их рабочий потенциал в нужное русло. А те, кто отсеется из числа трудолюбивых сотрудников, так или иначе попадет в списки сокращенных.

Почему минус на минус даёт плюс? Сохраните себе это видео | Резерв Математик Андрей

С просьбой объяснить все «плюсы» и «минусы» майских платежек редактор портала обратился к бухгалтеру центра расчетов с потребителями Алевтине Мальцевой. И был нам дарован этот инструмент только тогда, когда люди стали понимать, как надо пользоваться данным инструментом. Таким образом, правило минус на минус дает плюс можно объяснить с помощью основного принципа отрицательных чисел и свойств умножения. Поэтому умножение минус на минус дает плюс. Это первое впечатление, со временем все минусы -оказываются плюсы. Минус на минус, плюс на плюс. Умножение и деление отрицательных или положительных чисел в результате дает положительное число.

Минус на минус даёт плюс. А почему?

Минус на минус дает плюс . НСОТ решили усовершенствовать Знак «минус» можно трактовать как отрицание, тогда «минус» «минус» есть подтверждение.
Почему минус на минус дает плюс? | В последнем варианте как раз минус на минус дает плюс.

Минус на плюс что дает?

Если мы умножаем «минус» на «минус», то получим «плюс». В итоге, зная правильный ответ, мы сами понимаем, что минус на минус ДОЛЖЕН давать плюс. минус на минус дает плюс. Дед взял ложку да как даст бабке по лбу — “БЕЗ-ОТ-КАЗ-НЫЙ”, мля, “БЕЗОТКАЗНЫЙ”. Я – один минус, они – второй минус, когда наша деятельность соединяется – получается плюс во всем: в итогах репетиций, в настроении детей и их родителей. Если к минус движению прибавить минус пищевое воздержание, то в результате получим плюс килограммы.

Почему минус на минус всегда даёт плюс?

Минус на минус даёт плюс – это правило, которые мы выучили в школе и применяем всю жизнь. И был нам дарован этот инструмент только тогда, когда люди стали понимать, как надо пользоваться данным инструментом. Почему при умножение минуса получается новый элемент плюс? Обдумай данную ситуацию и в спокойной обстановке прими решение. 4 февраля фондом «Петербургская политика» были опубликованы данные за январь 2013года, определяющие уровень социально-политической устойчивости российских регионов. Почему минус на минус даёт плюс? Сохраните себе это видео, чтобы вернуться к нему в любой момент!

Когда минус дает плюс

Минус на минус не может дать плюс 3 сентября 2018 Кандидат в депутаты Госдумы от партии «Яблоко» не сумел воспользоваться подарком от партии власти в виде пенсионной реформы, вызвавшей недовольство значительной части населения, но решил обратить неудачу в свою пользу. Объявив обычные проблемы при регистрации оппозиционного мероприятия непреодолимыми, Олег Родин отказался от проведения митинга протеста против пенсионной реформы, посчитав, видимо, что весь возможный пиар с этого мероприятия он получил, а заниматься действительной организацией митинга у нижегородского «Яблока» не хватит организационных ресурсов. Нижегородцы хотят высказаться!

После наполнения бочек вином они перечеркивали знак «минус» и получался знак «плюс».

По сути, знак «минус» заменял виноделам обычный ноль, ведь он обозначал отсутствие вина в бочке. Но математики ловко присобачили знак «минус» к числам и назвали их «отрицательными». Так что же не так с мёдом и дёгтем в бочках?

Мои четыре примера описывают действие сложения — ведь мы прибавляем одно к другому, а математические правила мы рассматриваем для деления и умножения. Это абсолютно разные вещи, сколько бы математики не повторяли, что умножение это и есть сложение. Сложение — это изменение количества.

Умножение — это изменение качества. При добавлении ложки дёгтя в бочку мёда, мёд не превращается в дёготь. Мы просто получаем бочку испорченного мёда.

Точно так же и дёготь, добавленный в бочку дёгтя, не превращает всё в мёд. При сложении и вычитании положительных и отрицательных чисел действуют совсем другие правила знаков. В чем же отличие качественных изменений от количественных?

В единицах измерения, которые в математике предпочитают игнорировать. Вот смотрите. Если мы к метрам длины прибавим метры ширины, мы получим метры периметра.

