Новости водородная бомба принцип действия

Такой принцип действия ОДАБ называется двухтактным. Новость декабря — успешные испытания Северной Кореей водородной бомбы. Как теперь известно, американская водородная бомба начинает свою историю с 1946 года.

Термоядерное оружие

Напомним вкратце принцип работы такой бомбы, известный из курса школьной физики. Термоядерную («водородную») бомбу в принципе можно сделать любых размеров. В современной (а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились) водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития – твердое белое вещество, бурно. Принцип действия водородной бомбы РДС-6С "СЛОЙКА". Советский Союз создал первую в мире водородную бомбу, пригодную к практическому военному применению. Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии.

Смертельная гонка

  • Водородная бомба: история создания, принцип действия
  • Состоялось испытание первой Советской водородной бомбы
  • Читайте также
  • Водородная бомба принцип действия. Термоядерное оружие. Принцип действия атомной бомбы
  • Принцип водородной бомбы

Состоялось испытание первой Советской водородной бомбы

Полный выход из строя почти всей сложной электроники без возможности восстановления и большей части электроприборов за исключением наиболее простых бытового назначения под воздействием электромагнитного импульса. Как следствие — невозможность вести эффективные спасательные работы, а также сколь-нибудь значимую хозяйственную деятельность. Итоги применения водородной бомбы, рекомендации для тех, кто выжил Итоги применения: Невозможность использования большей части зданий и сооружений вследствие их сильного или полного разрушения. Невозможность восстановления большей части поврежденных зданий ввиду разрушения всех коммуникаций, отсутствия необходимого количества работоспособной тяжёлой техники, строительных материалов. Невозможность и нецелесообразность доставки необходимого количества продуктов питания, воды, медикаментов, а также прочего обеспечения в зону поражения. Наличие остаточного радиоактивного заражения, не позволяющего долговременное проживание в зоне поражения в течение нескольких месяцев или лет после взрыва. Рекомендации тем, кто выжил: Выждать в каком-либо изолированном защищенном месте убежище, подвал, погреб не менее двух суток лучше больше после взрыва водородной бомбы, ожидая спада наружного радиационного фона. Уровень радиации уменьшается примерно в 2 раза каждые 7 часов. Следует учитывать, что наземный термоядерный взрыв вызывает гораздо большее радиационное заражение, чем воздушный. Во время нахождения в зараженной местности обязательно защищать органы дыхания средства индивидуальной защиты обрывками ткани, ватно-марлевыми повязками, респираторами и т.

Ни в коем случае не употреблять еду найденную на открытой местности зоны поражения. Не употреблять скоропортящиеся продукты или продукты с нарушенной упаковкой. Ни в коем случае не употреблять воду из открытых источников.

Мощность взрыва при испытании РДС-37 составила 1,6 Мт в тротиловом эквиваленте. Расчетная была 3 Мт, однако по соображениям безопасности ввели ограничение.

А на объекты в Европе и Азии нацелились ракеты средней дальности Р-12. Они несли двухмегатонные заряды типа РДС-37. Что касается американцев, то их первыми водородными бомбами, доставляемыми стратегическими бомбардировщиками типа B-36, были Mk-14 7 Мт и Mk-17 15 Mт , принятые на вооружение в 1954 году. Особенность бомб типа Mk-17 — система обеспечения безопасности эксплуатации, нашедшая применение и в термоядерных авиабоеприпасах: первичный атомный запал из делящегося материала вводился в тело бомбы на борту самолета перед сбросом. В арсенале ВВС США они продержались недолго, уступив место менее габаритным двухмегатонным Mk-15 и другим боеприпасам, порожденным гением Теллера со товарищи.

Американские ученые быстро наверстали отставание от СССР в создании термоядерных боеприпасов. И Нобель, и Шнобель В начале 1950-х в Штатах развернулась травля Оппенгеймера, которого обвинили в неблагонадежности и чуть ли не в антиамериканской деятельности. Теллер на слушаниях по делу Оппенгеймера выразился в том смысле, что его лояльность сомнений вроде бы и не вызывает, но лучше держать его подальше от государственных интересов. Оппенгеймера лишили допуска, да и сам он, изрядно напуганный спецслужбами, дал показания о подозрительном поведении некоторых коллег. Будучи отстраненным от ядерных оружейных дел, Оппенгеймер выглядел в глазах научного сообщества США жертвой, а вот Теллеру многие ученые объявили форменный бойкот, причем некоторые так его и не простили.

Эдвард Теллер был убежденным антисоветчиком и милитаристом и в 1980-м поддержал рейгановскую Стратегическую оборонную инициативу по развертыванию глобальной системы противоракетной обороны США, ядро которой составил бы космический эшелон боевых средств, включая рентгеновские лазеры с ядерной накачкой. Ученый рисовал перспективы миниатюризации ядерных боеприпасов, расширяющей диапазон применения, и ни в грош не ставил теорию глобальной катастрофы — ядерной зимы. Нужно сказать, что и Андрей Сахаров не всегда был бескомпромиссным поборником мира, противником ядерных испытаний и сторонником разоружения: это пришло со временем. В период, когда у нас еще не было ракетных средств гарантированной доставки ядерных зарядов за океан, он предложил вооружать подводные лодки гигантскими торпедами с термоядерным зарядом катастрофической мощностью 100 Мт. Война на море проиграна, если уничтожены порты, в этом нас заверяют моряки, — писал Сахаров.

