Новости наукастинг осадков на 2 часа

это cверхкраткосрочный прогноз явлений погоды в пределах 0 – 6 ч от срока наблюдения. Прогноз осадков на 2 часа (наукастинг). Сотрудники «Фобоса» предупредили россиян о мощнейшей за шесть лет вспышке на Солнце. Погода в Казахстане 16 февраля: ожидаются сильные морозы, на юго-востоке — осадки. Фобос – последние новости. Прогноз осадков на 2 часа (наукастинг). За сутки выпадет около 20,7 мл осадков.

Арбат, Москва

Но эта калибровка не может быть выполнена раз и навсегда. При следующем пролете спутника над этой территорией ее нужно произвести снова. Здесь у нас будет не менее сильная, просто одна из пионерских, работ Кстати говоря, для нашей службы очень важны всевозможные схемы интерпретации спутниковой информации. Можно получить максимально полное представление о том, что происходит на полях: засушлива почва или нет, условия вегетации соответствую норме или не совсем, находится ли растение в подавленном состоянии, ну и т.

Эти аспекты очень важны методически и в последующем для оценки урожая. Не везде ведь сейчас хватает метеостанций. Решить эту задачу, например, в рамках Российского метеорологического общества, которое планируется создать?

Для того чтобы вести наблюдения, человеку нужно получить лицензию. И все. На самом деле, я-то позитивно отношусь к людям, волонтерам, которые готовы вести наблюдения и передавать эту информацию.

Но объективно для достоверного описания состояния атмосферы есть ряд сложностей. Есть "большие данные", big data. Это очень актуальная проблема: у миллионов людей в гаджетах, есть устройства, где можно измерить температуру, давление.

С какой степенью доверия относиться к этим данным? Наши-то данные постоянно проверяются. Это большой методический вопрос, который обсуждается во всем метеорологическом мире.

Для того чтобы использовать наблюдения, нужно, чтобы они велись методически правильно. Ошибка большая в наблюдениях влечет за собой большую ошибку в прогнозе. Можно сфотографировать зарождение смерча в отдаленном районе, который не фиксировали.

Если для смерча созданы условия, значит, в атмосфере существует сильная неустойчивость. Мгновенно все метеорологи должны насторожиться. Но вдруг снимки — фейк?

У нас страна огромная. Есть регионы, где в принципе нет наблюдений — нет людей. Есть труднодоступные станции: забрасывается группа на полгода, живет там, передает информацию.

Это очень значимо. Но если наблюдения приходят от оленеводов или волонтера, работающего в золотодобывающей партии, как относиться к таким данным? С одной стороны, с благодарностью, с другой — с осторожностью.

Сейчас разрабатываются методы, как с помощью двойного, тройного контроля все-таки использовать эти данные. Да, в рамках метеорологического общества, когда оно будет создано, я думаю, это будет один из действительно очень значимых вопросов, на который сейчас нет ответа. Но общество будет, конечно, решать гораздо больше проблем.

Программа по защите от селевых потоков создаст эффективную систему мониторинга в КБР — В принципе, идея такого общества витала в воздухе уже достаточно давно. С моей точки зрения, это очень хорошая, продуктивная идея. У нас сейчас метеорологи, синоптики — специальность редкая, даже "редкостная".

Она разбросана по разным ведомствам, регионам. В общем-то, все они мало связаны.

Вверху: пример входных кадров для модели. Внизу: ожидаемые кадры во время предсказания. Здесь , а Мы предсказываем на два часа вперёд с шагом 10 минут. Это 12 кадров плюс ещё несколько про запас на случай перебоя в поставке данных с радара. Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1 , 2 , 3 , либо к нейросетевым методам 1 , 2 , 3 , 4 , 5 , 6.

Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда.

Просмотры: 36658 Youtube - Образование. Обучение - Znaika TV.

Погоды 6 лет назад. Прогноз осадков на два часа — Алексей Преображенский 5 декабря 2016 года команда Яндекс. Погоды запустила алгоритм, предсказывающий осадки на ближайшие два часа.... Просмотры: 3123 карта осадков в реальном времени карта осадков яндекс.

