Железа же в яблоках крайне мало и притянуть его даже самым сильным магнитом не удасться. Именно за счет железа магнетит обладает свойствами притягивать себе подобное. Так что такое магнит, и почему он притягивает?
Почему магнит притягивает металл ?
Этому есть научное объяснение, в структуре черного минерала из класса оксидов происходит упорядоченное определенным образом электромагнитное взаимодействие электронов. Толчок взаимодействию дает бозон или фотон, поэтому материал проявляет свои магнитные свойства. Немного истории Происхождение слова «магнит» покрыто тайной. Ученые склоняются к версии названия, произошедшего от имени греческого пастуха Магнеса, пастух нашел минерал и был удивлен его свойствам. Другая неподтвержденная гипотеза: минерал назван так в честь региона Магнесия, находившегося в Малой Азии. В этом районе были открыты залежи магнетита. Применение Магниты нашли широкое применение в разных областях деятельности человека. В строительстве используются магнитные фиксаторы или намагниченная вода. В нефтепереработке магнитные элементы препятствуют образованию отложений на трубопроводах, в медицине используются для производства приборов МРТ. В транспорте нашли применение в качестве запорных устройств, преобразователей и датчиков.
Думаю Вам приходилось слышать, что основой работы любых электрических приборов является движение электрического тока по внутренним цепям устройства. Электрический ток представляет собой маленькие электрические частицы, имеющие определённый электрический заряд и упорядоченно передвигаемые внутри проводников всего того, что проводит через себя ток при появлении такой возможности когда возникает замкнутая цепь. Частицы с отрицательным зарядом принято называть электронами. Именно они в твёрдых веществах совершают свою работу передвижение.
В жидких и газообразных веществах передвигаются ионы, имеющие плюсовой заряд. Какая же связь между электрически заряженными частицами и магнитами, выражающую его суть? А связь прямая! Учёными давно было установлено, что магнитное поле возникает именно вокруг движущегося электрического заряда.
Также Вы могли слышать о том, что магнитные поля существуют вокруг обычных проводов, по которым движется ток. Как только ток прекращает своё движение, то и электромагнитное поле также пропадает. Это суть и условие возникновения магнитного поля. Из школьной физики известно, что любые окружающие нас вещи и предметы состоят из атомов и молекул достаточно мелких элементарных частиц.
Эти самые элементарные частицы, в свою очередь, имеют следующее строение. Внутри находится ядро состоящее из протонов и нейтронов ядро имеет плюсовой заряд , а вокруг этого ядра с огромной скоростью вращаются более мелкие частички, это электроны имеющие отрицательный заряд.
Северный полюс одного магнита притягивает южный полюс другого, в то время как два одноименных полюса отталкивают друг друга. Магниты притягивают только определенные металлы, главным образом железо, никель и кобальт, называющиеся ферромагнетиками. Хотя ферромагнетики и не являются естественными магнитами, их атомы перестраиваются в присутствии магнита таким образом, что у ферромагнитных тел появляются магнитные полюса. Магнитная цепочка Касание конца магнита к металлическим скрепкам приводит к возникновению у каждой скрепки северного и южного полюса.
Эти полюса ориентируются в том же направлении, что и у магнита. Каждая скрепка стала магнитом. Бесчисленные маленькие магнитики Некоторые металлы имеют кристаллическую структуру, образованную атомами, сгруппированными в магнитные домены. Магнитные полюса доменов обычно имеют различное направление красные стрелки и не оказывают суммарного магнитного воздействия. Образование постоянного магнита Обычно магнитные домены железа ориентированы бессистемно розовые стрелки , и естественный магнетизм металла не проявляется. Если к железу приблизить магнит розовый брусок , магнитные домены железа начинают выстраиваться вдоль магнитного поля зеленые линии.
Большинство магнитных доменов железа быстро выстраивается вдоль силовых линий магнитного поля. В результате железо само становится постоянным магнитом. В широком смысле магнит представляет собой элемент, обладающий собственным магнитным полем. Это кусок стали или железной руды с примесями алюминия, кобальта и никеля. В состав магнита входит огромное число компонентов, которые называются доменами, у каждого из которых есть южный и северный полюс. В объединенном состоянии домены образуют единую магнитную массу с множеством сориентированных полюсов.
Если домены находятся в беспорядочном состоянии, то они теряют свойство притягивать железо, а их магнитная сила теряется полностью. Благодаря специфике соединения доменов, каждый магнит имеет два полюса — южный и северный. Если магнит разрезать, то их полярность также сохранится. Всего существует три разновидности магнитов: природные, электромагниты и временные магниты. Природные магниты — это железная руда. Временные — это элементы, которые подвержены влиянию магнитного поля гвозди, скрепки, гайки, монеты.
