Новости термоядерный холодный синтез

Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Министерство энергетики США (DOE) 13 декабря отметило важную веху в освоении энергии термоядерного синтеза, рассказав о том, как ученые впервые смогли произвести больше энергии, чем необходимо для его запуска. Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность.

В защиту холодного ядерного синтеза (ХЯС)

Холодный термоядерный синтез новости. Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Между холодным термоядерным синтезом и респектабельной наукой практически нет никакой связи вообще.

Термоядерный синтез: ещё один шаг | Hi-Tech

Но раньше, вероятно, не было возможностей, не было нужного оборудования. Нанопорошки уже существуют достаточно долгое время — сигареты делают на нанопорошках. Но у нас раньше не было инструментов, чтобы рассмотреть их. Теперь, когда у нас есть такие инструменты, людей беспокоят нанотехнологии. Это аналогично тому, что до появления микроскопа мы ничего не знали о микробах, так как не видели их. А как только появился микроскоп, мы стали беспокоиться по поводу микробов. Когда Христофор Колумб прибыл в Америку, он не знал, что это была Америка. Он думал, что это Индия. Мы не знаем, к чему мы придём с холодным синтезом. Для нас это неизведанная земля.

У нас ни малейшего представления, что мы получим. Я объясню на одном примере. Вот у вас есть атом кислорода, в нем восемь электронов крутятся вокруг ядра. Если вы убираете один электрон, остаётся семь. Высокая энергия — это только один электрон. Вы убрали один электрон, и больше нет энергии электрона, есть только энергия ядра. Водород без одного электрона это уже не водород. Но кислород без одного электрона все еще остается кислородом. Промежуточное состояние высокой энергии имеет абсолютно другое поведение — вот что мы обнаружили.

Люди еще не могут осознать этого. Цитатат из видео «Реактор холодного синтеза» на YouTube Реактор холодного синтеза Андрес Ковач, изобретатель, основатель компании BroadBit Словакия : В этом проекте я ответственный за экспериментальную работу и теоретические разработки, и я возглавляю отдел, который будет разрабатывать теорию. Мы собираем все экспериментальные данные и проверяем, какие теории могут лучше всего объяснить то, что происходит. Это нам нужно для того, чтобы выработать рациональный подход к созданию реакторов. Что касается экспериментов, то мы проводим их уже более трех лет и получили интересные результаты, которые позволили нам продвинуться на следующий уровень. В нашей компании мы делаем несколько видов работ. Это не имеет отношения к коммерции. Это имеет отношение к научному любопытству — мы хотим понять, как всё это работает, и открыть новые виды ядерной энергии. С точки зрения практики мы бы хотели иметь чистую и эффективную технологию.

И на сегодняшней день существует ярко выраженная потребность в такой энергии. Поэтому мы бы хотели внести свой вклад. Если подходить к тому, что мы делаем, с точки зрения философии, то, я бы отметил следующее: в течение более 30 последних лет проводились эксперименты, которые подтвердили существующие теории. Это означает, что уже есть нечто, что дает понимание о фундаментальных силах химических элементов и частиц. Это даёт нам возможность лучше понять, как функционирует природа. Знание имеет неоспоримое преимущество в том, что оно может объяснить, по каким законам живёт мир вокруг нас, каковы эти физические законы природы. А мудрость — это умение наилучшим образом использовать знания и научные открытия для рационального использования ресурсов. Мудрость нужна для того, чтобы выбрать, по какому пути идти дальше.

В результате был преодолён порог «зажигания», как называют его учёные — когда энергия, произведённая синтезом, превысила энергию запустивших реакцию лазеров. О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут.

На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории. Технология развивается, и при нужных усилиях и соответствующих инвестициях мы через несколько десятилетий исследований сможем построить электростанцию.