О погоде на 6-8 января Об особенностях погоды в регионах России в ближайшие дни рассказал Андрей Ушаков Подробнее 04. С приближением циклона с запада в пятницу пройдет небольшой снег, в субботу умеренный снег. Морозы немного ослабеют, в дальнейшем Центральный федеральный округ.

Карты погоды в Спутнике

На притоках Унжи рр. Нея, Вига и Межа продолжается снижение уровня на спаде половодья на 13-60 см. На Ветлуге у с. Кажирово продолжился рост уровня на 3 см , максимальная отметка на 1 см выше многолетней нормы. Ниже по течению р. Ветлуга у с. Михайловицы уровень снизился еще на 2 см. Продолжается медленный рост уровня воды на 2 см на р. Ветлуга у г. Шарья, а на притоках рр. Вохма и Нея — снижение уровня на 7-9 см.

Молога у пгт Максатиха д. Фабрика — глубина затопления от 15 см —8 см за сутки ; р. Макарьев — глубина затопления от 62 см —21 см за сутки ; р. Михайловицы — глубина затопления от 56 см -2 см за сутки ; р. Вохма у с. Тихон — глубина затопления от 2 см -8 см за сутки ; р. Вохма у д. Гробовщино — глубина затопления от 83 см -7 см за сутки ; р. Нея у пгт Поназырево — глубина затопления от 155 см —9 см за сутки. В ближайшие сутки продолжится снижение уровня на р.

В ближайшие 1-3 суток пик половодья пройдет на р. Кажирово и г. Шарья, освободится от воды пойма р. Тихон и р. В связи с ожидаемыми дождями возможны локальные повышения уровня на реках в центральной и восточной части Костромской области. Продолжится медленный рост уровня воды озера Селигер, сохранится опасное явление ОЯ «Высокое половодье» на оз. Сохранится затопление поймы на рр. Унжа, Ветлуга, Вохма и Нея.

Одним из способов увеличения точности прогноза, может стать прогнозирование отклонений, которые возникают в комплексных прогнозах. Одним из методов прогнозирования может быть применение различных моделей искусственных нейронных сетей. Описание метода Исходные данные представляют из себя матрицу числовых значений, которые в дальнейшем переводятся в графическое изображение при помощи специализированного ПО [1]. Для решения задачи можно обозначить две возможные архитектуры: сверточные нейронные сети [3]; многослойные персептроны [4]. Первый тип нейросетей целесообразно применять в том случае, если мы используем данные большого размера в изначальном, матричном виде, так как сверточные нейронные сети предназначены для обработки данных, имеющих топологию в виде сетки Второй тип подойдет в том случае, если мы используем данные небольшой размерности. Например, это может быть, когда размерность была сознательно уменьшена в целях облегчения данных для тестирования новых моделей и проверки гипотез. Для использования данного метода будет необходимо использовать данные в виде одномерного массива. Задача нейронной сети — спрогнозировать значения ошибок на основе входных данных радарных наблюдений. Рассмотрим применение второго типа нейронных сетей. Работа с данными В качестве исходных данных имеем следующее: Input — Объединенные поля радиолокационных наблюдений. Регион: Центральный федеральный округ.

Кроме того, кучево-дождевая облачность может развиваться весьма стремительно , что делает наблюдения по спутниковым снимкам особенно ценными. Данные радаров Карты радиолокационной отражаемости делают картину ещё более полной, поскольку с их помощью есть возможность оценить некоторые особенности внутренней структуры облачности, скрытые от любых визуальных наблюдений, а именно — интенсивность осадков, связанных с конкретной облачной структурой, и их фазовое состояние. Построение аэрологических диаграмм Для этого необходимо кликнуть ЛК мыши по интересующему Вас региону, после чего аэрологическая диаграмма сгенерируется автоматически. Имеется возможность генерировать аэрологические диаграммы на предстоящие 384 часа их построение основано на данных прогностической модели , а так же просматривать небольшой архив диаграмм за прошедшие 7 суток.

