Плазменный шар является высоковольтным электрическим устройством и должен использоваться с осторожностью.
Зачем нужен Плазма шар?
- Выбор города
- Плазменные фокусы
- Особенности строения плазменного светильника
- Светильник «Плазменный шар» – предназначение и принцип работы
Получен новый вид лабораторных шаровых молний
Для достижения цели я поставила ряд задач: Узнать, как он устроен? Как он работает? Что можно и чего нельзя делать с моей лампой? Методы, которые использовались в работе: эмпирические: беседа, фото, наблюдение; теоретический анализ источников: сравнение, обобщение материалов, практические: исследования.
Объект исследования: шар Тесла плазменный светильник. Предмет исследования : взаимодействие шара плазменного светильника с другими электрическими приборами. Выводы — работа имеет большое практическое значение для развития познавательного интереса.
И, что не менее важно, повышает интерес к изучению новых предметов, к экспериментированию. Перспектива — в старших классах на уроках физики я смогу глубже изучить открытия Теслы. Практическая часть.
Демонстрация опытов……………………………………… 2. Современный мир декоративных светильников…………………………………. Он удивил меня своим загадочным сиянием и не только.
Я поставила перед собой цель: определить причины воздействия шара Тесла на работу электронных приборов. Приложение 1 Актуальность : прошлым летом на отдыхе в Анапе мы с мамой приобрели этот волшебный шар. Проблема: С плазменным шаром можно взаимодействовать и испытать трепетное чувство от взаимного общения.
Возникли вопросы. Так ли он безопасен? Может ли случиться удар электрическим зарядом?
Объект исследования: плазменный светильник шар Тесла Предмет исследования : воздействие шара Тесла на работу электронных предметов. Гипотеза: плазменный светильник может создавать помехи в работе электронных приборов. Выводы — работа над проектом имеет большое практическое значение для развития познавательного интереса.
Основная часть. Краткая биография Теслы. Никола Тесла является самым загадочным ученым 20 века.
Серб по национальности, он родился в 1856г. Учился он в высшем техническом училище и в Пражском университете, работал инженером телефонного общества в Будапеште, затем в компании Эдисона в Париже, после чего в 1884г. В этой стране изобретатель прожил вплоть до своей кончины в 1943 году.
Изобретения Теслы. Тесла — гениальный изобретатель и ученый. За свою жизнь Н.
Тесла сделал около 1000 различных изобретений и открытий, получил почти 800 патентов на изобретения в разных областях техники. Никола Тесла сам демонстрировал на выставке свой первый трансформатор высокой частоты. Тесла был подсоединен к этому устройству и из его рук забили ветвистые молнии, вызывающие ужас у посетителей.
Публика была потрясена! Но, несмотря на пугающий внешний вид разрядов, они безвредны для человека, так как токи высокой частоты, проходя по самой поверхности кожи, не причиняют никакого вреда. В начале столетия трансформатор Тесла использовался в медицине.
Пациентов обрабатывали высокочастотными токами, оказывавшими тонизирующее и оздоравливающее действие. Трансформатор Тесла и по сей день широко используется в радио- и телеаппаратуре, а также в других электроприборах. Сейчас в магазинах можно увидеть «родственников» подобного устройства - стеклянные шары с эффектными разрядами внутри.
Именно такой шар — под названием «плазменный светильник» приобрели мы с мамой. Приложение 2 2. Что такое плазма.
Для начала я нашла информацию в Интернете — что такое плазма. Дальнейший нагрев газа ведет к ионизации атомов газа. В результате ионизации получается «смесь» частиц с положительными и отрицательными зарядами.
Эту «смесь» назвали плазмой. Устройство и принцип работы плазменного шара. Я обратилась к Зое Михайловне, нашему учителю физики, с просьбой объяснить, как устроен шар.
