IBM объявила о выпуске квантового процессора Eagle с рекордным количеством кубитов (127).
Вступай в наши группы и добавляй нас в друзья :)
- Категории статьи
- Принцип работы квантового процессора в общих чертах
- Кубит. Большая российская энциклопедия
- Принцип работы квантового процессора в общих чертах
- От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
Если этому шару задать вопрос, то ответом может быть единица или ноль. Но выпадут они с разной вероятностью. Именно вероятности выпадения значений «хранятся» в суперпозиции. Рука об руку с принципом суперпозиции работает эффект квантовой зацепленности. Две взаимосвязанные квантовые частицы синхронно изменяют свое состояние, даже если между ними миллионы световых лет. Зацепленность дает возможность собирать кубиты в «наборы». Если в наборе из двух бит можно хранить одну определенную последовательность из двух значений нулей или единиц , то набор из двух кубитов содержит суперпозицию всех возможных вариантов последовательностей из двух этих значений. А это намного больший объем информации.
Как устроен квантовый компьютер: принцип работы После появления понятия квантового компьютера десятки ученых всего мира пытались создать его физическое воплощение. Главный вопрос: что может использоваться в качестве кубита? В 1994 году европейские физики Петер Цоллер и Хуан Игнасио Сирак описали схему использования специальной ионной ловушки как основы для квантового компьютера. Именно в этот момент стало ясно, что научная теория и практика встретились лицом к лицу. Физические «воплощения» кубитов — это не только ионы. В этих целях ученые пытались и пытаются использовать электроны, ядра атомов, фотоны, сверхпроводящие материалы и даже искусственные наноалмазы. Совсем недавно был разработан оптический квантовый микрочип, на основе которого теоретически может быть создан оптический компьютер, использующий манипуляцию с квантовыми состояниями света.
Две основные проблемы, которые пытаются решить конкурирующие исследовательские группы: срок жизни кубитов и их количество в системе. Вывести квантовую систему из состояния суперпозиции очень легко. Это под силу даже единственному фотону, столкнувшемуся с кубитом. Именно поэтому вопрос, можно ли назвать мозг квантовым компьютером, редко поднимался учеными — сложно вообразить себе квантовые вычисления в биологической среде. Кубиты, даже находящиеся в специально созданных условиях вакуум, охлаждение до сверхнизких температур , разрушаются за доли секунды. Присутствие рядом других кубитов дополнительно сокращает этот срок. А теперь представьте, что вам необходима работающая структура из десятков, а то и сотен таких капризных частиц.
Нетривиальная задача, не правда ли? Отдельная тема — программирование на квантовом компьютере. Программист в данном случае имеет дело с гибридным устройством. Квантовый компьютер состоит из элементов обычного и квантового типа — чтобы была возможность вводить данные и интерпретировать результаты. В итоге в одной программе комбинируются квантовый и классический коды.
А для его получения используются вот такие вот здоровые бочки.
Фактически, квантовые компьютеры — это одни из самых холодных мест во вселенной! Принцип работы квантового компьютера Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера: Для решения подобной системы нам понадобится компьютер с 3 кубитами. Помните, что классический компьютер должен был пройти все варианты один за одним? Так вот поскольку кубиты одновременно имеют состояния «1» и «0», то и пройти через все варианты он сможет, фактически одновременно! Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то!
Но что же получается? Он выдает все варианты сразу, а как получить правильный? Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам. Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть!
То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно: 1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров! Думаете, что всё это звучит слишком хорошо, чтобы быть правдой? Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка.
Проблема в том, что кубиты, в отличие от обычных битов, не определены строго. У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ.
Так, один куквинт кудит в пяти состояниях заменяет два классических двухкубитовых вентиля и один вспомогательный уровень, что было показано в работе на примере запуска квантового алгоритма Гровера для поиска по неупорядоченной базе данных. По словам заведующего лабораторией квантовых информационных технологий НИТУ МИСИС Алексея Фёдорова, куквинт хорош тем, что его состояние позволяет уменьшить количество физических носителей в виде кубитов и упростить декомпозицию многокубитных вентилей гейтов — сложных операций с кубитами. В итоге в квантовой системе можно сократить число двухчастичных гейтов, которые в работе используют две физические системы. В представленном на страницах Entropy примере специалисты показали, как можно реализовать модель декомпозиции обобщенного вентиля Тоффоли обобщенную на n-кубитов версию вентиля контролируемое НЕ.