Одним из первых, с кем я обсуждал этот проект, был контр-адмирал Фомин. Он был шокирован «людоедским» характером проекта и заметил, что военные моряки привыкли бороться с вооруженным противником в открытом бою и что для него отвратительна сама мысль о таком массовом убийстве. Я устыдился и больше никогда ни с кем не обсуждал своего проекта». На самом деле упрек адмирала выглядел лицемерным. Появившиеся в начале 1960-х у США и СССР атомные подлодки с баллистическими ракетами в ядерном снаряжении были совершенно «людоедскими».

Да и стрельба по береговым объектам торпедами с ядерными боезарядами входит в перечень боевых задач, которые могут быть поставлены перед моряками атомного подводного флота. Ну а ответом на сахаровскую идею мирного сближения СССР и Запада стало предложение Теллера о создании глобальной системы защиты от ракетных ядерных ударов. Может быть, оно и не лишено логики, но сегодня, увы, до согласованного управления такой системой далеко.

На это совещание, состоявшееся в Институте прогрессивных исследований в Принстоне штат Нью-Джерси , «прибыли доктора фон Нейманн, Ферми, Бете, Теллер, Уиллер, Норрис Брэдбери, Лотар Норхайм, и каждый из них мог внести большой вклад в это дело». За столом сидели руководители всех лабораторий во главе с доктором Оппенгеймером. В гнетущей обстановке поднялся доктор Теллер и спокойно подошел к доске. На доске чертились схемы. Делались расчеты». У участников совещания появилась надежда. К концу второго дня у «всех присутствующих появилось ощущение, что впервые мы что-то имеем хотя бы в области идей». Уныние сменилось энтузиазмом, и у всех создалось впечатление, что, наконец, «мы можем на что-то надеяться в будущем». С этого дня работы по созданию водородной бомбы пошли полным ходом. Через четыре дня Комиссия по атомной энергии приняла обязательство построить новый завод, хотя в то время у нее, как заявил Дин, не было на это средств. Через год, в июне, мы были в состоянии, говоря словами Дина, «завершить работу над этим устройством». Устройство перевели на атолл Эниветок и взорвали 1 ноября 1952 г. Мощность взрыва составляла пять мегатонн пять миллионов тонн тротила. Затем в марте и в апреле 1954 г. С тех пор было испытано много других конструкций бомб. Хотя открытие, которое совершило переворот в науке и сделало возможным создание водородной бомбы, все еще является секретом, легко отгадать основные принципы ее устройства. Казалось совершенно нелепым, что до осуществления реакции между веществами при температуре 50 млн. Единственным путем устранить такое невозможное требование был отказ от превращения водорода в жидкое состояние. Надо было соединить газообразный водород с каким- то веществом так, чтобы водород стал частью твердого соединения, способного сохраняться при обычной комнатной температуре. Существуют различные твердые соединения, содержащие водород. Одно из них кажется наиболее подходящим и фактически единственным соединением, которое может служить основной составной частью водородной бомбы. Это специально созданное новое вещество, известное под названием дейтерид лития-6, представляет собой соединение редкого легкого изотопа металлического лития, состоящего из трех протонов и трех нейтронов, с дейтерием, или тяжелым водородом, ядро которого состоит из одного протона и одного нейтрона. Соединение лития и дейтерия при комнатной температуре является твердым веществом. Один атом лития-6 в этом соединении связан с одним атомом дейтерия водород-2 , поэтому общий молекулярный вес соединения равен 8. Другими словами, в восьми килограммах соединения содержится шесть килограммов легкого лития-6. Литий-6 не встречается в природе в чистом виде. Как и расщепляющийся элемент уран-235, литий существует в смеси двух своих разновидностей: одного — с атомным весом 6 и другого — с атомным весом 7. Так как различные виды одного и того же элемента невозможно разделить химическим путем, необходимо было построить специальный завод по разделению изотопов для получения чистого лития-6. Этот завод и являлся тем «новым заводом», контракт на строительство которого, как сообщил Дин, был подписан через четыре дня после заседания Комиссии в июне 1951 г. Дейтерид лития-6 очень важен по двум причинам. Он не только обеспечивает возможность хранения дейтерия при комнатной температуре и, таким образом, исключает необходимость превращения его в жидкое состояние при температуре, близкой к абсолютному нулю. Он также делает возможным получение трития — второго элемента, необходимого для создания водородной бомбы в конечной стадии — в самый момент ее взрыва. Дело в том, что в дейтериде лития содержится в виде твердого вещества не только водород-2, но потенциально имеется и водород-3. Это чудо совершают нейтроны, выделяемые детонатором — атомным «снарядом». Нейтрон, попадающий в ядро атома лития-6, образует составной элемент из трех протонов и четырех нейтронов. При попадании нейтрона большой энергии составное ядро становится крайне неустойчивым и немедленно распадается на две части: водород-3 тритий с ядром из одного протона и двух нейтронов и гелий с ядром из двух протонов и двух нейтронов. Меньше чем за миллионную долю секунды взрыв атомной бомбы освобождает дейтерий и тритий и в тоже время создает температуру более чем в 50 млн. Возможна и другая, хотя и менее вероятная, реакция синтеза. Две ядерные частицы дейтерия один протон и один нейтрон могут при высокой температуре ядер- ного деления соединиться с ядром лития три протона и три нейтрона , образовав ядро из четырех протонов и четырех нейтронов. Это ядро очень неустойчивой разновидности бериллия, которое немедленно распадется на два ядра гелия, содержащих по два протона и два нейтрона. При синтезе одного килограмма исходных продуктов освободится огромная энергия, эквивалентная 60 000 тонн тротила, что в три раза больше взрывной силы атомной бомбы. Получение нового химического соединения, позволившего создать водородную бомбу, показывает, что может быть в принципе создано еще более страшное оружие — кобальтовая бомба. Кобальтовая бомба — это в сущности та же водородная бомба, но в качестве материала для корпуса, внутри которого находятся активные вещества, вместо стали, превращающейся при взрыве в слабо радиоактивное облако пара, используется кобальт. Превратившись при взрыве в пар, кобальт образует радиоактивное облако в 320 раз смертоноснее радия. Об этом виде водородной бомбы Альберт Эйнштейн сказал: «Если удастся ее создать, то радиоактивное отравление атмосферы, а следовательно, уничтожение всякой жизни на Земле станет в пределах технических возможностей». При синтезе ядер 600 граммов трития с ядрами 400 граммов дейтерия, т. Это небольшое количество нейтронов вызовет образование 12 килограммов смертоносного кобальта атомный вес его 60 , радиоактивность которого эквивалентна громадному количеству 3832 килограмма! Кобальтовую бомбу можно взорвать на пустой барже в середине океана; вес ее может быть любым. Если к обычным компонентам добавить около тонны дейтерия в виде твердого соединения, то такое чудовище, синтезируясь в гелий, выделит до ИЗ килограммов свободных нейтронов. Они сделают радиоактивными 7,5 тонны радиоактивного кобальта, что эквивалентно почти 2,3 миллиона килограммов радия. По мнению профессора Гаррисона Брауна, радиохимика из Калифорнийского технологического института, если кобальтовую бомбу с одной тонной дейтерия взорвать в Тихом океане в тысяче километров к западу от Калифорнии, то через день после взрыва радиоактивная пыль достигнет Калифорнии, а через четыре-пять дней — Нью-Йорка и уничтожит жизнь на всем своем пути. Он добавляет: «Аналогичным образом, если западные державы взорвут водородно-кобальтовые бомбы на долготе Праги, то они уничтожат всю жизнь на площади в 2300 километров ширины от Ленинграда до Одессы и в 3000—4800 километров длины от Праги до Уральских гор. Это привело бы к созданию невиданной в истории «выжженной земли». Профессор Сциллард подсчитал, что 400 однотонных кобальтовых бомб выделят такое количество радиоактивного излучения, которого будет достаточно, чтобы уничтожить все живое на Земле. Почему не может быть новой войны? Это произошло за час до рассвета в понедельник 21 мая 1956 г. Я стоял на палубе флагманского военного корабля «Маунт МакКинли» и наблюдал за взрывом первой экспериментальной американской водородной бомбы. Бомба была сброшена в районе острова Наму атолла Бикини с бомбардировщика «Б-52», имевшего в то время самую высокую скорость в мире. Взрыв произошел на высоте около 5 тысяч метров, в то время как бомба была сброшена с высоты 16 километров. Хотя водородные бомбы огромной разрушительной силы и ранее взрывались на тихоокеанском полигоне на Маршальских островах, это была первая транспортабельная бомба, которая могла нанести катастрофический удар по любому агрессору. Это была первая бомба, способная донести до потенциального противника апокалипсическую силу мегатонною разрушения, эквивалентную миллионам тонн тротила. Через темные очки я наблюдал за тем, как над сине-черными просторами Тихого океана поднималось сверхсолнце, заливая все ослепительным зелено-белым светом, сила которого в какой-то миг была равна свету пятисот полуденных солнц.

