Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. В 2023 году искусственный интеллект произвел фурор в качестве полезной технологии во многих отраслях, особенно в медицине. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Применение искусственного интеллекта в медицине.
Применение искусственного интеллекта в московском здравоохранении
С врачебной ошибкой все ясно — ответственность несет тот, кто совершил неверное действие, а вот с ИИ зона ответственности непонятна. Обеспечение работы искусственного интеллекта связано с применением вычислительных мощностей, которых нет во многих медицинских учреждениях. Также остается открытым вопрос предоставления и хранения личной информации пациента. Поскольку кибермошенники не дремлют, данный вопрос требует особой проработки. Могу сказать точно, что никакие технологии не смогут заменить человеческого общения. Искусственный интеллект никогда не научится сострадать человеку и морально поддерживать в трудную минуту. Общение врача с пациентами имеет большое значение. Однажды был случай, когда врач в Калифорнии послал робота в палату к 78-летнему пациенту и его родственникам, чтобы с помощью видеосвязи сообщить им о том, что тот умрет. Конечно же родные пациента, да и сам пациент были в шоке, хотя они и знали, что смерть неминуема. Однако это не означает, что подобные новости можно преподносить таким образом.
Искусственный интеллект нельзя научить эмпатии, поэтому он не может работать в одиночку. На мой взгляд, идеальное будущее медицины и здравоохранении заключается в тандеме ИИ и доктора. Понравилась статья?
Программа конференции подробно отразит все современные возможности применения информационных технологий в биомедицинских исследованиях и клинической деятельности. Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике. Отдельно будут рассмотрены современные технологические решения для практического здравоохранения и превентивной медицины: информационные системы сбора и анализа медицинских данных, облачные хранилища, мобильные приложения и веб-сервисы для врачей и пациентов.
Сейчас оно проходит уже вторую фазу испытаний с применением плацебо. Только в США от этого заболевания сейчас страдают до 100 тыс. Без лечения оно способно свести пациента в могилу в течение 2-5 лет.
Применяемые на сегодняшний день лекарства преимущественно нацелены на замедление развития заболевания, но нередко дают крайне неприятные побочные эффекты. Фото: ru. Цифровизация По словам Жаворонкова, когда компания создавалась, ее основатели сразу же сосредоточились на алгоритмах — на разработке технологии, способной самостоятельно обнаруживать и конструировать новые молекулы.
Технологии ИИ уже сегодня меняют ландшафт всей экономики и сферы услуг.
Здравоохранение — не исключение. От эффективного внедрения ИИ зависит конкурентоспособность медицинских организаций, всей системы, а также будущее качество жизни населения. Здравоохранение — консервативная отрасль, изменения и новые технологии приживаются здесь непросто. Однако если отложить внедрение ИИ, есть риск безвозвратно отстать, вместо того чтобы управлять процессом перехода системы здравоохранения в новый технологический уклад.
В чем выражается этот риск? Наши жители не получат новые возможности по поддержанию и сохранению здоровья, а мы окажемся в роли «догоняющего» участника новой реальности. Тем временем ИИ становится новой базовой технологией, как когда-то персональные компьютеры и программы, которыми мы пользуемся повседневно переводчики, навигация, домашние умные помощники и т. Скорость этих изменений, а также требования к росту качества жизни постоянно увеличиваются.
В этих новых условиях нам необходимо предоставлять лучшие медицинские услуги для наших жителей и условия труда для наших медицинских работников. При постоянном развитии цифровизации здравоохранения, экспоненциальном росте накапливаемых данных без новых технологий их обработки просто не обойтись. И такой технологией является искусственный интеллект. В каких мегаполисах мира работают аналогичные сервисы?
Конечно, мы активно изучаем международный опыт, но у нас есть проекты, по масштабу не имеющие аналогов в мире. Например, московский эксперимент по использованию компьютерного зрения для анализа медицинских изображений. Результаты этого проекта легли в основу 11 национальных стандартов разработки и применения ИИ для клинической медицины. Проекты по исследованию возможностей ИИ в столичном здравоохранении реализуют единым фронтом несколько команд Комплекса социального развития Правительства Москвы — от разработки принципиально новых для страны ИИ-сервисов, тестирования прототипов до масштабного внедрения готовых продуктов.