Вот как она мне рассказала: Прозрачный стеклянный шар установлен на подставке и заполнен смесью инертных газов под низким давлением. В цоколь лампы встроен трансформатор, который выдает на электрод переменное напряжение в несколько киловольт. Когда вы включаете лампу, возникает свечение в виде многочисленных электрических разрядов.
Работу плазменного шара Зоя Михайловна объяснила мне на примере работы высоковольтного индуктора. Катушка индуктивности есть в шаре Тесла. В нем накапливается электрический заряд.
Действие плазменного шара основано на принципе катушки Тесла. Колба шара наполнена смесью инертных газов. Шарик, расположенный внутри стеклянной колбы — это электрод, на который подается напряжение мощностью в несколько киловольт.
Чтобы вся конструкция превратилась в магический шар, внутри которого мы видим маленькие молнии, нужен еще один электрод. Им служит стекло, из которого изготовлена колба. Внутри шара создается электрическое поле, а молнии, которые мы видим, направлены по линиям этого поля.
Если к шару дотронуться пальцем или рукой, силовое поле изменится и молнии устремятся в точку, где расположен палец. Плазменный шар является газоразрядной лампой с инертным газом, в которой в результате ионизации газа можно наблюдать светящуюся плазму. При включении лампы носители зарядов ионы и электроны начинают ускоренно двигаться вдоль линий силового поля лампы.
Для возникновения и поддержания газового разряда в лампе требуется наличие электрического поля. Демонстрация опытов. Я очень хотела испытать свой шар.
Для начала я восстановила в памяти правила безопасного поведения при обращении с электроприборами. Приложение 6 Затем я еще раз внимательно изучила опыты в Интернете и под присмотром мамы провела несколько опытов. Опыт 1.
Приложение 7 Можно без опаски прикасаться к стеклу работающего плазменного шара. Вывод: несмотря на пугающий внешний вид разрядов, они безвредны для человека, так как токи высокой частоты, проходя по самой поверхности кожи, не причиняют никакого вреда. Опыт 2.
Светящаяся лампочка. В ходе своей лекции об электромагнитном поле высокой частоты перед учеными Королевской академии Тесла включал и выключал электродвигатель дистанционно, в его руках сами собой загорались электрические лампочки. Тогда шел 1892 год!
Я провела опыт с лампочкой. Если к работающей плазменной лампе просто, держа в руке, поднести неоновую, люминесцентную или любую другую газоразрядную лампу, то она начнёт светиться. Опыт 3.
Тлеющий разряд в прозрачной трубке Применяется этот тип разряда в различных лампах, неоновых трубках. Дуговой разряд Следующий тип называется дуговым. Происходит он между двумя электродами, например, угольными, которые на короткое время соприкоснулись, после чего были разведены в сторону.
Похож он на яркий шнур. Процесс сопровождается мощным выбросом ультрафиолетового излучения. Явление электрической дуги было открыто еще в 1802 году русским физиком В.
Петровым, а практическое применение ей было найдено позже, в 1876 году. Сделал это П. Н Яблочков, доказав возможность использования для освещения и сварки металлов.
Искровой разряд Искровой разряд возникает при высоких напряжениях и атмосферном давлении. Самым ярким примером является обычная молния. При этом разряд не горит долго, а появляется лишь на короткое время.
Коронный разряд Ну, и последний — коронный разряд. Он также возникает при атмосферном давлении и высоком напряжении, но в отличие от искрового ему требуется неоднородное электрическое поле около электродов с кривой поверхностью, например провода или какого-нибудь острия. Внешне он напоминает светящуюся корону, откуда и пошло его название.
В природе данные разряды можно встретить в преддверии приближающейся грозы, когда светиться могут мачты кораблей, одинокие вершины деревьев, а иногда и поднятые руки людей. Данный разряд используется в электрических фильтрах газа. Если что-нибудь слышали про «огни святого Эльма», то знайте — это и есть коронные разряды.