Наличие пострадавших, которые подверглись воздействию проникающей радиации гамма-излучения и потока нейтронов. Люди, оказавшиеся на расстоянии 2-3 км от эпицентра взрыва, вне защитных сооружений, мгновенно получат значительные дозы облучения во многих случаях смертельные. Радиоактивное заражение местности продуктами деления ядерного заряда, элементами ядерного заряда не вступившими в реакцию и радиоактивными изотопами, образовавшимися в различных материалах и окружающем или выброшенном грунте в результате воздействия нейтронного излучения наведенная радиация. Выход из строя большинства электронных приборов и значительной части электрических приборов вследствие воздействия электромагнитного импульса, возникающего при взрыве. Косвенные — они зависят от мощности взорвавшейся бомбы и высоты её подрыва: Практически полный выход из строя систем центрального водоснабжения, что приведет значительным людским потерям из-за невозможности вести борьбу с пожарами, а также употребления воды заражённой радионуклидами и не прошедшей необходимой дезинфекции от возбудителей различных болезней. Потеря большей части продовольственного запаса под завалами, вследствие радиоактивного заражения, из-за нарушений правил хранения и воздействия факторов окружающей среды. Полный выход из строя почти всей сложной электроники без возможности восстановления и большей части электроприборов за исключением наиболее простых бытового назначения под воздействием электромагнитного импульса. Как следствие — невозможность вести эффективные спасательные работы, а также сколь-нибудь значимую хозяйственную деятельность. Итоги применения водородной бомбы, рекомендации для тех, кто выжил Итоги применения: Невозможность использования большей части зданий и сооружений вследствие их сильного или полного разрушения. Невозможность восстановления большей части поврежденных зданий ввиду разрушения всех коммуникаций, отсутствия необходимого количества работоспособной тяжёлой техники, строительных материалов. Невозможность и нецелесообразность доставки необходимого количества продуктов питания, воды, медикаментов, а также прочего обеспечения в зону поражения. Наличие остаточного радиоактивного заражения, не позволяющего долговременное проживание в зоне поражения в течение нескольких месяцев или лет после взрыва. Рекомендации тем, кто выжил: Выждать в каком-либо изолированном защищенном месте убежище, подвал, погреб не менее двух суток лучше больше после взрыва водородной бомбы, ожидая спада наружного радиационного фона.