Циклон вызовет 29-30 кратковременные дожди и понизит температуру на 8-10 градусов», рассказывала главный синоптик Уральского УГМС Галина Шепоренко. Что касается детализированной сводки погоды для Челябинской области, то 27 апреля будет облачно с прояснениями, в северной половине местами пройдут небольшие дожди, днем в субботу возможны грозы. Температура воздуха предстоящей ночью плюс 4-9, при прояснении — до минус 1, днем 27 апреля — плюс 18-23. Самым жарким днем станет воскресенье.

10 самых точных сервисов прогноза погоды

Прогноз осадков на 2 часа (наукастинг). Ведущий специалист центра погоды «Фобос» Александр Синенков спрогнозировал резкие перепады температуры воздуха в ряде регионов России. Наукастинг — это сверхкраткосрочный прогноз, на 2–5 часов вперёд. И снова про наукастинг Когда мы говорим о прогнозе погоды, то чаще всего подразумеваем температуру и осадки, например, на завтра или ближайшие выходные. Сопоставление прогностических и истинных значений продолжительности осадков Заключение Предложено уравнение множественной регрессии для текущего прогноза продолжительности осадков на срок до двух часов. Продукция региональных краткосрочных прогнозов. Прогноз осадков на 2 часа (наукастинг). Наукастинг осадков на 2 часа. Радар осадков и гроз.

10 самых точных сервисов прогноза погоды

Современный метеорологический центр ежедневно готовит серию синоптических карт. Такие карты составляют основу прогнозов погоды. Задача подготовки синоптических карт на постоянной основе включает в себя сбор и анализ огромного количества данных наблюдений, полученных с множества метеорологических станций. Первую карту погоды составил французский математик, директор Парижской обсерватории Урбен Леверье 19 февраля 1855 года. Этот процесс отнял немало времени. Ее составили на основе данных, полученных по телеграфу из нескольких городов Европы. Разносторонний Леверье также известен тем, что на основании его расчетов была открыта планета Нептун. На основе тщательного изучения метеорологических карт на протяжении многих лет были сформулированы определенные эмпирические правила. Эти правила помогают метеорологам оценить скорость и направление движения погодных систем. Например, когда известен тип погоды, создаваемой вдоль фронта, а также скорость и направление движущейся бури, можно сделать довольно точный прогноз погоды для выбранной местности.

Но из-за внезапных изменений в циклонической системе эти прогнозы действительны на протяжении лишь короткого периода времени, скажем, в течение нескольких часов или дня. Прогнозирование на более длительный период уже затруднительно. Численный метод включает в себя много математики. Он также называется «гидродинамическим» и основан на построении математических моделей атмосферы и моделей взаимодействия атмосферы и океана. В нем решаются уравнения гидро- и термодинамики и используются основные физические законы. Газы атмосферы подчиняются ряду физических принципов, и если известны текущие условия атмосферы, то известные физические законы могут использоваться для прогнозирования будущей погоды. С конца 1940-х годов наблюдается устойчивый рост использования математических моделей в прогнозировании погоды. Эти процедуры стали возможны благодаря продвижению в формулировании математических моделей. Математические уравнения применяются для разработки теоретических моделей общей циркуляции атмосферы.

Они также используются для прогнозирования изменений в атмосфере с течением времени. В них учитываются параметры определенных элементов погоды, таких как воздушные течения, температура, влажность, испарение, облачность, дождь, снег и взаимодействие воздушных потоков с поверхностью суши и океанов. В разработке численного метода прогнозирования погоды решающие шаги были сделаны советским ученым, академиком А. Обуховым и американским ученым Дж. Именно они довели этот метод до практической реализации, ставшей возможной с появлением ЭВМ. Когда мы рассматриваем постоянно меняющуюся атмосферу, необходимо учитывать большое количество переменных. Это очень сложная задача. И для ее решения были подготовлены численные модели, которые игнорируют некоторые переменные в предположении, что некоторые аспекты атмосферы не изменяются со временем. Это позволяет снизить требования к производительности компьютеров, но одновременно снижается и качество прогноза.