Мы разрабатываем и реализуем собственные подходы по применению ИИ в здравоохранении, с исследовательским скепсисом подходим к информации о возможностях тех или иных технологий, все проверяем и тестируем на своей базе. В последних отчетах исследовательских и консалтинговых компаний о цикле развития новейших технологий генеративный ИИ находится на пике завышенных ожиданий — о нем много говорят, с ним экспериментируют. Однако говорить о его массовом внедрении, в первую очередь в медицине, пока рано — нет ни одного готового продукта с понятным сценарием использования и доказанными эффектами для роста производительности труда или повышения качества медицинского обслуживания, диагностики или лечения. Безусловно, у технологии большой потенциал, и мы пока даже не представляем его глубину и трансформационную силу.
Предполагаю, что оценить первые результаты мы сможем в среднесрочной перспективе — на горизонте пяти лет. Но на протяжении этого времени нам, стороне заказчика и пользователя технологии, предстоит провести немало экспериментов. И возможно, не все сразу принесут желаемые результаты. Пандемия заставила рентгенологов обучаться буквально не отходя от рабочего места.
Насколько они достоверны?
Виртуальная реальность в медицине
- Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией - Новости
- Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
- Для чего в российских регионах используют ИИ в медицине - Российская газета
- ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
- Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией
- Как работают нейронные сети в медицинской сфере?
Искусственный интеллект в медицине: добро или зло?
Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении.
Машины лечат людей: как нейросети используют в российской медицине
Искусственный интеллект в медицине. Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ.
Что такое CRISPR?
- Врачам и пациентам: как искусственный интеллект помогает в медицине
- AI-платформа для анализа медицинских изображений
- Цельс | ИИ в медицине – Telegram
- Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
- Комплексный анализ работы сервисов ИИ в медицине провели в Москве
- Нейронные сети для пациентов
Искусственный интеллект в медицине: главные тренды в мире
Преимущества искусственного интеллекта. Благодаря использованию технологий ИИ в медицине, сможет повысится эффективность оказания медицинских услуг, практически единогласно говорят участники рынка. Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. "Искусственный интеллект, даже какой-то удачный вариант его изобретения и внедрения, может повести себя неконтролируемо в чем-то. Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. "Искусственный интеллект, даже какой-то удачный вариант его изобретения и внедрения, может повести себя неконтролируемо в чем-то. Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов.
Искусственный интеллект в медицине: применение и перспективы
Если сервис выявляет патологию, то ещё помогает врачу составить маршрутизацию пациента — к каким специалистам дальше его необходимо направить. Прогноз течения заболевания. ИИ-технологии помогают врачам обнаружить неизвестные корреляции и скрытые закономерности течения заболевания путем изучения больших массивов данных, после чего подбирается индивидуальный план лечения с наиболее подходящими препаратами. Кроме того, использование ИИ позволяет выявлять людей, подверженных риску заболеваний, с более высокой вероятностью предсказывать хронические заболевания у пациентов, чтобы принимать соответствующие профилактические меры и давать рекомендации пациентам. Ещё одно преимущество — повышение эффективности управления оказанием медпомощи. Анализ исторических данных, электронных медкарт и данные о потоках пациентов позволяют предотвращать скопление заражённых и здоровых людей в помещениях или нехватку коек в стационарах. Создание цифровых двойников пациентов.
Виртуальные пациенты могут использоваться для изучения различных патологий, тестирования лекарств и методов лечения. На данный момент уже есть симуляции отдельных органов или систем, однако в ближайшей перспективе возможно создание моделей, имитирующих целые тела. Созданием цифровых двойников группы наиболее распространенных заболеваний в области кардиологии и онкологии занимаются ученые Сеченовского университета. Разработку прототипов цифровых двойников планируется завершить к 2025 году. Обучение медперсонала.
Мы разрабатываем и реализуем собственные подходы по применению ИИ в здравоохранении, с исследовательским скепсисом подходим к информации о возможностях тех или иных технологий, все проверяем и тестируем на своей базе. В последних отчетах исследовательских и консалтинговых компаний о цикле развития новейших технологий генеративный ИИ находится на пике завышенных ожиданий — о нем много говорят, с ним экспериментируют. Однако говорить о его массовом внедрении, в первую очередь в медицине, пока рано — нет ни одного готового продукта с понятным сценарием использования и доказанными эффектами для роста производительности труда или повышения качества медицинского обслуживания, диагностики или лечения. Безусловно, у технологии большой потенциал, и мы пока даже не представляем его глубину и трансформационную силу.