Новое советское оружие страшной разрушительной мощи – термоядерная (водородная) бомба

ВОДОРОДНАЯ БОМБА — оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. ВОДОРОДНАЯ БОМБА — оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. КНДР пригрозила США «мощнейшим» испытанием водородной бомбы Пхеньян может провести «самое мощное испытание» водородной бомбы в ответ на угрозу Трампа «полностью уничтожить» КНДР, заявил глава МИД страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Принцип действия водородной бомбы РДС-6С "СЛОЙКА".

Водородная (термоядерная) бомба: испытания оружия массового поражения

У нас был громадный запас космического топлива — водорода, но, к сожалению, не было спички, чтобы зажечь его: ни одна спичка не могла бы дать пламя по крайней мере в 20 млн. Когда ученые Лос-Аламоса, одним из руководителей которых был Бете, работали над созданием атомной бомбы из урана-235 или плутония, они знали, что успех в создании атомной бомбы даст им ключ к космической сокровищнице энергии синтеза, до сих пор являющейся монополией Солнца и звезд. Эксперименты и расчеты показывали, что при взрыве атомной бомбы из урана-235 или плутония развивается температура в 55 млн. Наконец- то удалось найти «спичку», способную зажечь космический огонь ядерного синтеза!

Это означало также, что усовершенствованная атомная бомба может служить детонатором для взрыва гораздо более мощной водородной бомбы, взрывная мощность которой практически неограниченна. Однако между Солнцем и атомной бомбой была существенная разница, которая казалась непреодолимым препятствием на пути осуществления ядерного синтеза на Земле. Внутри Солнца температура в 20 миллионов градусов поддерживается постоянно, поэтому процесс синтеза гелия идет с постоянной скоростью.

Хотя температура внутри атомной бомбы в три раза выше, чем в центре Солнца, она удерживается в течение времени, совершенно недостаточного для превращения обычного водорода в гелий. Это все равно, что зажигать сигарету на ветру, когда у вас всего одна спичка: если ветер достигает ураганной скорости, то совершенно ясно, что вы не успеете зажечь сигарету. Этот неумолимый фактор времени с самого начала заставил ученых прийти к выводу, что на Земле нельзя осуществить процесс синтеза, происходящий на Солнце с обычным водородом, атомный вес которого равен единице.

В январе 1950 г. Исследования в Лос-Аламосе в 1944 и 1945 гг. Это сразу же создало большие трудности, так как тритий не существует в природе и для его создания необходимы затраты больших средств и дорогих стратегических материалов.

Так, для производства одного килограмма трития требуется восемьдесят килограммов плутония — расщепляющегося элемента, искусственно созданного для атомной бомбы. Дело осложнялось еще и тем, что тритий — это радиоактивный элемент с периодом полураспада 12 лет. Другими словами, один килограмм трития в 1958 г.

Другое серьезное препятствие заключалось в том, что как дейтерий, так и тритий не может быть синтезирован в обычном для него газообразном состоянии, а должен быть сначала превращен в жидкое вещество. Жидкий же водород кипит т. Транспортировать газообразный водород можно только в герметическом баллоне, находящемся внутри сосуда с жидким воздухом.

Эти требования создавали большие трудности при его производстве, транспортировке и хранении. Создавалось парадоксальное положение. Перед синтезом двух разновидностей водорода, который происходит при температуре выше 50 млн.

Естественно, возникал вопрос: удастся ли сохранить вещество в жидком состоянии даже в течение одной миллионной доли секунды при температуре 50 млн. К июню 1951 г. Именно тогда покойный Гордон Дин, бывший в то время председателем Комиссии по атомной энергии, решил провести совещание руководителей работ.

На это совещание, состоявшееся в Институте прогрессивных исследований в Принстоне штат Нью-Джерси , «прибыли доктора фон Нейманн, Ферми, Бете, Теллер, Уиллер, Норрис Брэдбери, Лотар Норхайм, и каждый из них мог внести большой вклад в это дело». За столом сидели руководители всех лабораторий во главе с доктором Оппенгеймером. В гнетущей обстановке поднялся доктор Теллер и спокойно подошел к доске.

На доске чертились схемы. Делались расчеты». У участников совещания появилась надежда.