Если Вы в кружку воды нальете серной кислоты, то там тоже термояд начинается?! КАк известно, обязательным условием термоядерной реакции является появление нейтронов , правда и это не гарантирует наличия термояда, но хотя бы что-то, и которые даже не искались. Эти эксперименты говорят только о толстом кошельке экспериментаторов и склонности японцев к специфической японской мистике.. Я повторял этот опыт в домашних условиях по подсказке на сайте macmep.

Там же есть раскладка полученного газа по составу по данным НАСА. Это условие определяет критерий Лоусона. И потом на рис. Может к сварочнику? При чем тут телевизор? При том, что вы есть то, во что вы верите!

А верите вы в то, что говорят вам по телевизору, в институте и в школе, а затем повторяете. А кто там говорит, что говорит и почему говорит так, а не иначе? Вот увидев, как машина едет на воде плохо едет, дергается, работает не стабильно, но едет , задаешься вопросом, почему об этом говорят только аматоры и любители? Дешевле, гораздо дешевле финансировать выпуски крупных тиражей спецлитературы определенной тематики, и поддерживать существующую дебило-систему образования, где неудачники преподаватели посмотрите внимательно на своих преподавателей будут втюхивать заказную лапшу и ставить двойки, за инакомыслие. Только не забывайте, что газ, выделяемый из банки с водой, горит, и старенький жигуленок дергается чихает, но едет на этом горючем газу из банки. Только состав газа неизвестен, потому что умные ученные говорят, что это не возможно, а любителям из гараже нечем замерить.

Принц Гамлет датский….. Менделеева в безконечность -до безконечных порядковых номеров! Любители Математики могут зайти на сайты: ponomarev-nz. С уважением ко всем интересующимся Наукой! Русский Поэт Орион NZ! И есть много чего такого, что считалось несуществующим со стороны основной масссы крупных научных специалистов и ахадемиков ….

К 2019 году были опубликованы документально подтвержденные результаты расследований, которые показали откровенно политизированный характер травли Мартина Флейшмана, Стенли Понса и других исследователей холодного синтеза, главными мотивами которых были финансовые интересы и зависть. Более того, как показала прошедшая в Москве 23 марта 2019 года мемориальная конференция «Холодному синтезу — 30 лет: итоги и перспективы», в которой приняли участие известные российские исследователи, уже в начале 1990-х годов вопрос о реальности феномена холодного ядерного синтеза не стоял, так как надежные подтверждения его существования были получены ещё в советское время в ведущих научных центрах Министерства среднего машиностроения и Академии наук СССР. Для Государственного комитета по науке и технике в 1990 году академиками А. Барабошкиным и Б.

Дерягиным был разработан проект государственной программы по исследованию холодного синтеза, которая не была реализована из-за распада СССР. Кстати, Мартин Флейшман и Стэнли Понс признавали приоритет группы Бориса Дерягина в получении реакций холодного ядерного синтеза, полученных при раскалывании дейтерированного льда в 1986 году. Но обо всём по порядку. Для начала попробуем разобраться, почему же «группе Google» не удалось запустить холодный ядерный синтез при использовании трёх, казалось бы, классических способов, которые были неоднократно воспроизведены за прошедшие 30 лет и основные условия воспроизводимости результатов для которых были давно установлены.

За разъяснением причин этого мы обратились к известному российскому исследователю холодного ядерного синтеза ведущему технологу Института геологии и минералогии СО РАН имени академика В. Соболева, доктору геолого-минералогических наук, член-корреспонденту РАЕН Виталию Алексеевичу Киркинскому о результатах собственных многолетних исследований В. Этот метод можно использовать, если интенсивность ядерных реакций — высокая, на несколько порядков выше, чем при обнаружении продуктов синтеза. Достижение такой интенсивности — значительно более сложная задача.

Мартин Флейшман и Стэнли Понс и большинство их последователей при калориметрических измерениях не всегда получали положительные результаты. Выход избыточной энергии происходил спорадически и зависел, в частности, от используемого палладия, поставляемого разными фирмами.

Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип

Что такое Холодный ядерный синтез? Ядерный синтез (часто говорят «термоядерный синтез») — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро.
Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых Что подпитывает шумиху вокруг коммерческого термоядерного синтеза?
Холодный синтез: желаемое или действительное? Термоядерный синтез заработал в плюс: американские учёные смогли запустить реакцию с положительным КПД.
В Ливерморе совершили прорыв в получении термоядерной энергии Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок.

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип Если весь этот изотоп использовать в термоядерном реакторе, выделится столько же энергии, как при сжигании 300 л бензина.
В Ливерморе совершили прорыв в получении термоядерной энергии Термоядерный, холодный синтез. Теория, технология.» на канале «Теплое Событие» в хорошем качестве, опубликованное 11 декабря 2023 г. 20:24 длительностью 00:15:26 на видеохостинге RUTUBE.
Мегаджоули управляемого термоядерного синтеза За одну реакцию термоядерного синтеза длительностью 5 секунд было получено 69 МДж энергии.
Что такое Холодный ядерный синтез? Термоядерный, холодный синтез. Теория, технология.» на канале «Теплое Событие» в хорошем качестве, опубликованное 11 декабря 2023 г. 20:24 длительностью 00:15:26 на видеохостинге RUTUBE.
Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции.

Популярное

  • Холодный ядерный синтез — научная сенсация или фарс?
  • Разжечь Солнце на Земле. Россия первой запустит полноценный термоядерный реактор
  • От самоклеящихся стикеров до новой энергии
  • Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип
  • Рекомендации

Прорыв в термоядерном синтезе

Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Недавно Россия отправила в Европу катушку, которая будет вставлена в экспериментальную установку холодного синтеза. Американские учёные заявили? что они ещё ближе подошли к тому, чтобы сделать ядерный синтез — тот самый процесс, который «зажигает» звезды — жизнеспособным источником энергии.

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

Зигелевские чтения Они проходят в Москве, а названы в честь астронома и уфолога Зигеля. Такие чтения проводятся два раза в год. Они больше похожи на заседания научных деятелей в психиатрической больнице, потому что здесь выступают ученые со своими теориями и гипотезами. Но так как они связаны с уфологией, их сообщения выходят за рамки разумного.

Однако иногда бывают высказаны интересные теории. Например, академик А. Охатрин сообщил о своем открытии микролептонов.

Это очень легкие элементарные частицы, которые имеют новые свойства, не поддающиеся объяснению. На практике его разработки могут предупредить о надвигающемся землетрясении или помочь при поиске полезных ископаемых. Охатрин разработал такой метод геологической разведки, который показывает не только залежи нефти, но и ее химическую составляющую.

Испытания на севере В Сургуте на старой скважине были проведены испытания установки. В глубину на три километра был опущен вибрационный генератор. Он приводил в движение микролептонное поле Земли.

Через несколько минут в нефти уменьшилось количество парафина и битума, а также стала меньше вязкость. Качество поднялось с шести до восемнадцати процентов. Этой технологией заинтересовались зарубежные фирмы.

А российские геологи до сих пор не используют эти разработки. Правительство страны только приняло их к сведению, но дальше этого дело не продвинулось. Поэтому приходится Охатрину работать на зарубежные организации.

В последнее время академик больше занимается исследованием другого характера: как влияет купол на человека. Многие утверждают, что у него имеется обломок НЛО, упавшего в семьдесят седьмом году в Латвии. У него разработки такие же интересные, как и у Охатрина.

Он пытался привлечь внимание правительства к своей работе, но от этого только врагов стало больше. Его изыскания тоже отнесли к лженауке. Была создана целая комиссия по борьбе с фальсификацией.

Даже был представлен на обозрение проект закона о защите психосферы человека. Некоторые депутаты уверены, что есть генератор, который может действовать на психику. Ученый Иван Степанович Филимоненко и его открытия Вот и открытия нашего ученого-физика не нашли продолжения в науке.