А если мы умножим метры длины на метры ширины, то в результате будут метры квадратные площади. Теперь вопрос к математикам: сколько метров длины или ширины нужно сложить, чтобы получить один метр квадратный площади? Или вопрос к вам: сколько метров ниток вам нужно намотать на себя, чтобы одеться?

Ведь ткань — это те же самые нитки, только в совершенно другом качестве. Кстати, правило умножения отрицательных чисел наводит на ещё один вопрос математикам: сколько отрицательных чисел нужно сложить, чтобы получилось одно положительное число? Существуют ли отрицательные числа?

Об этом мы поговорим как-нибудь в другой раз. Оцените статью.

Сложение отрицательных чисел Сложение может происходить между: Двумя отрицательными числами. Отрицательным и положительным числом. В этом случае, слагаемые меняются местами и получается обычная операция вычитания положительных чисел. Положительным и отрицательным числом. Вычитание отрицательных чисел Вычитание может происходить между: Двумя отрицательными числами. После этого, мы увидим выражение из предыдущего пункта, то есть сложение отрицательного числа с положительным. Нужно поменять числа местами и выполнить вычитание.

В этом случае получается та же ситуация, что при сложении двух отрицательных чисел. Этот случай больше прочих любим составителями примеров. Значит, получится сложение двух положительных чисел.

Если ждать до конца налогового периода не хочется, можно уже в этом начать получать вычет ежемесячно у работодателя. Но для этого все равно необходимо через налоговую инспекцию оформить уведомление, вместе с соответствующим заявлением подать в инспекцию комплект документов, как при оформлении вычета путем представления 3-НДФЛ. Размер вычета будет равен сумме НДФЛ, которую налогоплательщик должен заплатить в бюджет, то есть с зарплаты просто не будет взиматься подоходный налог. Правда, второй вариант имеет одно но: если вдруг в этом году придется платно лечиться или оплачивать учебу ребенка, социальный вычет вы получить не сможете, потому что сумма налоговых перечислений будет равна нулю так как вся зачтена в счет суммы имущественного вычета. Делим на всех — Квартиру мы приобрели совместно с супругом за 2 млн руб. Кто в этом случае может претендовать на налоговый вычет?

Если вы состоите в браке, но собственником стал лишь один из супругов, то право на вычет имеют оба. Причем с 2015 года в Налоговый кодекс РФ внесены изменения, согласно которым каждый может получить вычет с суммы максимум 2 млн руб. В вашем случае каждый вправе претендовать на вычет с суммы в 1 млн руб. И если в будущем вновь купите недвижимость, то сможете добрать вычет еще по одному миллиону на каждого. Обращаю внимание, что распространяется эта норма на недвижимость, которая приобретена акт приема-передачи оформлен в 2015 году и позже.

Минус на минус даёт плюс

Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами.

А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами.

Но это так... Если вы потрудитесь посмотреть форумы по математики, разные учебники, объяснения на ЮТ, или даже почитаете Лейбница, вы увидите, что это действительно проблема. Никто не может объяснить две простые вещи: 1. Почему минус умножить на минус будет плюс. Почему при умножении числа на ноль получается ноль. Вместо объяснений приводятся разные доказательства. Но доказательства ничего не объясняют.

А школьники и "блондинки" хотят объяснений. Пример с нулем. Таким образом "блондином" оказывается профессор математики, который даже суть вопроса не понимает, или не хочет понимать. Перемножение двух отрицательных чисел не мог объяснить даже Лейбниц где-то я читал на эту тему. Есть и другие пятная в основах арифметики.

И все же именно сейчас наблюдается самый подходящий период для поиска новых решений и идей. Применительно к расходам — поиск способов сократить издержки. Эти способы пригодятся и на будущее.

Однако не стоит ограничиваться сокращением расходов на персонал и «чисткой» кадров. Иначе оптимизация расходов может перерасти в кадровый «голод». При этом оставшиеся сотрудники как никогда раньше дорожат своей работой. Это отличная возможность направить их рабочий потенциал в нужное русло. А те, кто отсеется из числа трудолюбивых сотрудников, так или иначе попадет в списки сокращенных. Вот и еще один плюс — у работодателя появилась отличная возможность провести оптимизацию численности кадров. Кто из них достоен остаться, а кто не по праву занимает вакантные должности? Для работодателя это плюс, а вот для работников...