С помощью этого алгоритма можно построить любую обратимую классическую логическую схему, например, классический процессор.
Квантовые вычисления работают на другом уровне, чем классические вычисления. Вместо того, чтобы использовать биты для представления информации, квантовые компьютеры используют кубиты, которые могут представлять как 0, так и 1 одновременно. Это позволяет квантовым компьютерам выполнять множество вычислений одновременно, что делает их экспоненциально более мощными, чем классические компьютеры. Существуют определенные проблемы, которые классические компьютеры не могут решить из-за их ограниченной вычислительной мощности. Потенциал квантовых вычислений заключается в их способности применять законы квантовой механики для решения сложных задач, на решение которых классическим компьютерам могут потребоваться годы. Эти проблемы часто сложны, с многочисленными переменными и взаимодействиями, которые затрудняют их решение с использованием классических вычислительных методов.
Квантовые компьютеры могут решать сложные задачи в области криптографии, поиска лекарств и финансового моделирования. Квантовые вычисления также обладают потенциалом произвести революцию в науке и технике. Например, квантовые вычисления можно было бы использовать для моделирования поведения молекул на квантовом уровне, что позволило бы ученым разрабатывать новые лекарства и материалы с беспрецедентной точностью. Кроме того, квантовые вычисления могут оптимизировать сложные системы, такие как транспортные сети или энергосистемы, что приводит к более эффективным и устойчивым решениям. Ожидается, что квантовые вычисления потенциально могут оказать значительное влияние на область искусственного интеллекта. Алгоритмы квантовых вычислений могли бы обучать модели машинного обучения гораздо быстрее, чем классические вычислительные методы, что позволило бы более быстрыми темпами развивать искусственный интеллект. Кроме того, квантовые вычисления могут быть использованы для оптимизации сложных нейронных сетей, что приведет к созданию более эффективных и мощных систем искусственного интеллекта.
Физик Алексей Устинов о российских кубитах и перспективах их использования
Еще одна хорошая новость — логические операции с большим массивом кубитов всегда можно представить в виде последовательности двухкубитных операций. Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение. Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света.
Как он работает?
- Что такое квантовые вычисления?
- От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
- Как работают квантовые компьютеры
- В погоне за миллионом кубитов
Квантовые компьютеры
или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. Удерживать кубиты в нужном состоянии, учитывая количество внешних факторов, крайне сложно — именно поэтому они работают при абсолютном нуле.
В Канаде создали альтернативную архитектуру кубита со встроенной защитой от ошибок вычислений
Отечественные кубиты состоят из четырех джозефсоновских контактов и выполнены методом литографии из тончайших пластин алюминия, толщиной всего 2 нанометра, которые разделены слоем диэлектрика. Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0. Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Недавно нам выпала возможность послушать как звучат кубиты в ролике о работе квантового компьютера IBM. Новый квантовый компьютер достигает когерентности кубита на заряде электрона в 0,1 миллисекунды.
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Каждые два года количество транзисторов на кристалле процессора увеличивалось в два раза: если Intel 4004, выпущенный в 1971 году, содержал 2300 транзисторов, то в 2010 году число транзисторов в процессорах превысило миллиард. Стремительный рост заметно затормозился только в 2012 году. Человечество вплотную подошло к пределу, за которым работа транзистора должна учитывать атомарность вещества и квантовые эффекты. Но квантовые эффекты несут с собой не только сложности для миниатюризации транзисторов, но и совершенно необычные и неожиданные возможности. Работа любого современного вычислительного устройства основана на обработке информации. Информация в компьютерах представляется в виде набора нулей и единиц — так называемых битов. Если, например, вы хотите сложить два числа, компьютер сначала представляет каждое из них в виде уникальной последовательности нулей и единиц, а затем пропускает через специальное устройство, которое производит операцию сложения. Если вам нужно сложить два других числа, то компьютер создаёт два новых набора битов и снова пропускает их через то же устройство. Компьютеры, которые были бы способны использовать квантовые свойства вещества, могли бы работать значительно быстрее. Дело в том, что микрообъекты, например отдельные атомы, могут находиться в особом состоянии квантовой суперпозиции, не встречающемся в нашем мире больших предметов.