Электромагниты — это магниты с индукционной катушкой и проводимым через нее электрическим током. Почему магниты притягивают железо? Каждый домен магнита представляет собой отдельный маленький магнитик микроскопического размера. При приближении к ним железа, элементы меняют свое положение и выстраиваются в своеобразный ряд. Полюсы при этом направлены в одну сторону, за счет чего создается единство магнитного поля. Элементы железа сразу вступают в контакт с доменами магнита и начинают притягиваться.
Процесс притягивания магнитом железа и других магнитов обусловлен законами физики. Домены магнита, представляющие собой электроды, обладают собственной массой и зарядом. При совпадении зарядов домены начинают передвигаться с небольшой скоростью. Элементы железа в магните и кусок чистого железа без примесей обладают сходствами в своем составе. Такой нюанс становится главной причиной притягивания электродов друг к другу. Магнит не будет притягивать дерево, пластик или другие неметаллические материалы.
Свойством упорядоченного движения и расположения электродов отличаются только сталь и железо. В силу таких факторов, единственными материалами, которые притягивает магнит, становятся сталь и железо. Отдельный кусок стали или железа можно превратить во временный магнит. Если долго держать соединенными магнит и один из указанных элементов, то электроды в стали иди железе начнут образовывать собственное магнитное поле. Атомы при этом будут увеличивать свой размер. В течение некоторого времени способность магнититься сохранится и кусок стали или железа можно будет использовать в качестве самостоятельного магнита.
Что заставляет некоторые металлы притягиваться к магниту? Почему магнит притягивает не все металлы? Почему одна сторона магнита притягивает, а другая отталкивает металл? И что делает неодимовые металлы такими крепкими? Для того чтобы ответить на все эти вопросы, необходимо вначале дать определение самому магниту и понять его принцип. Магниты — это тела, обладающие способностью притягивать железные и стальные предметы и отталкивать некоторые другие благодаря действию своего магнитного поля.
Силовые линии магнитного поля проходят с южного полюса магнита, а выходят с северного полюса. Постоянный или жесткий магнит постоянно создает сам свое магнитное поле. Электромагнит или мягкий магнит может создавать магнитные поля только в наличие магнитного поля и только на короткое время, пока находится в зоне действия того или иного магнитного поля. Электромагниты создают магнитные поля только в том случае, когда через провод катушки проходит электричество. До недавнего времени, все магниты изготовлялись из металлических элементов или сплавов. Состав магнита и определял его мощность.
Например: Керамические магниты, подобны тем, что используются в холодильниках и для проведения примитивных экспериментов, содержат помимо керамических композиционных материалов также железную руду. Большинство керамических магнитов, также называемых железными магнитами, не обладают большой силой притягивания. Они мощнее керамических магнитов, но значительно слабее некоторых редких элементов. Неодимовые магниты состоят из железа, бора и редко встречаемого в природе неодимового элемента. Магниты кобальта-самария включают кобальт и редко встречающиеся в природе элементы самария. За последние несколько лет ученые также обнаружили магнитные полимеры, или так называемые пластичные магниты.
Некоторые из них очень гибкие и пластичные. Однако, одни работают только при чрезвычайно низких температурах , а другие могут поднимать только очень легкие материалы, например, металлические опилки. Но чтобы обладать свойствами магнита, каждому из этих металлов нужна сила. Создание магнитов Многие современные электронные устройства работают на основе магнитов. Применять магниты для производства устройств стали относительно недавно, потому что магниты, существующие в природе, не обладают необходимой силой для работы аппаратуры, и только когда людям удалось сделать их более мощными, они стали незаменим элементом в производстве. Железняк, разновидность магнетитов, считается самым сильным магнитом из всех встречающихся в природе.
Он способен притягивать к себе небольшие объекты, например, скрепки для бумаг и скобки. Где-то в 12-ом веке люди обнаружили, что с помощью железняка можно намагничивать частицы железа — так люди создали компас. Также они заметили, что если постоянно проводить магнитом вдоль железной иглы, то происходит намагничивание иголки.
Сначала китайские, потом наша промышленность освоила их выпуск. Самые популярные — двусторонние с грузоподъемностью 200-300 кг. Особенно спрос на них вырос в последние годы. Русский человек — в душе охотник, добытчик, собиратель.
Национальная черта. Кто за грибами охотится, кто - за зверями, птицами, рыбой, кто-то за кладами… Этот ствол сбросили в воду бандиты в лихие 90-е. Вытаскиваю из сумочки агрегат сына. Владимир профессиональным взглядом оценивает: «Мощность 200 кг, для новичка сойдет. У меня — на 300 кг рассчитан. А веревка толстовата. Далеко не забросишь.