Его все знают как изобретателя летающей тарелки, которая передвигается при помощи магнитной тяги. И говорят, что был создан такой аппарат, который мог поднять пять тонн. Но некоторые утверждают, что тарелка не летает.

Филимоненко создал прибор, который снижает радиоактивность некоторых объектов. В его установках используется энергия холодного термоядерного синтеза.

Установка холодного термоядерного синтеза позволила бы каждый год экономить около двухсот миллиардов рублей. Деятельность академика была возобновлена только в восьмидесятые годы.

В 1989-ом начали изготавливать опытные образцы. Был создан дуговой реактор холодного термоядерного синтеза для подавления радиации. Также в Челябинской области было сконструировано несколько установок, но в работе они не были. Даже в Чернобыле не пользовались установкой с термоядерным синтезом холодным.

А ученый опять был уволен с работы. Жизнь на Родине В нашей стране не собирались развивать открытия ученого Филимоненко. Холодный термоядерный синтез, установка которого была завершена, могли бы продать за границу. Говорили, что в семидесятые годы кто-то вывез в Европу документы по установкам Филимоненко.

Но у ученых за рубежом ничего не получилось, потому что Иван Степанович специально не дописал данные, по которым можно было создать реактор на холодном термоядерном синтезе. Ему делали выгодные предложения, но он — патриот. Лучше будет жить в нищете, но в своей стране. У Филимоненко есть собственный огород, который приносит урожай четыре раза в год, так как физик использует пленку, которую сам создал.

Однако ее никто не вводит в производство. Гипотеза Авраменко Этот ученый-уфолог посвятил свою жизнь изучению плазмы. Авраменко Римлий Федорович хотел создать плазменный генератор в качестве альтернативы современным источникам энергии. В 1991 году в лаборатории он проводил опыты по образованию шаровой молнии.

А плазма, которая из нее выстреливалась, расходовала энергии намного больше. Ученый предлагал этот плазмоид использовать для обороны против ракет. Испытания были проведены на военном полигоне. Действие такого плазмоида могло бы помочь при борьбе с астероидами, которые грозят катастрофой.

Разработка Авраменко также не получила продолжения, а почему — никто не знает. Схватка жизни с радиацией Более сорока лет назад существовала секретная организация «Красная звезда», руководил которой И. Он со своей группой проводил разработки комплекса жизненного обеспечения для полетов на Марс. Он разработал термоядерный синтез холодный для своей установки.

Последняя, в свою очередь, должна была стать двигателем для космических кораблей. Но когда был верифицирован реактор холодного термоядерного синтеза, стало понятно, что он может помочь и на Земле. С помощью этого открытия можно обезвреживать изотопы и избежать ядерного взрыва. Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны.

Но их сдерживало то, что отсутствовала подобная установка, которая бы смогла защитить от воздействия радиации. На то время прочно был связан с фамилией Филимоненко холодный термоядерный синтез. Реактор вырабатывал чистую энергию, что позволило бы защитить партийную верхушку от радиационного заражения.

Напоминаю историю вопроса: предложение коллективно заняться экспериментальным изучением своими силами реальности ХЯС для прекращения надоевших бестолковых спекуляций было в июне 2018 г. Было предложено всем желающим заняться 7 разновидностями ХЯС из более чем 30 известных, наиболее полно отражающими весь спектр этого явления. После анализа общих характерных черт известных эффектов при выборе экспериментов предпочтение отдавалась экспериментам а наиболее широко охватывающие различные гипотезы ХЯС и б выполнимых любым мало-мальски рукастым человеком, чтоб можно проделать работу самостоятельно в домашних условиях. Откликнулось 13 человек, я даже не ожидал так много, но к сентябрю, очевидно в результате перенапряжения камрадов от размышлений о судьбах человечества, нас осталось только трое. Мы из разных регионов России и из-за формально границы.