При квантовой суперпозиции объект в некотором смысле находится сразу в двух состояниях. Иначе говоря, если бы атом вёл себя как обычный объект, то он мог бы находиться или в состоянии покоя, или в состоянии возбуждения например, немного колебаться. Но атом может находиться и в неком промежуточном состоянии, в котором он одновременно и покоится, и колеблется. Это состояние и называется квантовой суперпозицией состояний покоя и возбуждения. Если мы обозначим состояние покоя как 0, а состояние возбуждения — как 1, то атом в квантовой суперпозиции оказывается способным хранить сразу два значения вместо одного. А значит, если мы будем проводить с ним какие-то операции, то эти операции будут производиться одновременно и с нулём, и с единицей. Если же таких атомов много, то с ними можно за раз произвести столько однотипных вычислений, сколько требуется. За счёт этой особенности квантовые компьютеры должны намного эффективнее обычных справляться с задачами, в которых требуется перебор большого количества значений. Примером такой задачи является, например, взлом неизвестного кода.
Это позволило увеличить разрядность каждого кубита без увеличения их физического количества, что в свою очередь повысило производительность. В этом году система стала насчитывать уже 16 кубитов, и ученые обещают представить 20-кубитовый процессор уже в следующем году. Если будет использовано увеличение разрядности через кудиты, то план развития квантовых технологий в России не только будет выполнен, но может быть даже превышен. Проект запустили в 2019 году. В мире существуют квантовые компьютеры на ионах, использующие для вычислений до 32 кубитов. Также по теме.
Telegram-канал создателя Трешбокса про технологии Разработчики квантовых систем, среди которых числятся такие компании как Google и IBM, для повышения производительности квантовых систем идут самым простым путём — они увеличивают число кубитов, единицы вычисления в квантовых компьютерах. Российские учёные предложили иной подход — многоуровневые кубиты или, как их называют иначе, кудиты. Такое решение напоминает память 3D NAND — чем сложнее структура, тем больше кубитов можно разместить в одной ячейке. В разработанной в России технологии в качестве единицы квантовых вычислений выступают ионы. Они могут работать, как обычные кубиты, так и как кудиты, представляющие собой расширенную версию кубитов.
Нужно создать ИИ искусственный интеллект? Проще некуда: пока обычный ПК будет перебирать все комбинации, квантовый компьютер сработает молниеносно, выбрав лучший ответ. Казалось бы, все здорово, но есть одна важная проблема — как нам узнать результат вычислений? С обычным ПК все просто — мы можем взять и считать его, напрямую подключившись к процессору: логические 0 и 1 там совершенно определенно интерпретируются как отсутствие и наличие заряда. Но вот с кубитами такое не пройдет — ведь в каждый момент времени он находится в произвольном состоянии. И тут нам на помощь приходит квантовая запутанность. Ее суть заключается в том, что можно получить пару частиц, которые связаны друг с другом говоря научным языком — если, к примеру, проекция спина одной запутанной частицы отрицательна, то другой обязательно будет положительной. Как это выглядит на пальцах? Допустим, у нас есть две коробки, в которых лежит по бумажке. Мы разносим коробки на любое расстояние, открываем одну из них и видим, что бумажка в ней в горизонтальную полоску. Это автоматически означает, что другая бумажка будет в вертикальную полоску. Но вот проблема в том, что как только мы узнали состояние одной бумажки или частицы , квантовая система рушится — неопределенность исчезает, кубиты превращаются в обычный биты. Поэтому вычисления на квантовых компьютерах по сути одноразовы: мы создаем систему, которая состоит из запутанных частиц где находятся их вторые «половинки» мы знаем. Мы проводим вычисления, и после этого «открываем коробку с бумажкой» — узнаем состояние запутанных частиц, а значит и состояние частиц в квантовом компьютере, а значит и результат вычислений.
Почему от квантового компьютера зависит национальная безопасность и когда он появится в России
Квантовые компьютеры: как они работают — и как изменят наш мир | Подобная пространственная конфигурация, как показали последующие опыты, позволила ученым продлить типичное время работы кубитов на базе квантовых точек более чем на два порядка. |
Русский союз - Новость: Квантовый компьютер как способ движения в завтра | Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. |
Что такое квантовые вычисления?