Есть вероятность, что обязанности уволенных сотрудников распределят между оставшимися. Но и это не повод негодовать. И это еще придется доказать. Оптимизируйте работу бухгалтерской службы. Наведите порядок в обязанностях. Быть может, самое время взять инициативу в свои руки? К тому же кризис — это не только возможность, но теперь уже и необходимость для бухгалтера оторваться от «текучки» и начать мыслить стратегически.

Но если мы заменим один минус на плюс, мы переместимся наоборот, вправо от нуля, и число станет положительным "минус на плюс". Вот почему "минус на минус" даёт "плюс". И изходя из числовой прямой все эти знаки нормально понимаются.

Почему минус на минус дает плюс?

Если оба слагаемых положительные или оба отрицательные, то результат будет положительным. Если одно слагаемое положительное, а другое отрицательное, то результат будет зависеть от их абсолютных значений. В этом случае, «плюс» на «минус» дает «минус», потому что одно слагаемое положительное, а другое отрицательное. Понимание этих правил поможет лучше понять, почему «плюс» на «минус» дает «минус».

Это можно выполнить двумя способами. Переносим часть уравнения с неизвестным в левую сторону, а другие числа — в правую. Получается: Ответ найден.

За все действия, что нам потребовалось выполнить, мы ни разу не прибегнули к использованию отрицательных чисел. Теперь переносим часть уравнения с неизвестным в правую сторону, а остальные слагаемые — в левую. Получаем: Чтобы найти решение, нам нужно одно отрицательное число разделить на другое. Однако верный ответ мы уже получили в предыдущем решении — это х, равное двум. Что доказывают нам эти два способа решения одного уравнения? Первое, что становится ясно — это то, каким образом выводилась адекватность оперирования отрицательными числами — полученный ответ должен быть таким же, что и при решении с использованием только натуральных чисел.

Второй момент — это тот факт, что не нужно больше задумываться над величинами, чтобы получать непременно неотрицательное число. Можно выбирать наиболее удобный способ решения, особенно это касается сложных уравнений. Действия, которые позволили не задумываться над некоторыми операциями что нужно сделать, чтоб были только натуральные числа; какое число больше, чтоб вычитать именно от него и т. Естественно, не все правила действий с отрицательными числами сформировались единовременно. Копились решения, обобщались примеры, на основе чего и стали понемногу «вырисовывать» основные аксиомы. С развитием математики, с выделением новых правил, появлялись новые уровни абстракции.

Например, в девятнадцатом веке стало доказано, что целые числа и многочлены имеют много общего, хотя внешне отличаются. Все их можно складывать, вычитать и перемножать. Правила, которым они подчиняются, влияют на них одним образом. Что же касается деления одних целых чисел на другие, то здесь «поджидает» занимательный факт — ответом не всегда будет целое число. Этот же закон распространяется и на многочлены. Затем было выявлено множество других совокупностей математических объектов, над которыми возможно было производить такие операции: формальные степенные ряды, непрерывные функции.

Со временем математики установили, что после исследования свойств операций результаты станет возможно применять ко всем этим совокупностям объектов. Точно так же работают и в современной математике. Больше интересных материалов: Сугубо математический подход С течением времени математики выявили новый термин — кольцо. Под кольцом подразумевают множество элементов и операции, которые можно над ними производить. Основополагающими становятся правила те самые аксиомы , которым подчиняются действия, а не природа элементов множества. Для того, чтоб выделить первостепенность структуры, возникающую после введения аксиом, как раз обычно и употребляют термин «кольцо»: кольцо целых чисел, кольцо многочленов и т.

Используя аксиомы и исходя из них, можно выявлять новые свойства колец. Сформулируем правила кольца, похожие на аксиомы операций с целыми числами, и докажем, что в любом кольце при умножении минуса на минус выходит плюс. Уточним, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости операция деления не всегда возможна , ни существования единицы — нейтрального элемента по умножению. Если ввести данные аксиомы, получим другие алгебраические структуры, однако со всеми действующими теоремами, доказанными для колец. Рабочая тетрадь содержит различные виды заданий на усвоение и закрепление нового материала, задания развивающего характера, дополнительные задания, которые позволяют проводить дифференцированное обучение. Тетрадь используется в комплекте с учебником «Математика.

Мерзляк, В. Полонский, М. Якир , который входит в систему учебно-методических комплектов «Алгоритм успеха». Из этого получим утверждения про единицы: Далее следует доказать некоторые моменты. Во-первых, нужно установить существование лишь одной противоположности для каждого элемента. Допустим, наличие у элемента А два противоположных элемента: B и С.