Лучше всего брать альпинистские шнуры 6 миллиметров диаметром. Они держат 600 кг, не намокают, не тянутся. Можно далеко закинуть, и руки не режут. Другой конец обязательно надо прикрепить к ограждению, парапету моста, ближайшему дереву, кусту. Некоторые берут с собой колышки, типа, к которым бабки в деревне коз привязывают. На крайний случай — закрепляют на ноге. Иначе магнит может улететь и с концами… А он несколько тысяч стоит.
Плюс шнур рублей 500. Владимир выдал мне прорезиненные толстые перчатки. Техника безопасности! Иначе можно легко порезать руки ржавыми находками. И начинается «рыбалка». Раскручиваю на берегу конец веревки с магнитом, забрасываю, жду немного, чтобы он лег на дно, и медленно тащу назад. Вспомнился вдруг пушкинский Балда.
Как стал он на берегу веревку крутить, да конец ее в море мочить. Чтобы веревкой море морщить, и бесовское племя корчить. Бесы-то задолжали попу оброк. Интересно, какой оброк вытащим мы с Порываевым? На пятом забросе тропаревский чертенок прицепил мне к магниту странную монетку. Иду к Владимиру, он в монетах дока, известный кладоискатель. По берегам обычно немало гастарбайтеров бродит.
Рыбу ловят на пропитание…» Вскоре еще одна монетка прицепилась. Наша, пятирублевая. Порываеву бесы подкинули два рубля. И то добыча. Магнит с тремя сомами и пятью рублями. Только сталь, железо, чугун. Так что серьезных кладов не жди.
Лишь копейки, рубли ельцинского периода, да современные российские. Так называется обычная сталь, покрытая тончайшим слоем никеля, мельхиора, латуни. Хотя бывают случаи… В Брянской области знакомый кладоискатель попал на заброшенный хутор.
Почему магнит притягивает железо? | Объясни мне, как ребенку!
То есть, у каждого магнита с одной внешней стороны в магнитных линиях уровни энергетического поля сжаты, а с другой внешней стороны расширены, разжаты. Как бы ни располагались магниты один относительно другого, в пространстве между ними нарушается равновесие сил. В окружающем магниты пространстве, сжатые уровни энергетического поля около одного магнита, стремясь расшириться, развернутся в сторону разжатых уровней другого магнита. То есть, северный полюс одного магнита развернется к южному полюсу другого магнита. Таким образом, для восстановления нарушенного равновесия, в силовом поле пространства, окружающего магниты, формируются силы, которые поворачивают и прижимают магниты друг к другу так, что внешняя сторона, вызывающая сжатие уровней энергетического поля одного магнита, будет прижата к той внешней стороне второго магнита, которая вызывает расширение уровней энергетического поля.
То есть магниты будут прижаты друг к другу противоположными полюсами. Магнитные линии одного магнита будут являться продолжением магнитных линий другого магнита, и представлять одно общее магнитное поле. Сила общего силового магнитного поля будет равна сумме сил силовых линей обоих магнитов. Рассмотрим, почему кусок железа притягивается к магниту.
Вторые же не соглашались, настаивали на том, что между объектами должен быть некоторый агент, переносчик этого взаимодействия, коим физические поля и являются. Вся современная материалистическая физика основывается на теории близкодействия. Например, видимый свет - это волна. Некоторого физического поля, в котором произошло возмущение волновой природы - фотона - вполне себе материального объекта, только материя эта особенная, живущая по своим законам.
Удерживающая сила зависит от нескольких факторов: Если сталь достаточно большая, удерживающая сила между сильным магнитом и куском стального листа такая же, как для магнита с магнитом. Сила прижима неодимовых магнитов к стали.
Если кусок стального листа слишком маленький или тонкий, сила между магнитом и сталью меньше. Насколько большим должен быть кусок стали, чем размер магнита? Если между сталью и магнитом есть зазор, то удерживающая сила между одним магнитом и другим больше, чем между магнитом и сталью. Неодимовые магниты обычно почти постоянно сохраняют магнетизм. Сила, необходимая для размагничивания магнита, называется коэрцитивной силой. Это способность постоянного магнита противостоять размагничиванию во внешнем магнитном поле.
Чем больше коэрцитивная сила магнита, тем лучше он выдерживает размагничивание как внешними, так и собственными магнитными полями и, следовательно, имеет меньшую тенденцию к ослаблению. Магнитотвердые материалы, используемые для изготовления постоянных магнитов, представляют собой ферромагнитные вещества с высокой коэрцитивной силой. Если вы не подвергаете магниты воздействию высоких температур и других сильных магнитных полей, они будут намагничиваться годами. Да, температура влияет на магнитную силу. Какова температура Кюри некоторых материалов? Смотрите на таблицу ниже.