Называть этих стойких камрадов не буду, захотят — сами откликнутся и дадут комменты. Я же только скомпоновал их и свои отчеты в виде единого текста и составил обобщающую таблицу. История вопроса. Но в обоих ядрах сидит по одному протону, а они заряжены и как положено одноименным зарядам, они отталкиваются. Чтобы это отталкивание преодолеть, надо чтобы ядра летали с высокой скоростью, т. Нашли множество препятствий, часть преодолели. Остальные, причем числом по-боле, термоядерщики продолжают успешно преодолевать, им еще лет на 100 хватит. Хорошо бы это отталкивание как-то ликвидировать убить без разогрева.

В 1954 г. Зельдович умудрился опубликовать в Докладах Академии Наук маленькую заметку, что отталкивание можно убить с помощью мю-мезонов мюонов. Подробная статья Зельдовича и Сахарова, написанная задолго до этого, но не пропускаемая Главлитом это вам не академическая комиссия по лженауке, это было серьезно , появилась в Журнале экспериментальной и теоретической физики в 1957 г. Мысль простая: отрицательно заряженный мюон притягивается к протону, он в 200 раз тяжелее электрона и радиус его орбиты в 200 раз меньше, чем у атома водорода. Это, конечно, почти в 103 раз больше, чем 1 ферми, но вероятность реакции резко возрастает. Более того, в Дубне обнаружили возможность образования мезомолекул мю-мезонных молекул , в которых тритий и дейтерий в присутствии мюона почти сливаются. И в Дубне, и в Гатчине, - да и везде где на ускорителях рождали медленные мюоны, явление было блестяще подтверждено. Итак, ХЯС на основе мюонного катализа подтвержден корифеями ядерной физики экспериментально 60 лет назад.

Единственный маааленький недостаток этого реально наблюдаемого синтеза — использование ускорителя резко снижает общий КПД: полученная энергия намного меньше затраченной. Одновременно у разных исследователей появилась идея заменить ускоритель совершенно бесплатными природными мезонами. Помимо вполне реального механизма мюонного катализа за последние три десятилетия неоднократно появлялись сообщения об успешной демонстрации холодного синтеза в условиях взаимодействия ядер изотопов водорода внутри металлической матрицы или на поверхности твёрдого тела. Например, были надежды, что в твердых телах из-за электронного окружения отталкивание будет слабее. Или в сонолюминесценции --- ультразвуком можно в жидкости родить микропузырьки, которые настолько малы, что будут схлопываться. В процессе схлопывания скорости могут быть сильно сверхзвуковыми. Жидкость начинает светиться. Или если крошить кристаллы, то возникают высокие напряжения, ускоряющие поглощенные в кристаллах дейтерий и тритий.

Первые сообщения такого рода были связаны с именами маститых электрохимиков не физиков Флейшмана и Понса, которые много лет изучали особенности электролиза тяжёлой воды в установке с палладиевым катодом. На протяжении последних десятка лет поиски условий протекания «холодного синтеза» сдвинулись от электрохимических опытов и электрического разогрева образцов к «сухим» экспериментам, в которых осуществляется проникновение ядер дейтерия в кристаллическую структуру металлов переходных элементов — палладия, никеля, платины. Эти опыты относительно просты и представляются более воспроизводимыми, чем ранее упомянутые. В отличие от столкновения «голых» ядер в горячей плазме, где энергия столкновения должна преодолеть кулоновский барьер, при проникновении ядра дейтерия в кристаллическую решётку металла кулоновский барьер между ядрами модифицируется экранирующим действием электронов атомных оболочек и электронами проводимости. Обращает внимание также «рыхлость» ядра дейтрона, объём которого в 125 раз превышает объём протона.

Силы, удерживающие систему в балансе, как раз и являются объектом изучения ядерных физиков.

При этом существуют два принципиально разных подхода к высвобождению скрытой энергии: Атомная энергетика. Здесь за основу берется тяжелый элемент как правило, уран или плутоний , который расщепляется на составляющие с выделением энергии. То есть ключевой процесс — распад ядра. Первая в мире атомная электростанция была запущена еще в 1954 году — ей стала Обнинская АЭС в Калужской области. Человечество хорошо освоило расщепление, хотя проблемы пока остаются. Управляемый термоядерный синтез УТС.