Отметим, что и A, и - -A противоположны к элементу -A. Отсюда заключаем, что элементы A и - -A должны быть равны. Получается, это произведение равно нулю. Следующая пословица В книге Владимира Левшина «Магистр рассеянных наук» есть математическая притча, в которой к богатому человеку пришел бедняк и предложил умножить имущество миллионщика.

Пример 3. Деление чисел с одинаковыми знаками Действует тожк правило, что при умножении положительных или отрицательных чисел.

Чтобы разделить отрицательное число на отрицательное два отрицательных числа , надо разделить модуль делимого на модуль делителя. Пример 4. Деление чисел с разными знаками Действует тожк правило, что при делении положительных или отрицательных чисел. Чтобы разделить два числа с разными знаками, надо: 1 разделить модуль делимого на модуль делителя; 2 перед полученным числом поставить знак минус.

Если мы складываем два отрицательных числа то есть с двумя минусами , мы дважды перемещаемся влево и оказываемся далеко от нуля "минус на минус". Но если мы заменим один минус на плюс, мы переместимся наоборот, вправо от нуля, и число станет положительным "минус на плюс". Вот почему "минус на минус" даёт "плюс".

Когда минус на минус дает плюс?

А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус.

Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления. Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-». Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое.

В математике кольцом принято называть множество, в котором задействованы две операции с двумя элементами.

Рассмотрим подробней основные правила знаков. Если мы делим «плюс» на «минус», то получаем всегда «минус».

Если мы делим «минус» на «плюс», то получаем всегда также «минус». Если мы делим «плюс» на «плюс», то получаем «плюс». Если же мы делим «минус» на «минус», то получим, как ни странно, также «плюс».

Если мы умножаем «минус» на «плюс», то получаем всегда «минус». Если мы умножаем «плюс» на «минус», то получаем всегда также «минус». Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс».

Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс». Вычитание и сложение.

Они базируются уже на других принципах. Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще.

Все очень просто. Модуль — это значение числа, но без знака. Например -7 и 3.

По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Можно сделать еще проще.

Вычитание действуют полностью по такому же принципу. Минус на минус даёт плюс — это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему?

Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению.

С древних времён люди пользуются положительными натуральными числами : 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа. Что же с вычитанием?

С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10. Я никак не смогу отдать 13 яблок, потому что у меня их нет.

Нужды в отрицательных числах не было долгое время. Только с VII века н. При решении этого уравнения нам даже не встретились отрицательные числа.

Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами.

В нашем примере мы не использовали сложных вычислений , но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное.

Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается.

Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус».

А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления.

Произведение отрицательного и положительного числа даст лишь «минус. Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления.

Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-». Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое.

Например, — 3 значит, что при вычитании уменьшаемому не хватило трех единиц, чтобы выйти в ноль. Чаще всего это встречается в бухгалтерских отчетах и финансовых сводках. Правило знаков В этой теме часто встречается понятие правила знаков, которое изучается в курсе математики 6 класса. Стоит подробнее остановится на этом вопросе. На самом деле, правило знаков — это производная от правил умножения отрицательных и положительных чисел. Эти правила просто запомнить, чтобы не мучиться каждый раз с вынесением множителей.

Сложение и вычитание отрицательных чисел Рассмотрим в отдельности каждую из операций, чтобы не вызывать лишних вопросов. Сложение отрицательных чисел Сложение может происходить между: Двумя отрицательными числами. Отрицательным и положительным числом. В этом случае, слагаемые меняются местами и получается обычная операция вычитания положительных чисел.

Модуль — это значение числа, но без знака. Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3.

В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Можно сделать еще проще. Вычитание действуют полностью по такому же принципу. Минус на минус даёт плюс — это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить».

Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами: 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа. Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10. Я никак не смогу отдать 13 яблок, потому что у меня их нет.

Нужды в отрицательных числах не было долгое время. Только с VII века н. При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений, но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу.

Почему минус на минус - плюс? - на - будет +? Откуда? Чтобы что? Как?

Что дает плюс на минус в математике Зачем нужен знак плюс перед минусом в математике и как он влияет на решение выражений. Новости автомира: в Госдуме предложили отменить самый популярный штраф. На данный момент группа обнаружила и уничтожила 105 024 мины или другие взрывчатые вещества. «--» — при умножении минус на минус ответ будет положительным или минус на минус дает плюс.

Похожие новости:

Оцените статью
Добавить комментарий