Что происходит с магнитом, если его нагреть выше критической температуры Кюри? Ферромагнитное вещество состоит из диполей, которые образуют небольшие магнитные домены области. Если магнит намагничен, домены располагаются равномерно. Например, если вы бросите магнит в огонь, ориентация магнитных доменов резко изменится. При хаотическом расположении доменов магнит теряет свои магнитные свойства. Посмотрите в видео, как пламя свечи воздействует на кусок никелевой монеты: 11 Если я разрежу магнит, теоретически должны образоваться два отдельных магнита, которые будут притягиваться на режущей стороне.
Это так? Если вы разрежете стержневой магнит вдоль, вы получите два новых отдельных магнита. Когда вы разрезаете магнит перпендикулярно магнитной оси, магниты будут притягиваться, но если вы разрежете вдоль магнитной оси, обе части будут отталкиваться друг от друга. Космический вакуум содержит огромное количество пыли, газа, элементарных частиц и переплетен с электромагнитным излучением и магнитными полями. Электрические и магнитные силы в вакууме даже немного сильнее, чем в воздухе на Земле. Если расплавить неодимовый магнит, он, вероятно, превратится в кусок металла, из которого он сделан - неодима, железа и бора.
Ферритовые магниты более термостойкие. Неодимовый магнит 14 Как можно заблокировать магнитную силу? Магниты должны потерять свою магнитную силу, если вы подвергнете их воздействию чрезвычайно высоких температур в течение продолжительных периодов времени, например, когда вы бросите их в огонь. Однако есть так называемые диамагнитные вещества, которые ослабляют магнитное поле и в то же время слабо из него выдавливаются. Например: висмут - элемент тяжелого металла белого цвета со слабым розовым отливом. Он используется для демонстрации диамагнитной левитации.
Мю-металл - мягкий ферромагнитный сплав никеля, железа и других элементов. Посмотрите видео о диамагнитной левитации: 15 Что такое антимагнит? До недавнего времени экранировать магнитное поле было невозможно. Только в 2011 году испанские ученые создали первый антимагнит. По своей конструкции антимагнит состоит из нескольких слоев. Внутренний слой изготовлен из сверхпроводящего материала, который блокирует выход внутреннего магнитного поля, а также предотвращает проникновение внешнего магнитного поля.
Остальные примерно десять слоев сделаны из специальных метаматериалов, предотвращающих взаимные помехи или изменения магнитных полей. Чем может быть полезен антимагнит? Его можно использовать, например, у пациентов с кардиостимуляторами или слуховыми имплантатами, чтобы они могли проходить обследование с помощью медицинских устройств, генерирующих сильное магнитное поле. Это также поможет защитить корабли от мин, активируемых магнитом. Есть несколько видов намагничивания. Один из них - радиальное намагничивание, которое в дальнейшем делится на биполярное и мультиполярное.
Биполярный кольцевой магнит имеет один магнитный полюс на внутренней стенке кольца, а другой - на внешней стороне. Радиальные кольца используются, например, в машиностроении, робототехнике, хирургии или при управлении технологическими процессами. Магниты по своей природе твердые, потому что они изготавливаются из твердых материалов. Однако специалисты по производству резиновых уплотнений могут добавлять в силиконовый каучук магнитные частицы, которые в результате могут быть магнитными. Силиконовый каучук остается эластичным и гибким даже при очень низких температурах. Это используется, например, производителями холодильников и морозильников, которые устанавливают его на двери.
Резиновый уплотнитель, заполненный магнитными частицами, хорошо прилегает к плоской и округлой конструкции холодильника, благодаря чему в нее не проникает тепло. Гибкие магниты также входят в состав магнитных игрушек. Вы можете знать магнитный слайм как игрушку для детей. Изучите дом, может быть, вы найдете резиновые магниты где-нибудь еще. Прорезиненные магниты - это классические неодимовые магниты, покрытые тонким слоем резины.