В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий. Точно такие же процессы протекают в центре звезд. Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия. Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность.

Преодоление предела Гринвальда

  • Первый термоядерный реактор может заработать уже в 2025 году
  • В Ливерморе совершили прорыв в получении термоядерной энергии
  • Поделиться
  • Навигация по записям

Холодный термоядерный синтез в обыкновенной кружке

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER Но и на этом «плохие» новости для сторонников холодного термоядерного синтеза не закончились.
Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых Американские учёные заявили? что они ещё ближе подошли к тому, чтобы сделать ядерный синтез — тот самый процесс, который «зажигает» звезды — жизнеспособным источником энергии.
Термоядерный синтез вышел на новый уровень: подробности Термоядерный, холодный синтез. Теория, технология.» на канале «Теплое Событие» в хорошем качестве, опубликованное 11 декабря 2023 г. 20:24 длительностью 00:15:26 на видеохостинге RUTUBE.
Холодный ядерный синтез: holydiver_777 — LiveJournal в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Американские ученые повторили прорыв в области термоядерного синтеза.

Холодный ядерный синтез перестал быть лженаукой в ЕС

Helion Energy планирует подключить реактор мощностью минимум 50 МВт — это немного, но речь здесь идет, скорее, о самом факте первого в истории коммерческого контракта на получение энергии посредством термоядерного синтеза. Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии. Холодный ядерный синтез или ХЯС специалисты определяют как реакцию слияния1 атомных ядер в холодном водороде, например, мюонный катализ. Новый атомный проект России – холодный ядерный синтез? Что подпитывает шумиху вокруг коммерческого термоядерного синтеза? Значит, реакция холодного ядерного синтеза эффективней реакции распада урана минимум в 9 раз.

Выбор сделан - токамак плюс

Он находится в Калхэмском центре термоядерной энергии в Великобритании. Все благодаря международной команде ученых и инженеров в Оксфордшире», — заявил министр ядерной энергетики и сетей Великобритании Эндрю Боуи. Проект разрабатывается с середины 1980-х годов, закончить строительство главной конструкции планируют в 2025 году. В готовом виде токамак ИТЭР будет представлять собой 60-метровое сооружение массой 23 000 т.

Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы. Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению. Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т.

И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры —269 градусов по Цельсию. Одна третья часть основания криостата. Всего этот «термос» будет состоять из 54 элементов А так выглядит криостат на рендере. Его производство поручено Индии. Внутри «термоса» соберут реактор Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата — в Индии, над сегментами вакуумной камеры — в Европе и Корее.

Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах например, под воздействием плазменных пушек, как дивертор , улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент. Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую — в Корее 18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля Каждая такая катушка весит примерно 310 тонн Но одно дело собрать. И совсем другое — все это обслуживать.

Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора весом под 10 тонн , часть — управляться удаленно для устранения аварий, часть — базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС. Причем это только часть оборудования самого реактора. Добавьте сюда здание криокомбината, где будут вырабатывать жидкий азот и гелий, здание выпрямителей магнитной системы с трансформаторами, трубопроводы системы охлаждения диаметром по 2 метра , систему сброса тепла с 10 вентиляторными градирнями и многое-многое другое. На все это и идут миллиарды.

Исследователи сообщили всему миру о производстве избыточного тепла. И даже некоторых побочных продуктов синтеза! К сожалению, ни одна другая лаборатория не смогла воспроизвести этот эксперимент. И это погасило бушующее пламя сенсации — холодного синтеза с положительным выходом энергии. Никто так и не смог объяснить, почему один раз это сработало, а в другие — нет. Отбросьте глупые амбиции! После стольких лет неудачных исследований холодный синтез начал приобретать плохую репутацию. Как для себя, так и для всех, кто им занимался. Это направление исследований стали рассматривать как лженауку.