К концу второго дня у «всех присутствующих появилось ощущение, что впервые мы что-то имеем хотя бы в области идей». Уныние сменилось энтузиазмом, и у всех создалось впечатление, что, наконец, «мы можем на что-то надеяться в будущем». С этого дня работы по созданию водородной бомбы пошли полным ходом.

Через четыре дня Комиссия по атомной энергии приняла обязательство построить новый завод, хотя в то время у нее, как заявил Дин, не было на это средств. Через год, в июне, мы были в состоянии, говоря словами Дина, «завершить работу над этим устройством». Устройство перевели на атолл Эниветок и взорвали 1 ноября 1952 г.

Мощность взрыва составляла пять мегатонн пять миллионов тонн тротила. Затем в марте и в апреле 1954 г. С тех пор было испытано много других конструкций бомб.

Хотя открытие, которое совершило переворот в науке и сделало возможным создание водородной бомбы, все еще является секретом, легко отгадать основные принципы ее устройства. Казалось совершенно нелепым, что до осуществления реакции между веществами при температуре 50 млн. Единственным путем устранить такое невозможное требование был отказ от превращения водорода в жидкое состояние.

Надо было соединить газообразный водород с каким- то веществом так, чтобы водород стал частью твердого соединения, способного сохраняться при обычной комнатной температуре. Существуют различные твердые соединения, содержащие водород. Одно из них кажется наиболее подходящим и фактически единственным соединением, которое может служить основной составной частью водородной бомбы.

Это специально созданное новое вещество, известное под названием дейтерид лития-6, представляет собой соединение редкого легкого изотопа металлического лития, состоящего из трех протонов и трех нейтронов, с дейтерием, или тяжелым водородом, ядро которого состоит из одного протона и одного нейтрона. Соединение лития и дейтерия при комнатной температуре является твердым веществом. Один атом лития-6 в этом соединении связан с одним атомом дейтерия водород-2 , поэтому общий молекулярный вес соединения равен 8.

Другими словами, в восьми килограммах соединения содержится шесть килограммов легкого лития-6. Литий-6 не встречается в природе в чистом виде. Как и расщепляющийся элемент уран-235, литий существует в смеси двух своих разновидностей: одного — с атомным весом 6 и другого — с атомным весом 7.

Так как различные виды одного и того же элемента невозможно разделить химическим путем, необходимо было построить специальный завод по разделению изотопов для получения чистого лития-6. Этот завод и являлся тем «новым заводом», контракт на строительство которого, как сообщил Дин, был подписан через четыре дня после заседания Комиссии в июне 1951 г. Дейтерид лития-6 очень важен по двум причинам.

Он не только обеспечивает возможность хранения дейтерия при комнатной температуре и, таким образом, исключает необходимость превращения его в жидкое состояние при температуре, близкой к абсолютному нулю. Он также делает возможным получение трития — второго элемента, необходимого для создания водородной бомбы в конечной стадии — в самый момент ее взрыва. Дело в том, что в дейтериде лития содержится в виде твердого вещества не только водород-2, но потенциально имеется и водород-3.

Это чудо совершают нейтроны, выделяемые детонатором — атомным «снарядом». Нейтрон, попадающий в ядро атома лития-6, образует составной элемент из трех протонов и четырех нейтронов. При попадании нейтрона большой энергии составное ядро становится крайне неустойчивым и немедленно распадается на две части: водород-3 тритий с ядром из одного протона и двух нейтронов и гелий с ядром из двух протонов и двух нейтронов.

Меньше чем за миллионную долю секунды взрыв атомной бомбы освобождает дейтерий и тритий и в тоже время создает температуру более чем в 50 млн.

Она до сих пор является самой мощной среди атомных бомб, когда либо созданных человеком. Впоследствии проведены испытания Purple Granite, мощность взрыва составила 150 килотонн.

В 1957 году Великобритания также взорвала двухступенчатое устройство мощностью 1,8 мегатонны, а 28 апреля 1958 года над островом Рождества взорвали термоядерную бомбу мощностью 3 мегатонны — крупнейший успех британских ученых. Китай взорвал свою термоядерную бомбу в 1967 году. Заряд был произведен по принципу Теллера-Улама, его мощность составила 3,36 мегатонны.

Примечательно, что взрыв водородной бомбы в КНР был произведен через 32 месяца после испытаний атомной бомбы — очень короткий срок для развивающегося в то время Китая. Франция провела испытание под названием «Канопус» в 1968 году. Термоядерная бомба мощностью 2,6 мегатонны была произведена по принципу Теллера-Улама.

Испытания провели на атолле Фангатауфа, после чего Франция стала пятой ядерной державой мира на тот момент. О Северной Корее стоит поговорить отдельно, поэтому пока что нужно лишь упомянуть эту страну. На фоне испытаний сейсмологи фиксировали небольшие очаги землетрясения.

В начале сентября 2017 года в КНДР заявили о наличии термоядерного заряда, который можно использовать в боеголовках на межконтинентальных баллистических ракетах. В тот же день, 3 сентября, были проведены испытания бомбы, мощность которой составила 100 килотонн. Позднее специалисты Университета Джонса Хопкинса сообщили: мощность взрыва северокорейской бомбы составила 250 килотонн.