В течение дня папа носит обычный наколенник, на ночь до утра надевает магнитный. Боль успокаивается через продолжительное количество времени в состоянии покоя. Носить наколенник можно длительное время, до появления положительного эффекта. Длительность ношения наколенника зависит от индивидуальной переносимости. Итак, результативность применения магнита для снятия болевого синдрома и временного облегчения доказана Приложение 5. Эксперименты с магнитом Эксперимент 1. Делаем электромагнит! Для создания электромагнита понадобится тонкая медная проволока, две батарейки, бокс для батареек, бумага на неё будем наматывать медную проволоку , стальной стержень. Он необходим для усиления магнитного поля катушки. Мы обернули бумагой стальной стержень и намотали проволоку. Медная проволока должна наматываться ровно, без пробелов. Зачистили концы проволоки. Вставили батарейки в бокс для батареек, соединили провода. Стержень не притягивает скрепки, он не магнитен. Как только мы включили питание, катушка стала притягивать скрепки. Мы поднесли к магниту компас и увидели, что стрелка компаса указывает на магнит. К одному полюсу магнита она притягивается одним концом, а к другому — противоположным. При отключении батареек магнитные свойства катушки исчезают. Правда, после нашего эксперимента железный сердечник немного намагнитился и превратился в слабый магнит. Этот магнит не постоянный, а временный. Он работает только то время, пока по обмотке ток течет. Поэтому его назвали электромагнитом. Электромагнит сильнее и легче постоянного магнита. А главное, магнитным полем электромагнита можно управлять. Поэтому электромагниты очень широко применяются в технике. Вывод: когда электричество бежит по проволоке, вокруг нее образуется магнитное поле. Когда проволока свернута спиралью, достигается наибольший эффект. Чем больше колечек, тем магнитное поле сильнее. Электрический ток, проходя по спирали, намагничивает стальной стержень, и стержень притягивает скрепки. Таким прибором в быту можно собрать рассыпавшуюся металлическую стружку или найти в ворсе ковра мелкую деталь, например, от наручных часов. Эксперимент 2. Делаем моторчик! Нам понадобились: неодимовый магнит, батарейка размера АА, кусок толстой медной проволоки длиной 20 см. Из проволоки мы изготовили фигуру-рамку. Поставили батарейку на магнит. Уравновесили рамку и отпустили. Рамка крутится! Мы перевернули магнит, рамка стала вращаться в другую сторону. Почему рамка и спираль вращаются? Происходит выталкивание проводника с током медной проволоки из магнитного поля.
Какой цветной металл магнитится
Но раз к магниту притягиваются все вещества, то исходный вопрос можно переформулировать так: «Почему же тогда именно железо так сильно притягивается магнитом, что проявления этого легко заметить в повседневной жизни?». Таким образом, магниты притягивают железо благодаря своим магнитным свойствам и магнитным веществам, которые содержатся внутри магнита. В атомах магнита частицы обладают магнитным моментом, который и порождает силу, притягивающую вещества с высокой магнитной восприимчивостью, каковыми являются металлы.
Почему магнит притягивает железо
Лучше всего к магнитам притягиваются. Магниты притягивают только определенные металлы, главным образом железо, никель и кобальт, называющиеся ферромагнетиками. 1. магниты притягивают железо в крови. В этой статье мы разберемся, что такое магнит, как он работает и почему притягивает именно железо.
Почему у магнита два полюса?
В статике конструкция стабильна, а вот если у магнита есть сила — тогда яблоко придет в движение. При подведении магнита к яблоку мы конструкция пришла в движение. Но вместо того, чтобы приблизиться, магнит начал отталкивать яблоко. Причина, как ни странно в составе фрукта — наряду с железом в незначительном количестве в яблоке содержится много влаги, являющейся диамагнитным веществом.
Затем материал спекают нагревают под вакуумом , охлаждают и измельчают или разрезают на куски желаемой формы. Покрытия применяются в случае необходимости. Наконец, пустые магниты намагничивают, подвергая их очень мощному магнитному полю, превышающему 30 кЭ. В нашем интернет-магазине вы можете приобрести неодимовые магниты в виде диска, прямоугольника, стержня, куба и сферы. Причиняют ли вред неодимовые магниты здоровью? Никаких известных проблем со здоровьем под воздействием постоянных магнитных полей не наблюдалось. Многие люди считают, что магниты могут быть использованы для ускорения процесса заживления. Возможны проблемы для людей с кардиостимуляторами или другими имплантированными медицинскими устройствами. Наносят ли магниты вред электронике? Может быть... Сильные магнитные поля могут привести к повреждению некоторых магнитных носителей, таких как дискет, кредитных карт, магнитных идентификационных карт, кассет, видеокассет или других подобных устройств. Они могут также повредить телевизоры, видеомагнитофоны, компьютерные мониторы и другие устройства. Никогда не ставьте неодимовые магниты рядом с одним из перечисленных выше приборов. Что касается другой электроники, таких как сотовые телефоны, плееры, флешь-накопители, калькуляторы и аналогичные устройства, которые не содержат магнитных носителей, пока данных о поломке нет, но лучше подстраховаться на всякий случай и избегать тесного контакта между неодимовыми магнитами и электроникой. Как определить полюса магнитов? Есть несколько простых методов, которые можно использовать для определения северного и южного полюсов магнита. Самый простой способ заключается в использовании другого магнита, который уже выделен. Северный полюс одного магнита будет притягиваться к Южному полюсу другого магнита. Если у вас есть компас, конец иглы, который обычно указывает на север будет притягиваться к Южному полюсу неодимового магнита. Каким образом определяется тяговое усилие каждого магнита? Все значения тягового усилия тестируются в лаборатории. Они проверяется в различных конфигурациях. Пример 1: Максимальное тяговое усилие создается между одним магнитом и толстым, плоским стальным листом толщиной не менее 2 см. Пример 2: Максимальная сила тяги создается с помощью одного магнита зажатого между двумя толстыми, плоскими, стальными пластинами. Пример 3: Максимальное тяговое усилие создается на магнит притягивая к нему другой магнит такого же типа. Все значения являются средними, так как показания зависят от многих факторов, толщины и состава пластин, угла отрыва. Какие материалы я могу использовать, чтобы блокировать магнитные поля?