Церковь, воздвигнутая в честь этого святого в средние века, часто светилась на шпилях подобным образом. Тот или иной тип разряда может быть как полезным, так и наоборот, доставить кучу проблем. Например, в сильноточных цепях при размыкании контактов может образоваться искровой и даже дуговой разряды.
Чтобы этого не происходило, инженеры предусматривают специальные системы защиты — те же масляные переключатели. Межзвездная плазма Космос наполнен плазмой Не так давно ученые со всего света сходились во мнении, что межзвездное пространство является идеальным вакуумом. Более того, этой точки зрения до сих пор придерживаются многие специалисты, но как показывают последние исследования, это не совсем верно.
Космос пустым не является и пространство его наполнено плазмой, очень разряженной, но все-таки. В основном это легкие молекулы гелия, водорода — их ионы и электроны. Концентрация составляет одну частицу на 1 кубический сантиметр, что в 1013 раз меньше, чем в земном воздухе.
Исследования космоса показали, что между небесными телами постоянно протекают токи Бикерланда, и этому никак не препятствует низкая концентрация плазмы, которая, как мы выяснили, является прекрасным проводником. Среди ученых сегодня ведутся активные споры о заряде космической плазмы. Так, Хеннес Альфвен и Джеймс Маккэни считают ее практически нейтральной и лишь чуть-чуть позитивной.
Это противоречит официальной теории о полной нейтральности солнечного ветра.
Подскажите, пожалуйста, может ли он взорваться? Плазменный шар - это прозрачная сфера, заполненная разреженным инертным газом, в котором образуются видимые лучи плазмы. Находящийся внутри стеклянный шар, выполняет роль центрального электрода. Миниатюрные молнии образуется в форме тонких лучей протекающих от электрода до стенок сферы, производя «космические» световые эффекты.
По словам физиков, произведенные ими шары плазмы в терминологии авторов — «плазмоиды» наблюдались в течение полусекунды. Ранее физики из института Макса Планка сообщали , что подобные объекты могут существовать около трети секунды. Более длительное наблюдение потенциально позволяет лучше рассмотреть процессы, происходящие во время разряда. Удалось ли это авторам нового исследования, в сообщении не уточняется.
Безопасны ли плазменные шары прикасаться?
Все снежные шары плазменный тесла шар, магический шар с молниями. Плазменный шар Тесла, светильник электрический шар, детский ночник, шар с молниями, магическая лампа Тесла (диаметр 8см). Плазменный полк — одно из изобретений Теслы, сделанное в 1894 году. RISALUX Плазменный шар "Умиротворение" синий 13х7х17 см RISALUX. Плазменная лампа-шар, при правильном подходе к ее выбору, станет эффектным дополнением практически любого интерьера и стиля. Электрические разряды внутри плазменного шара, крупный план.
Опасны ли плазменные шары? – ОтветыВсем
Нейронный плазменный шар | 20см) - это небольшой декоративный электрический плазменный шар (палантир), работающий от сети 220V. |
НА ЧТО СПОСОБЕН ПЛАЗМЕННЫЙ ШАР - YouTube | Светильник плазменный шар Plasma Light, реагирующий на прикосновения диаметр 12см. |
Шаровая молния: Плазменный сгусток разумной энергии до сих пор остается загадкой для ученых | Как работает плазменный шар и почему он не бьёт током? |
НОВЫЙ ПЛАЗМЕННЫЙ ШАР! — Новость компании «Экспериментус» — Выбирай.ру — Челябинск | Плазменный шар Тесла — это воплощение науки которая почему-то кажется чистой магией. |
В планетарии установили плазменный шар и макет черной дыры (фото) | Плазменный сгусток разумной энергии с древности являлся основной стихией, неподвластной человеку. |
«Лунариум»
это высоковольтное электрическое устройство, и его следует использовать с осторожностью. Я сам, пишет Скотт, снял такой же плазменный шар в Тайване в 2013 году – прямо из окна своей квартиры. Красивая штука - Плазменный шар мы приобрели еще в то время, когда он.