Отдельно стоит упомянуть Украину, которая после развала Советского Союза отказалась от ядерного оружия. Сегодня из всех бывших республик СССР подобное вооружение есть только у России, которая является правопреемницей уже несуществующего государства. Главный результат появления водородных бомб «Водородная бомба, о появлении которой в январе 1963 года объявил Хрущёв, как мне кажется, перевернула сознание военно-политических элит обоих государств.

Москве и Вашингтону стало понятно, что какие бы ни были противоречия, такое оружие нельзя применять.

Я уверен, что через несколько месяцев мы достигнем цели… Мудрый И. Тамм оказался прав. Должен оговориться, что в то время мне очень нравился революционный характер совещания и последовавший затем бурный порыв. Понимание того, почему всё так обернулось, пришло гораздо позже, спустя десятилетия. Прорыв, если хотите. Этот шаг и был сделан.

Как — это другой вопрос. Была ли такая передача на самом деле или всё это домыслы, искусственно возбуждаемые и направляемые на поддержание нашей бдительности, мне не известно. Тогда же появился эскиз, по поводу которого было сказано, что его просил рассмотреть А. Завенягин, работавший в то время заместителем министра среднего машиностроения. Хотя затем этот вариант из-за тяжеловесности был отвергнут, некоторые принципиальные черты, зародившиеся на ранней стадии, сохранились до конца. Я не помню другого времени, до такой степени насыщенного творчеством, поиском, что разом пропали внутренние перегородки, делившие людей по узким темам, а вместе с ними исчезла и мелочная секретность. Возник могучий коллектив единомышленников.

Молва приписывала эти основополагающие, в духе радиационных идей Теллера, мысли то Я. Зельдовичу, то А. Сахарову, то обоим, то ещё кому-то, но всегда в какой-то неопределённой форме: вроде бы, кажется… К тому времени я хорошо был знаком с Я. Зельдовичем, но ни разу не слышал от него прямого подтверждения на сей счёт. Как, впрочем, и непосредственно от А. То, что мы сотворили тогда, по своей сути вошло во все последующие устройства. Тамма и Н.

А между тем как раз в это время активизировалась деятельность основных исполнителей — теоретиков, математиков, физиков-экспериментаторов, конструкторов, инженеров. Вера в плодотворность идеи, в её универсальность была настолько велика, что тогда же было принято решение о создании нового научно-ядерного центра — на Урале. Переезды, затрагивающие судьбы людей, совсем не способствовали тому, чтобы сосредоточиться на доведении новой конструкции до испытания. По сути дела, над её созданием мы работали только в 1954 году и в начале 1955-го. А в ноябре 55-го было проведено испытание водородной бомбы нового образца — результат оказался ошеломляющим. Все прочие варианты были отставлены. Появились первые в стране лауреаты Ленинской премии во главе с И.

Курчатовым, многим руководителям было присвоено звание Героя кому впервые, кому во второй и даже в третий раз , чинам поменьше раздали ордена разного достоинства. Но и мы были не такими, как во время Фукса и первой атомной бомбы, а значительно более понимающими, подготовленными к восприятию намёков и полунамёков. Меня не покидает ощущение, что в ту пору мы не были вполне самостоятельными. В статье Хирта и Мэтьюза многое сказано про американскую водородную бомбу. Особенно много — для тех, кто понимает, кто варился в этом котле. Подобной откровенности мы не допускали. А они решились.

И стало ясно, что мы, в общем-то, их повторяли. Не так давно мне пришлось побывать в известном ядерном центре США Ливерморе. Там рассказали одну историю, которая горячо обсуждалась в Америке и почти не известна в России. Wheeler перевозил сверхсекретный документ, касающийся новейшего ядерного устройства. По неизвестным или случайным причинам документ исчез — он всего на несколько минут был оставлен без присмотра в туалете. Несмотря на предпринятые меры — остановлен поезд, осмотрены все пассажиры, обочины железнодорожного пути на всём протяжении, — документа не обнаружили. На мой прямой вопрос к учёным Ливермора, можно ли по тому документу получить информацию о технических деталях и устройстве в целом, я получил утвердительный ответ.

Нам показывали фотографии каких-то документов, большинство из них были перекошены, видимо, фотографу было некогда установить свой микроаппарат. Среди фотографий был один подлинник, ужасно измятый.

Air Force photo , by commons. Интересы США и Страны Советов расходились в процессе деколонизации Африки, германского мирного урегулирования и прочего. К тому же в 1962 году на отношения между державами повлиял Карибский кризис. Огненное облако взрыва РДС-6с ССО В этих обстоятельствах СССР была необходима своеобразная гарантия защиты: строительство ядерных баз, усовершенствование ядерных боеприпасов и разработка стратегических бомбардировщиков. Мощнейший арсенал, с которым Советский Союз вступил в новое десятилетие, стал сдерживающим фактором для Запада. Прорыв в науке, совершенный советскими учеными, которые создали первую в мире водородную бомбу, позволил избежать новых военных конфликтов. На основе исследований ученых разработка бомбы началась по двум направлениям. Первый — «слойка», представляющая собой атомный заряд, который окружен несколькими слоями легких и тяжелых элементов.

Второй — «труба», в которой плутониевая бомба погружалась в жидкий лейтерий.