Родители пятиклассника Владлена Черненко из Новосибирска заметили, что к их сыну тоже прилипают ложки, мелочь и градусники. Понять, почему так происходит, им не удалось. Сначала такая особенность беспокоила, но со временем семья привыкла к этому. Как обнаружили необычную способность Анна рассказала, что об особенности Владлена стало известно случайно: однажды члены семьи в шутку пытались удержать ложку на носу — получилось только у мальчика. Сначала испугались, а сейчас уже его способности гостям показываем. Одни говорят, что это дар, другие — что кожа потная. Но мы не знаем точно, я не могу объяснить это всё, — поделилась Анна. Источник: Анна Черненко Женщина рассказала, что семья никуда не обращалась, чтобы выяснить, почему именно у Владлена есть такая особенность.
Качество электрического тока тоже заслуживает особого внимания. Как и в двигателе внутреннего сгорания, высококачественное топливо позволяет получить лучшие показатели работы двигателя, так и в данном устройстве этот фактор имеет огромное значение. Электрический ток характеризуется двумя параметрами: напряжением и силой тока. Мощность тока это произведение напряжения на силу тока. Ток силой 10 Ампер и напряжением 100 Вольт имеет мощность 1 КВт. Ток силой 1 Ампер и напряжением 1000 Вольт также имеет мощность 1 КВт. Для определения мощности нет никакой разницы. Но в данном устройстве эти параметры имеют принципиальное значение. Ранее уже упоминалось, что магнитное поле не имеет сплошной конфигурации, а состоит из множества тонких магнитных полей. Так и электрический ток так же имеет множество тонких полей. Поскольку электрический ток это направленное движение электронов, а они не могут слиться в общую массу. Они лишь могут выстраиваться в тонкие колоны, точно также как и домены в постоянном магните. Размеры доменов равны приблизительно 4 мкр. Не трудно подсчитать какое количество магнитных полей уместится на всей площади магнитного полюса. Но и размер электрического поля не превышает размера электрона. А одно магнитное поле может, соединится только с одним электрическим. Это же явление можно рассматривать и с точки зрения разности потенциалов. Современные неодимовые постоянные магниты имеют огромный магнитный потенциал. Значит и на катушках необходимо создать соответствующий электрический потенциал. Или с точки зрения двигателя внутреннего сгорания, использовать высокооктановый бензин. Но топливная смесь в двигателе может быть либо «жирной», когда много бензина и мало воздуха, либо «сухой», когда много воздуха и мало бензина. Также и ток, подаваемый на катушки тоже должен быть не «сухим» и не «жирным». В данном устройстве предпочтительно топливную смесь « подсушить». То есть на катушки следует подавать электроток малой силы и высокого напряжения. Но сила тока зависит от напряжения, делённого на сопротивление катушки. Значит, катушка должна быть намотана тонким проводом с большим количеством витков. Это самая сложная и самая ответственная деталь данного устройства. Китайская компания два года училась делать подобные катушки индуктивности. Но они не совсем то, что нужно для полноценной работы устройства. Катушка должна состоять из двух половин, намотанных в разные стороны.
Почему магнит притягивает железо? Магнит.
Таким образом, магниты притягивают только железо из-за взаимодействия их магнитного поля с магнитными моментами электронов в атомах железа. А правда, почему кусок железа или ферромагнетика притягивается к магниту? Почему магнит не притягивает органические вещества? «У железа и похожих на него металлов есть особенная черта — связь между соседними атомами такова, что они чувствуют магнитное поле скоординированно». Марикур указывает, что в каждом куске магнита имеются две области, особенно сильно притягивающие железо.
Глава 34. Магнетизм. Опыт и теория
Теория поля гласит, что вокруг магнита существует магнитное поле, которое создается движущимися зарядами внутри магнита. Это магнитное поле оказывает воздействие на другие заряды, создавая силу притяжения или отталкивания. В случае с магнитом и железом, внутри железа есть свободные электроны, которые составляют вещество железа. Когда магнитное поле магнита воздействует на эти свободные электроны, они начинают двигаться и ориентироваться вдоль силовых линий магнитного поля. Это создает магнитизацию в железе, которая приводит к притяжению к магниту. Теория доменов объясняет притяжение магнита к железу через ориентацию магнитных доменов. Внутри материала, такого как железо, есть множество микроскопических областей, называемых магнитными доменами. Каждый домен имеет магнитный момент, который может быть ориентирован в одном из двух направлений: вверх или вниз.