Физически это контакты транзисторов. Так называемом кубите. Это значит, что он может быть немножечко 0, но в основном единицей. В основном 1 и немножечко 0.
Это дает нам большие возможности, мы можем закодировать больше информации в меньшем объеме». В качестве примера можно привести человека. В случае обычного компьютера он может находиться только в одной из двух точек, допустим, это Северный или Южный полюс.
В квантовом же мире с некоторой вероятностью человек может находиться в Москве, Владивостоке, на Шри-Ланке или в Дубае. Такими свойствами, расширяющими возможности, могут обладать ионы, фотоны, атомы цезия, лития или рубидия. Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «Ловим атом, каждый в специальную ловушку.
Выстраиваем эти атомы в определённом порядке это может быть такая двумерная решетка И при помощи возбуждения заставляем их взаимодействовать.
Даже малейшие возмущения могут привести к ошибкам в квантовых вычислениях, искажению данных. И хотя физически кубит может быть реализован разными способами кубиты создают с использованием специально выращенных сверхпроводниковых структур, ультрахолодных атомов и ультрахолодных ионов, с помощью оптических систем и так далее , единого ответа о наиболее перспективной реализации у исследователей пока нет — сегодня эксперименты по созданию квантовых вычислителей ведутся на основе разных технологий. И этот список регулярно обновляется.
Если обобщить на совсем базовом уровне: «столкновение» квантовой системы с реальным миром разрушает всю «квантовость», и способ поддержки этого состояния в достаточном масштабе пока не придуман. Тем более не придуман способ реализации такого квантового вычислителя, к примеру, в условиях обычной квартиры. Несмотря на текущие сложности, квантовые информационные системы имеют большой потенциал — по крайней мере в науке уже есть немало вычислительных задач, с которыми классические компьютеры справиться не могут.
Данная архитектура, безусловно, относится к наиболее развитым, но из-за малого времени жизни кубита с таким устройством задача масштабирования квантовых компьютеров со сверхпроводящей архитектурой сталкивается с большим количеством технических сложностей. Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. Кубиты данной архитектуры обладают большим временем жизни и меньше подвержены сторонним воздействиям, что потенциально упрощает масштабирование. Именно данную архитектуру используют специалисты Atom Computing в новом вычислителе.
Обратной стороной атомной архитектуры является сложность взаимодействия кубитов. Подобно тому, как любая классическая программа может быть представлена с использованием простейших логических элементов: И, ИЛИ, НЕ, квантовая программа составляется из набора элементарных квантовых гейтов, реализованных в вычислителе аппаратно. Однако для того, чтобы называться универсальным программируемым квантовым компьютером, вычислитель в этом наборе обязательно должен иметь многокубитный запутывающий гейт. Реализация этого гейта представляет для квантовых вычислителей главную инженерную задачу. Двухкубитные гейты для атомов устроены гораздо сложнее однокубитных, выполняются существенно дольше, и именно их точность, так называемая величина фиделити, определяет эффективность квантового компьютера. Нетрудно в этом убедиться, ознакомившись со свежим выпуском Nature.
Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению. Медиаконтент иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы может быть использован только с разрешения правообладателей.
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы
Будущее квантовых компьютеров: перспективы и риски // Новости НТВ | В 2013 году мы произвели первичные измерения полученных в Германии кубитов (кубит – элемент сверхпроводниковой микросхемы, сделанный из сверхпроводника – тонких пленок алюминия). |
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен | Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей. |
Физик Алексей Устинов о российских кубитах и перспективах их использования | Чаще всего в заголовки новостей попадает так называемый «сверхпроводящий» кубит. |
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
Что наиболее важно, кубит достиг времени когерентности в квантовом состоянии, конкурентоспособного с другими современными кубитами. Обычные компьютеры работают на битах, квантовые — на кубитах, то есть используют принципы элементарных частиц, которые позволяют экспоненциально наращивать вычислительную мощность. Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации. Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется. Именно необычное свойство кубита, его способность одновременно становиться и нулём, и единицей, даёт квантовому компьютеру потрясающую вычислительную мощность.