Adobe Stock
- Электрический плазменный шар Тесла D-20
- Ученые создали лазерную систему, способную создавать говорящие плазменные шары
- Другие новости
- «Лунариум»
- Нейронный плазменный шар
- Где купить
Нейронный плазменный шар
Пла́зменная ла́мпа — декоративный прибор, состоящий обычно из стеклянной сферы с установленным внутри электродом. Плазменная лампа Шар Тесла– удивительный декоративный прибор, работающий по принципу катушки выдающегося физика Никола Теслы. Несмотря на столь яркую демонстрацию электрического пробоя, плазменные лампы потребляют очень мало энергии.
Самое таинственное природное явление. Откуда берется шаровая молния и чем она опасна?
Использование[ править править код ] Плазменные лампы могут повсеместно использоваться в быту при условии выполнения мер предосторожности. Например, лампа пригодится во время демонстраций на уроках физики в качестве источника мощного электромагнитного излучения. Многие используют лампу в качестве ночника или энергосберегающего источника освещения. Плазменная лампа — эффектный прибор, довольно часто использующийся популяризаторами науки. История[ править править код ] Плазменный шар в действии В патенте «Электрический источник света» от 6 февраля 1894 года [1] Никола Тесла описал конструкцию плазменной лампы. Тесла описал лампу, состоящую из стеклянной колбы с единственным электродом внутри. На электрод подавался ток высокого напряжения от катушки Теслы , в результате чего на конце электрода появлялось свечение, известное как коронный разряд. Тесла назвал своё изобретение «одноконтактная лампа», а позже « газоразрядная трубка ».
Будьте очень осторожны, чтобы немедленно задуть спичку и не дать огню распространиться. Пересвет плазменного шара Вы можете зажечь плазменный шар на короткое время после его выключения, используя свое собственное тело для проведения электричества.
Положите руку на плазменный шар, пока он включен, затем выключите его. Немедленно положите руку обратно на плазменный шар, и вы увидите, как по вашей руке вспыхивают электрические болты. Уберите руку и хлопните несколько раз. С каждым хлопком вы должны видеть, как больше электрических болтов проходит через плазменный шар, даже если электричество к шарику отключено. Безопасность с плазменным шаром Плазменный шар является высоковольтным электрическим устройством и должен использоваться с осторожностью. Излучаемые им частоты могут мешать работе сотовых телефонов, Wi-Fi и беспроводных телефонов. Поскольку плазменный шар испускает электромагнитное излучение, он может создавать помехи для кардиостимуляторов.
С первого взгляда видно, что все это дело питается напрямую от сети 220 В, что и подтвердилось после рисования схемы. Напряжение фильтрующего конденсатора после моста подсказывало, что для питания нужно около 40 В. Поэтому подключили внешнее питание из двух последовательно соединенных лабораторных блоков питания 30 В и 20 В , но преобразователь не запустился. Помогло подключение к делителю затвора резистора 10 кОм параллельно резистору 43 кОм. Автомобильное зарядное устройство Парма Электрон УЗ-10. Преобразователь заработал без нагрузки с током около 70 мА при напряжении питания 30 В. Высокое напряжение исходя из длины дуги оценивается примерно в 10 кВ при длине дуги около 8 мм.
Для дальнейшего прогресса требовалось найти иную методику получения шаровых молний, и к тому же более стабильных. Именно это удалось сделать двум израильским физикам; результаты их исследования были на днях опубликованы в статье V. Dikhtyar and E. Jerby, Physical Review Letters, 96, 045002 30 January 2006. В ней описывается принципиально новый способ рождения шаровой молнии: путем «вытягивания» из расплавленного вещества внутри «микроволновой печи». Процесс выглядит следующим образом см. В резонатор, внутри которого генерируется мощное поле микроволнового излучения, помещается образец твердого материала стекла, кремния, германия, окислов алюминия. Непосредственно к образцу подносится стержень, который как бы собирает микроволновое излучение, фокусируя его на острие.