Когда магнит не подвергается воздействию внешнего магнитного поля, домены ориентированы хаотично и магнитный момент всех доменов взаимно уничтожается, что делает материал немагнитным. Однако, когда магнит подносится к железу, его магнитное поле начинает воздействовать на домены, выстраивая их вдоль силовых линий магнитного поля магнита. Это приводит к тому, что магнитные моменты доменов начинают суммироваться и создают сильное магнитное поле в железе. Это привлекает магнит к железу и создает притяжение. Однако, важно отметить, что магнитная притяжение между магнитом и железом не является единственным видом притяжения, который может быть наблюдаемым.
Как мы знаем, атом имеет так называемую планетарное строение по Резерфорду: в центре находится ядро, вокруг которого по орбитам вращаются электроны. По своей сути, вращение электрона — это и есть электрический ток, но очень маленький. В результате электрон движением по орбите создаёт собственное магнитное поле — это называется магнитным дипольным моментом. Он напрямую связан с более общей характеристикой — орбитальным моментом импульса электрона не путать со спином — чисто квантовой величиной , как у любого вращающегося тела. Небольшое отступление: магнитный момент имеет интересное свойство.
Как и многое в квантовом мире, он кратен некоторому фундаментальному числу, которое называется магнетоном Бора и выводится через массу электрона, скорость света и постоянную Планка. Для того чтобы магнитный момент проявился и какое-то вещество начало притягиваться, в его атоме должны быть нескомпенсированные электроны. Внешнее магнитное поле как бы развернёт их в одном направлении, что приведёт для всех таких же атомов к появлению общей нескомпенсированной силы — это, и будет нашей намагниченностью. Внешнее и внутреннее магнитные поля будут взаимодействовать, из-за чего возникнет притяжение материала к магниту. В веществах же, не имеющих подобного строения, магнитный момент не проявится вообще дипольный момент равен 0 или будет в сотни тысяч раз слабее, чем у ферромагнетиков — речь идёт о так называемых парамагнетиках. Посмотрите наглядное и простое объяснение: Ещё раз — возможность намагничивания ферромагнитные свойства зависят от атомной структуры, веществ и распределения электронов по орбитам. Например, возьмём всем пришедшее на ум железо Fe : его порядковый номер 26 в таблице Менделеева равен количеству электронов на орбитах. Если не вдаваться в подробности для пытливых — смотри тут , то электроны по его орбиталям s, p, d и f распределяются по энергетическим уровням так, что образуется 4 неспаренных электрона на d-орбитали. Они и наделяют наше вещество способностью намагничиваться. На самом деле, ферромагнитных веществ не так уж много.
Итак, с возникновением магнитного притяжения немного разобрались. Но проблема в том, что сами по себе условные железные гвозди после взаимодействия с внешним магнитным полем практически не сохраняют своих магнитных свойств или быстро их теряют. Вообще, у ферромагнетиков есть локальные области с высокой плотностью диполей, ориентированных в одном направлении — так называемые магнитные домены. Но у простого железного гвоздя кристаллическая структура неравномерная, и суммарный эффект намагничивания слишком слабый. Нужно создать чёткую кристаллическую структуру, чтобы магнитные домены были равномерно распределены и сохраняли ориентацию в одну сторону, по оси как бы имели выраженные полюса S и N — хотя это достаточно условная штука. Примечание: подробнее про зависимость магнитных свойств от атомного строения неодимового магнита можно почитать в этой статье. Только в этом случае получится произвести постоянный магнит, подходящий для бытового и промышленного применения. Например, он должен: сохранять высокую остаточную намагниченность Br — другими словами, создавать как можно более мощное магнитное поле; иметь высокую коэрцитивную силу Hc — то есть противостоять попыткам размагничивания внешним электромагнитным полем; сохранять свои свойства при разных внешних воздействиях — например, иметь как можно более высокую температуру точку Кюри , при которой происходит разрушение структуры, и ферромагнетик превращается в парамагнетик. Есть ещё много параметров, но для понимания эти три — основные. Основная диаграмма с характеристиками постоянного магнит — петля гистерезиса.
Представляет связь между индукцией B и напряженностью H магнитного поля. Для упрощения: чем форма петли шире и выше, тем лучше Чтобы этого добиться, нужно производить некоторые дополнительные манипуляции с ферромагнитными веществами: создавать из них сплавы, превращать в порошок и спекать, намагничивать очень сильным полем, при высокой температуре и так далее. Проще говоря, подобрать состав и технологию так, чтобы получить идеальную структуру магнитных доменов. Виды постоянных магнитов Перед тем как перейти к истории появления детища Джона Кроата и Масато Сагавы, посмотрим, какие ещё виды постоянных магнитов использовались и используются до сих пор — хотя и значительно уступили свои позиции неодимовым магнитам. Магнетит Самым первым магнитным материалом, с которым столкнулись люди, стал магнетит. Благодаря открытию магнетита в древности появился такой важный навигационный инструмент, как компас, а китайские учёные исследовали целебные свойства магнита на организм человека сейчас есть целое направление медицины — магнитотерапия. Имеет чёрный цвет и характерную кристаллообразную форму. Появляется в результате длительного давления пластов при контакте с кислородом. Часто имеет вкрапления других материалов: титана, магния, марганца и хрома, из-за чего магнитные свойства разнятся. Температура точки Кюри — 550-600 К.