Как что-то, что никогда не может быть достигнуто. Что-то, что никогда не будет надёжным источником энергии. Это создало своеобразную репутационную ловушку. Которая привела к застою в этой области и всеобщему преследованию её сторонников. В попытке немного «почистить ауру» и сделать название более привлекательным, исследователи стали называть холодный синтез «низкоэнергетическими ядерными реакциями». Но прорыва после этого так и не последовало. В последнее время стали появляться сообщения, что некоторые неровности на поверхности металла ответственны за появление горячих точек ядерной активности. И что именно в этом причина несоответствия проводимых экспериментов. Просто у некоторых металлов есть такие неровности, а у других их нет.

Опять же, это утверждение, которое никто не смог проверить. Новые горизонты Перспектива превращения научной фантастики в науку всегда завораживает. Вспомните: такие вещи, как клонирование, космический туризм и карманные компьютеры, были лишь мечтами 20-25 лет назад. А сегодня они стали обыденной реальностью. Холодный синтез, если он всё же появится в нашей жизни , несомненно изменит планету Земля.

Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму.

Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте. Повторение эксперимента на более крупном реакторе После такого успеха ученые хотят экстраполировать результаты на более крупные установки. В частности, они думают об ИТЭР, экспериментальном токамаке нового поколения, который сейчас строится во Франции. Однако исследователи подчеркивают, что воспроизвести тот же эксперимент на реакторе такого размера может быть очень сложно. По их словам, небольшое изменение начальных условий может привести к кардинально иным результатам.

Частный термоядерный синтез: фантазии или реальность?

На достижение этого потребовалось семь десятилетий. Теоретически внедрение термоядерных реакторов в широком коммерческом масштабе даст нам источник энергии, не загрязняющий окружающую среду, не сжигающий ископаемое топливо и не производящий радиоактивные отходы. Для поддержания термоядерной реакции 5 декабря 2022 года 192 гигантских лазера в Национальном комплексе лазерных термоядерных реакций National Ignition Facility, NIF разогрели цилиндрик размером с ластик, в котором в алмазной оболочке содержалось небольшое количество водорода. Одновременно разогрев цилиндр сверху и снизу, лазерные лучи испарили его.

В то же время они наблюдали выход нейтронов, что является прямым свидетельством ядерных реакций, однако более подробных количественных данных не было приведено. В опытах с порошком никеля в атмосфере водорода экспериментаторы, проводившие проверку, не указали размер частиц, состав элементов-примесей и даже температуру опытов. Все эти факторы имеют принципиальное значение для ядерной реакции и выхода тепла. Очень важно, что в продуктах длительных опытов обнаружено изменение отношения изотопов никеля в десятки раз, что однозначно подтверждает ядерную природу выделяемой энергии. В опытах Александра Пархомова, проведенных по способу А. Так, например, содержание серебра возросло до 200 раз, что вызвано реакцией высокоэнергичных продуктов ядерного синтеза: нейтронов и протонов с изотопами палладия.

Образовался галлий, которого в исходном образце вообще не было. Рассчитанное суммарное выделение энергии за счет трансмутаций элементов-примесей составляет основную долю измеренного выхода избыточной энергии в опытах. Это объясняет отрицательные результаты экспериментов при использовании палладия высокой чистоты. Достигнутые нами успехи по значительной интенсификации низкотемпературных ядерных реакций — результат предварительного компьютерного моделирования таких реакций в конденсированных средах, что позволило найти благоприятные условия для их осуществления. Ссылки на наши работы и патенты, в которых приведен также обзор многочисленных статей по ядерным реакциям при низких энергиях, можно найти в недавно опубликованной статье автора « Ядерные реакции в конденсированных средах — основа новой энергетики ». Стоит заметить, что все исследования, включая разработку и испытания дейтериевого теплогенератора, мы провели на собственные скудные средства.