Принцип действия водородной бомбы

  • Ядерное оружие
  • Принцип работы
  • Водородная бомба - состав и принцип действий
  • Принцип действия

Водородная бомба - состав и принцип действий

Первое испытание водородной бомбы шокировало мировое сообщество своей разрушительной силой. Имея те же поражающие факторы, что и у ядерного оружия , термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления. Общее описание Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6.

Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6 Li - единственный промышленный источник получения трития: В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру порядка 50 млн градусов , в водородной бомбе сначала взрывается небольшая по мощности атомная бомба. Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий.

Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию 234 , которая и дает основное выделение энергии при взрыве водородной термоядерной бомбы. Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности. Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы. Устройство термоядерного боеприпаса Термоядерные боеприпасы существуют как в виде авиационных бомб водородная или термоядерная бомба , так и боеголовок для баллистических и крылатых ракет. История СССР Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама.

В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова». Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз. Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом «лучевая имплозия». Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы.

США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию.

Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах. Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии.

Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода. Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H2O показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий 2H. Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона.

Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным.

Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.

Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода.

При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы.

Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных "осколка". В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности.

Read the Privacy and Cookie Policy I accept 3. Водородная бомба: кто выдал её секрет О зарождении и начальных этапах развития атомной промышленности в СССР, о создании первой атомной бомбы и роли разведок в тот период рассказано уже многое, и я не вижу смысла в повторениях. Однако подобного рода материалы, как правило, ограничиваются началом 50-х годов. Лишь в одном месте в воспоминаниях Ю.

Харитона упоминается, что и в отношении американской водородной бомбы имеется от разведки документ. Но никак не раскрывается его содержание. Возможно, прав А. Не располагая точными данными, можно только догадываться, случайно это происходило или причины были более глубокими.

Ни мы, ни американцы эту загадку пока не решили. Хирта и У. Поступаю я так умышленно, потому что в мои намерения входит сопоставление различных взглядов на этот острый вопрос. В своё время в полемику с американцами вступил патриарх советской атомной науки академик Ю.

Смирновым формируют определённый взгляд на историю развития отечественного водородного оружия, который практически ни в одном пункте не совпадает с американским. По материалам юбилейной сессии Курчатовским центром издан доклад. Выдержки из него цитируются под цифрой II. Я постараюсь максимально точно передать позиции сторон и выразить свою, которая, как оказалось, не совпадает с двумя предыдущими.

При этом я прошу читателя быть снисходительным — любое воспоминание субъективно, а одни и те же события по-разному воспринимаются разными людьми. Тем более, если учесть, что автор располагал далеко не всей возможной информацией. Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Именно тогда, вскоре после появления атомных бомб, Э.

Подобно тому как от капсюля-детонатора провоцируется волна горения детонации в химическом взрывчатом веществе, в водородной бомбе Э. Теллера распространяется термоядерная волна по дейтерию, инициированная атомным взрывом. Если устойчивое незатухающее горение возможно, то оно, вызванное относительно скромной энергией атомного взрыва, затем при распространении выделяет произвольно большую энергию. Захватывающая перспектива, не правда ли?

В 1951 году, когда я после окончания Московского университета оказался в группе Я. Зельдовича в КБ amp;ndash;11 , там с большим энтузиазмом занимались сходной проблемой отставая , по-видимому, на год-два от Лос-Аламоса. Сейчас, когда узнаёшь у тех же Д. Например, для нас с самого начала представлялась очевидной невозможность разжигания чистого дейтерия — это могло осуществиться только через промежуточную область, насыщенную тритием.

Но трития требуется так много, что его производство вступает в острую конкуренцию с производством военного плутония на промышленных реакторах. Нет ответа и на главный принципиальный вопрос: осуществим ли стационарный режим горения? Дело в том, что при любой детонации существует некоторый минимальный размер радиус детонационного шнура , ниже которого устойчивого режима не существует. Вещество вследствие собственного энерговыделения разлетается быстрее, чем успевает сгореть.

Особенностью же высокотемпературной термоядерной плазмы является наличие не только нижнего, но и верхнего радиуса. Всякое вещество, предоставленное самому себе, стремится к термодинамическому равновесию, выравниванию температуры между веществом и излучением. Нетрудно подсчитать, что при рассматриваемых параметрах плазмы подавляющая часть энергии приходится на излучение. Образуется, таким образом, паразитный сток энергии от вещества, то есть от горячих материальных частиц, вступающих в ядерную реакцию, в излучение.

Этим объясняется наличие двух радиусов — разлётного и радиационного, причём первый должен быть больше некоторого значения, а второй — меньше некоторого другого. Трудность задачи состояла в том, что радиусы эти оказались близкими. До сих пор осталось невыясненным, есть ли между ними щель, необходимая для существования устойчивого распространения. Это, скажем так, теоретическая сторона вопроса.

А вот как развивались события в плоскости политической. В 1951 году президент США Г. Трумэн направил комиссии по атомной энергии директиву о возобновлении работы по созданию водородной бомбы.

Схема нейтронного боеприпаса. Устройство термоядерной бомбы схема. Строение водородной бомбы Сахарова. Водородная бомба слойка Сахарова.

Термоядерное оружие водородная бомба Сахаров. Водородная бомба строение Сахаров. Принцип атомной бомбы. Ядерное оружие схема. Принцип действия атомной бомбы. Принцип действия ядерного оружия. Атомная бомба РДС-1 схема.