Предполагаю, что оценить первые результаты мы сможем в среднесрочной перспективе — на горизонте пяти лет. Но на протяжении этого времени нам, стороне заказчика и пользователя технологии, предстоит провести немало экспериментов. И возможно, не все сразу принесут желаемые результаты. Пандемия заставила рентгенологов обучаться буквально не отходя от рабочего места. Насколько они достоверны? И это, безусловно, гигантские объемы данных. Практически каждое соприкосновение жителя с системой здравоохранения оставляет цифровой след в его электронной медицинской карте. Сегодня порядка трех миллиардов цифровых записей аккумулирует электронная медицинская карта ЭМК пациента. Мониторинг полноты данных, оценка их качества, поддержание необходимого уровня «гигиены» данных — это неотъемлемая часть нашей повседневной рутины.
Но благодаря этой постоянной скрупулезной работе данные сегодня стали применимыми для машинной обработки и анализа, а также для обучения и внедрения сервисов на основе искусственного интеллекта. Мы организовали совместную с медицинским сообществом работу по разработке и поддержанию в актуальном состоянии структуры собираемых медицинских данных. Совместно мы определяем набор необходимых сведений, определяем требования к обязательности полей — стремимся собирать только востребованные данные. Эта работа позволяет нам собирать данные не «в один котел» наряду с неструктурированными данными так называемого озера данных, а в структурированном виде с формализованными значениями там, где это нужно и возможно. Это важно для синхронизации понятийного аппарата, одинаковой интерпретации сущностей в физическом и цифровом мире. При формировании нового стандарта оказания экстренной помощи на фактических данных мы увидели рассогласованность в наименованиях и емкости терминов одних и тех же лабораторных и инструментальных исследований клинический анализ крови или общий клинический анализ крови — минимальное отклонение в одно слово, а для анализа и обработки — это разные единицы данных. В результате медицинское сообщество договорилось об укрупнении синонимичных значений, о приведении множества понятий к единству. Как повлияли эти технологии на эффективность системы? ИИ уже сегодня — эффективный помощник, избавляющий врача от части рутины.
В работе функциональных диагностов взрослых поликлиник Москвы помогает автоматическая расшифровка ЭКГ с предзаполненным заключением. С сервисами записи ЕМИАС интегрирован чат-бот, который «опрашивает» пациента о жалобах на самочувствие до приема, а результаты врач увидит сразу в протоколе осмотра. Наиболее масштабный проект — применение компьютерного зрения в лучевой диагностике. Более 50 ИИ-сервисов по 29 клиническим направлениям обрабатывают в потоковом режиме медицинские снимки, оконтуривают выявленные патологии, проводят рутинные измерения, в том числе сложные, на которые у врача уходит много времени, а также готовят проект заключения.
ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных в том числе учитываются и старые диагностические карты и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу. Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней. Стоит рассказать и о новом алгоритме ИИ, который поможет диагностировать рак легких. Много лет человечество проигрывало борьбу с онкологическими заболеваниями, которые ежегодно убивают около 10 миллионов человек по всему миру. Одной из самых страшных форм онкологии является рак легких, распознавание которого на ранних стадиях и до сих пор является для ученых сложнейшей задачей. Но весьма вероятно, что справиться с этим человеку поможет искусственный интеллект. Исследователи из Бостонского университета разработали ИИ, который долгое время обучался на полноформатных фотографиях легочных тканей пациентов размеры таких изображений составляют обычно более 1 Гб, что делает их анализ человеком крайне сложным. ИИ на примере фото обучали распознавать аденокарциному легкого, плоскоклеточный рак легкого и соседнюю не раковую ткань. Результаты обучения оказались положительными: алгоритм смог продемонстрировать более высокую эффективность, чем другие современные методы распознавания патологий на полноформатных слайдах. На данный момент новый алгоритм планируется внедрить в помощь патологоанатомам, однако при успешном внедрении возможности ИИ могут быть расширены, ведь главное — научиться диагностировать опасные заболевания на самых ранних стадиях, пока сохраняются высокие шансы на полноценное излечение. Существуют и компании, специализирующиеся на разработке ИИ-продуктов для ранней диагностики различных заболеваний. Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше. Так, программное обеспечение от Ezra использует ИИ при анализе МРТ-сканов всего тела, чтобы помочь специалистам в раннем выявлении рака. Их слоган говорит сам за себя: «Мы обнаружили самую большую слабость рака — раннее обнаружение». SkinVision — компания, занимающаяся диагностикой рака кожи на основе медицинской визуализации, то есть диагностикой по фото. ИИ, разработанный командой SkinVision, позволяет обнаруживать рак кожи на ранней стадии по фотографиям, сделанным на телефон. Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так. Таким образом, пациент сможет вовремя обратиться в клинику за помощью. Медицинская визуализация на основе ИИ также широко используется для диагностики ОРВИ и выявления пациентов, которым требуется клиническая поддержка. Нейросеть научилась отличать родинки от некоторых видов рака кожи Американские ученые создали систему искусственного интеллекта, которая умеет отличать родинки от некоторых видов рака кожи лучше врачей. Работа исследователей опубликована в журнале Nature. На протяжении последних десятилетий число людей, у которых обнаруживают рак кожи, постоянно увеличивается. По данным Всемирной организации здравоохранения, раком кожи страдает каждый третий онкологический больной, а каждый пятый американец заболеет им в течение жизни. Это заболевание особенно опасно тем, что злокачественное образование легко не заметить и спутать с родинкой. При этом, если вовремя обратить внимание на опухоль, шансы на выздоровление резко увеличиваются. Пациенты, у которых находят меланому самый распространенный и злокачественный вид опухоли на ранней стадии развития, выживают в 97 процентах случаев, в то время как при поздней диагностике заболевания эта доля сокращается до 14 процентов. Основным способом первичного выявления рака кожи до сих пор остается визуальный осмотр за которым обычно следует дерматоскопия или биопсия. Чтобы помочь пациентам самостоятельно обнаружить злокачественное образование на ранней стадии, ученые из Стэнфордского университета создали систему искусственного интеллекта, которая анализирует фотографии «подозрительных» родинок. Авторы новой работы использовали сверточную нейросеть Inception v3, которая была ранее разработана компанией Google. Исследователи удалили ее верхний слой и обучили систему, изначально ориентированную на распознавание различных объектов, определять некоторые виды рака кожи — меланому и карциному. Для этого они использовали 130 тысяч фотографий более двух тысяч различных кожных заболеваний. После того, как программа научилась ставить диагноз, ее работу сравнили с работой двух ведущих дерматологов США. Анализ показал, что система не только справляется не хуже специалистов, но и превосходит их: нейросеть верно отличала родинки от злокачественной меланомы и карциномы в 72 процентах случаев, в то время как врачи успешно справились с заданием лишь в 66 процентах случаев. Дополнительная проверка нейросети, в которой принял участие уже 21 специалист, также показала, что, чувствительность и специфичность алгоритма которая отражает способность корректно определить доброкачественную и злокачественную опухоль не уступает чувствительности и специфичности дерматологов. В будущем компьютерная программа может быть адаптирована для смартфона или планшета, и позволит любому желающему пройти первичную диагностику рака кожи. Тем не менее, до этого момента системе будет необходимо пройти еще много дополнительных проверок. Так, по мнению авторов статьи, программа может плохо справляться с определением редких типов карцином и меланом, по каким-либо причинам не окрашенным в черный или коричневый цвет. Недавно американские ученые также создали алгоритм, который успешно справляется с ранней диагностикой меланомы. В ходе эксперимента система смогла правильно определить меланому в 98 процентах случаев. В то же время специфичность алгоритма оказалась не такой высокой — диагностика доброкачественных образований была проведена верно лишь в 36 процентах случаев. Применение ИИ в медицине Данные о пациентах Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза. Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Такие типы ИИ-программ могут использовать не только врачи, но и пациенты.
ИИ повышает производительность труда сотрудников. В 2023 году в нескольких исследованиях оценивалось влияние ИИ на труд, и было высказано предположение, что ИИ позволяет работникам быстрее выполнять задачи и повышать качество своей продукции. Эти исследования также продемонстрировали потенциал ИИ для преодоления разрыва в навыках между низкоквалифицированными и высококвалифицированными работниками. Благодаря искусственному интеллекту научный прогресс ускоряется еще сильнее. В 2022 году ИИ начал ускорять научные открытия. Однако в 2023 году были запущены еще более значимые приложения искусственного интеллекта, связанные с наукой, — от AlphaDev, который делает алгоритмическую сортировку более эффективной, до GNoME, который облегчает процесс обнаружения материалов. Количество нормативных актов, связанных с искусственным интеллектом, в США значительно выросло за последний год и за последние пять лет. В 2023 году было принято 25 нормативных актов, связанных с искусственным интеллектом, по сравнению с одним в 2016 году.