Приведенные выше и сотни других фактов не оставляют сомнения в том, что ядерные реакции можно осуществить в целом ряде физико-химических процессов при низких температурах. Если Google и научные фонды действительно заинтересованы в установлении научной истины, они могли бы выделить равные гранты сторонникам и противникам холодного ядерного синтеза для проведения экспериментов с точным их описанием.

Даже при благоприятных условиях при работе с катодами малой площади интегральный коэффициент преобразования энергии был мал, что требовало высокой точности измерений. В ряде экспериментов, проведенных квалифицированными электрохимиками, в растворах на основе тяжелой воды наблюдались всплески нейтронного излучения и выделение избыточной энергии мощностью до нескольких ватт, в то время как в совершенно аналогичных условиях при использовании растворов с обычной водой никакого дополнительного тепловыделения не происходило. Ни в одном из проверочных опытов в статье в Nature не определялся гелий и его изотопный состав — непосредственный продукт ядерного синтеза. Было надежно подтверждено выделение избыточного тепла и его корреляция с выходом трития и гелия. Все эти результаты однозначно свидетельствуют о том, что происходили ядерные реакции слияния атомов дейтерия с образованием гелия. Как было показано Флейшманом и Понсом, а затем в Индийском атомном центре P. Iyengar et al. Непонятно, почему авторы статьи в Nature, получив большие средства, не использовали эти чувствительные и надежные методы идентификации продуктов ядерного синтеза.

В экспериментах по облучению палладиевой проволоки дейтериевой плазмой сохранить тритий в тонкой проволоке крайне трудно, так как он практически полностью улетучивается в газовую фазу. Это объясняет, почему авторы статьи в Nature не обнаружили тритий в cвоих экспериментах. Тритий может частично сохраняться в более толстых мишенях, что, по-видимому, имело место в опытах T. Claytor at al. Tritium production from a low voltage deuterium discharge on palladium and other metals. Low energy nuclear reactions conference, Monaco, 1995 , которые авторы статьи безуспешно пытались воспроизвести.

КАк известно, обязательным условием термоядерной реакции является появление нейтронов , правда и это не гарантирует наличия термояда, но хотя бы что-то, и которые даже не искались. Эти эксперименты говорят только о толстом кошельке экспериментаторов и склонности японцев к специфической японской мистике.. Я повторял этот опыт в домашних условиях по подсказке на сайте macmep. Там же есть раскладка полученного газа по составу по данным НАСА. Это условие определяет критерий Лоусона. И потом на рис. Может к сварочнику? При чем тут телевизор? При том, что вы есть то, во что вы верите! А верите вы в то, что говорят вам по телевизору, в институте и в школе, а затем повторяете. А кто там говорит, что говорит и почему говорит так, а не иначе? Вот увидев, как машина едет на воде плохо едет, дергается, работает не стабильно, но едет , задаешься вопросом, почему об этом говорят только аматоры и любители? Дешевле, гораздо дешевле финансировать выпуски крупных тиражей спецлитературы определенной тематики, и поддерживать существующую дебило-систему образования, где неудачники преподаватели посмотрите внимательно на своих преподавателей будут втюхивать заказную лапшу и ставить двойки, за инакомыслие. Только не забывайте, что газ, выделяемый из банки с водой, горит, и старенький жигуленок дергается чихает, но едет на этом горючем газу из банки. Только состав газа неизвестен, потому что умные ученные говорят, что это не возможно, а любителям из гараже нечем замерить. Принц Гамлет датский….. Менделеева в безконечность -до безконечных порядковых номеров! Любители Математики могут зайти на сайты: ponomarev-nz. С уважением ко всем интересующимся Наукой! Русский Поэт Орион NZ! И есть много чего такого, что считалось несуществующим со стороны основной масссы крупных научных специалистов и ахадемиков …. А это не игрушки, и очень сурьёно для них….

Похожие новости:

Оцените статью
Добавить комментарий