Его интересовали магнитные свойства различных сплавов — добавляя примеси вольфрама, хрома и кобальта, он создал сталь KS. Она обладала высокой остаточной намагниченностью и коэрцитивной силой, что и требовалось при разработке постоянного магнита. В 1931 году ученик Хонды, Токушичи Мусима, нашёл способ, как ещё в два раза увеличить коэрцитивную силу стали, добавив алюминий в определённом соотношении.
Подносим магнит. Оторвать довольно сложно, силы большие. Ничего необычного. Какая разница, жидкий или твердый ферромагнетик — важна магнитная проницаемость.
А теперь мы берем магнит и привязываем к нему тонкую нитку. И опускаем магнит через горлышко сосуда в магнитную жидкость. Что происходит? Как и следовало ожидать, при приближении магнита к поверхности жидкости ее начинает вытягивать навстречу магниту, постепенно жидкость обволакивает весь магнит и, при дальнейшем опускании магнита в жидкость…ничего не происходит. Магнит никуда не примагничивается, свободно перемещается по всему объему магнита. Не хочет вплотную приближаться к стенкам сосуда, а по всему объёму занимает любое, почти безразличное положение. Вот и все.
Не примагничивается магнит к ферромагнетику, а свободно перемещается в его теле, если есть такая возможность. Ну и контрольный эксперимент. Представьте себе на минутку, что вдруг магнитная проницаемость вакуума воздуха стала равна магнитной проницаемости железа. Вы держите магнит на руке. Абсолютно ничего. Для Вас ничего не изменится. Никуда магнит не двинется и в воздухе не зависнет.
Сопротивление распространению магнитного потока уменьшилось в тысячи раз, но баланс сил сохранится. Магнит будет находиться в состоянии покоя. Баланс сил не нарушается, никто никуда не двигается. Ну а теперь вместо ферромагнетика разместим рядом тело из диамагнетика или парамагнетика. Думаю, ответ ясен. И действующая сила между магнитом и телом меняется на противоположную силу — силу отталкивания. В противоположность, если магнит находится в среде с высокой магнитной проницаемостью и рядом с ним поместить тело с низкой магнитной проницаемостью, наблюдается взаимное отталкивание магнита и тела.
Не зависимо от материала тела. На основании вышеизложенного я заявляю, что для магнитного поля не имеет значения материал тела, определяющим фактором взаимодействия магнита и тела является отношение магнитной проницаемости среды, в которой находится магнит, и магнитной проницаемости тела. И знак этого отношения. Магнитное поле — аналог гравитации, окружающая магнит среда — аналог жидкости, проницаемость тела магнитному потоку - аналог удельной плотности тела. Тяжелое тело — тонет, легкое — всплывает. Ферромагнетики — приближаются тонут к магниту, не ферромагнетики — отталкиваются всплывают. Все изложенное выше позволяет совершенно иначе взглянуть на практическую сторону конструирования магнитных и электромагнитных устройств, летательных машин и аппаратов, источников т.
Как только ток прекращает своё движение, то и электромагнитное поле также пропадает. Это суть и условие возникновения магнитного поля. Из школьной физики известно, что любые окружающие нас вещи и предметы состоят из атомов и молекул достаточно мелких элементарных частиц. Эти самые элементарные частицы, в свою очередь, имеют следующее строение. Внутри находится ядро состоящее из протонов и нейтронов ядро имеет плюсовой заряд , а вокруг этого ядра с огромной скоростью вращаются более мелкие частички, это электроны имеющие отрицательный заряд. Так вот, суть магнита заключается в следующем. Поскольку мы выяснили, что магнитное поле возникает вокруг движущихся электрических зарядов, а электроны есть во всех атомах и молекулах, и они постоянно движутся, следовательно атомы и молекулы имеют вокруг себя магнитные поля они очень малы и по силе и по размерам. В добавок стоит учесть, что различные вещества и предметы имеют различные магнитные свойства. У одних магнитные свойства выраженные очень сильно, а у других на столько слабо, что свидетельствует о полном отсутствии полей.
Вот основа природы и сути магнита. Но ведь даже те вещества, которые имеют большую интенсивность проявления магнитных полей это ферромагнетики, самым известным из которых является простое железо не всегда магнитят. Почему же так? Потому что существует эффект однонаправленности и хаотичности. Поясню что это такое.