Первая водородная бомба РДС-6с. Схема атомной и водородной бомбы физика. Термоядерные взрывные устройства. Термоядерная бомба принцип действия. Устройство термоядерного боеприпаса. Схема ядерной бомбы. Схема водородной бомбы Сахарова слойки.

Принцип действия ядерной бомбы. Принцип действия атомного оружия. Принцип действия ядерного оружия кратко. РДС-6с конструкция. Схема водородный Бимбы. Схема первой Советской атомной бомбы. Строение ядерной бомбы.

Общая схема ядерного боеприпаса. Взрыв водородной бомбы схема. Схема водородной бомбы физика. Схема реакции в водородной бомбе. Устройство атомной бомбы схема. Схема работы ядерной бомбы. Механизм действия водородной бомбы.

Механизм действия водородной бомбы кратко. Сахаров водородная бомба чертежи. Водородная бомба чертеж. Формула ядерной бомбы в химии. Сахаров водородная бомба схема. Назовите принцип действия ядерного оружия. Принцип действия ядерного оружия основан на.....

Принцип действия ядерного атомного оружия. Водородная бомба для стратегической авиации. Водородная бомба это химическое оружие.

Так что в том, что от немецких танков «Тигр» и «Пантера» летели стальные щепки, есть и его заслуга. В 1944-м Сахаров поступил в аспирантуру Физического института. В 1947 году под руководством Игоря Тамма защитил кандидатскую по тематике ядерных переходов. Работа имела прямое отношение к атомному проекту, и Андрей Сахаров попал в спецгруппу Тамма, проверявшую выкладки по водородной бомбе коллектива Зельдовича. К тому моменту Андрей Сахаров предложил гетерогенную схему термоядерного заряда из слоев дейтерия и природного урана-238. При этом, как в схеме Теллера — Улама, дейтерий сжимался бы за счет имплозии из-за давления, создаваемого ионизированным ураном. К схеме, получившей технико-документальное название «слойка», Сахаров пришел независимо от заокеанских конкурентов.

С этими соображениями отлично гармонировала предложенная Виталием Гинзбургом идея использовать дейтерид лития-6 6LiD как твердое термоядерное горючее для реакции синтеза дейтерия и трития. Так был открыт путь к созданию компактных боевых термоядерных зарядов. Первый из них, РДС-6с, и был взорван на Семипалатинском полигоне 12 августа 1953 года. От «Айви Майка» заряд отличался готовностью к снаряжению спецбоеприпасов. Мощность взрыва составила 400 кт. Это был колоссальный успех, и нужно отметить, что сведения об американском водородном заряде, полученные разведкой от британского ученого Клауса Фукса, при всей их важности оказались малоприменимыми для создания термоядерного оружия. А 22 ноября 1955 года Ту-16 на том же полигоне сбросил экспериментальную авиабомбу с РДС-37. Это был заряд, основанный на принципе радиационной имплозии первичного ядерного и термоядерного материала, заключенного в отдельный «слоеный», как в РДС-6с, вторичный модуль. Сжатие обеспечивалось рентгеновским излучением при взрыве первичного ядерного модуля. Но и это еще не все.

Корпус заряда был изготовлен из природного урана-238, и в этой бомбе энерговыделение в результате реакции синтеза дейтерия и трития суммировалось с энерговыделением от деления ядер урана-238. Мощность взрыва при испытании РДС-37 составила 1,6 Мт в тротиловом эквиваленте. Расчетная была 3 Мт, однако по соображениям безопасности ввели ограничение. А на объекты в Европе и Азии нацелились ракеты средней дальности Р-12. Они несли двухмегатонные заряды типа РДС-37. Что касается американцев, то их первыми водородными бомбами, доставляемыми стратегическими бомбардировщиками типа B-36, были Mk-14 7 Мт и Mk-17 15 Mт , принятые на вооружение в 1954 году. Особенность бомб типа Mk-17 — система обеспечения безопасности эксплуатации, нашедшая применение и в термоядерных авиабоеприпасах: первичный атомный запал из делящегося материала вводился в тело бомбы на борту самолета перед сбросом. В арсенале ВВС США они продержались недолго, уступив место менее габаритным двухмегатонным Mk-15 и другим боеприпасам, порожденным гением Теллера со товарищи.

История создания первой водородной бомбы: последствия термоядерного взрыва

В отличие от взорванной в 1953 году советской атомной бомбы с водородным усилением, где лишь 20% мощности обеспечивалось термоядом (а 80% — взрывом запала), водородная бомба в принципе может быть сколь угодно мощной. Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Американская водородная бомба была большой и не поддавалась транспортировке, а советский вариант помещался в бомбардировщик. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом.

Водородная (термоядерная) бомба: испытания оружия массового поражения

Принцип действия водородной бомбы РДС-6С "СЛОЙКА". Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. 6. Механизм действия водородной бомбы.

Чем отличается водородная бомба от ядерной

  • История создания первой водородной бомбы: последствия термоядерного взрыва
  • Объективные проблемы
  • Водородная бомба. История создания мощного оружия
  • Другие материалы рубрики

Похожие новости:

Оцените статью
Добавить комментарий