Статистические методы используются наряду с численным прогнозом погоды. Этот метод часто дополняет численный метод. Статистические методы используют прошлые записи метеорологических данных, исходя из предположения, что в будущем погода будет повторяться. Основная цель изучения прошлых метеорологических данных — выяснить те аспекты погоды, которые являются хорошими показателями будущих событий. Но таким образом можно делать прогноз погоды с большим шагом по территории. Это особенно полезно при проектировании только одного аспекта погоды за раз. Например, это имеет большое значение для долгосрочного прогнозирования максимальной температуры в течение дня в определенном месте.

Мониторинг метеорологических условий и состояния поверхности дорог Контроль качества данных Формирование и передача сообщений в ИТС Контроль состояния поверхности дорог коэффициент сцепления Специализированный прогноз зимней скользкости на 4 часа Прием данных от прогностических центров Расчет статистических характеристик на основе архивных данных Подготовка рекомендаций по количеству внесения реагента Прием данных от прогностических центров Расчет статистических характеристик на основе архивных данных Наукастинг осадков по данным ДМРЛ на 2 часа Мониторинг состояния автомобильных дорог, рекомендации по обработке Наукастинг осадков по данным ДМРЛ на 2 часа Специализированный прогноз зимней скользкости Для специализированного прогноза зимней скользкости используются: Численная гидротермодинамическая модель пограничного слоя атмосферы Данные дорожных метеостанций.

Что нужно для прогноза осадков? Нужны данные, радарные снимки.

Нужно понимать, как в атмосфере движутся частицы, какие ветра дуют и как применять это движение к частицам. Расскажу про все три составляющих прогноза. Первое — радарные снимки. Они бывают очень разных форматов и поступают от очень разных поставщиков. Это и просто отдельные картинки в PNG, с договоренностью, что цветом с таким-то кодом обозначается такая-то интенсивность отраженного сигнала. Либо — научный формат NetCDF. Радары сильно отличаются по частоте обновления. Бывают радары, которые обновляются раз в 10 минут, раз в 15 минут. Самое ужасное, что данные с радаров — в отличие от относительно чистых данных для соревнований — содержат артефакты. Радары работают на физических принципах, на отражении волны, так что у них бывают слепые зоны.

Причем когда маленькие фрагменты зоны видимости радиально закрыты зданиями — это еще далеко не самый тяжелый случай. Бывают и сделанные людьми артефакты. Например, в период бета-тестирования мы столкнулись с человеком, который купил себе Wi-Fi-точку, неправильно настроил на ней частоту и номер канала, после чего выставил ее в окно. В результате у нас над Иваново висел огромный лазерный меч в виде облака. Мы видели его на карте и ничего не могли с ним поделать, пока не вызвали Частотнадзор. Пожалуйста, если покупаете Wi-Fi-точки где-то в Китае, настраивайте их на российские частоты. Кроме радарных данных, надо еще откуда-то взять векторное поле. Принципиально его можно взять всего из двух мест: либо проанализировав предыдущие радарные снимки и применив, скажем, алгоритмы оптического потока, либо из каких-то других источников. Например, можно воспользоваться метеомоделированием и результатом работы того же ОРФ или Метеума. Берем поле ветров и с его помощью переносим картинки, которые возвращает радар.

Оба способа получения векторных полей имеют недостатки. Оптический поток нельзя посчитать в местах, где не летит облако. Там не от чего отражаться радарному лучу, и нет никаких данных о скорости воздуха и направлении движения. Метеомоделирование может не совпадать с реальностью. Поэтому если бы мы использовали только данные метеомодели, могло бы так получиться, что в исторических данных радара облако летит в одну сторону, а потом в прогнозе ветров резко разворачивается и летит в другую сторону. Третий компонент наукастинга — алгоритм применения векторного поля. Здесь наука умеет довольно многое. Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео.

Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз.

Хотите получать уведомления от сайта «Первого канала»? Да Не сейчас 23 апреля 2024, 12:17 В китайской провинции Гуандун после нескольких дней осадков реки вышли из берегов С последствиями мощного наводнения сейчас борются на юге Китая. Вот как выглядит провинция Гуандун. Несколько дней рекордных осадков.

12 самых точных сайтов прогноза погоды

Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля. Доля точно предсказанных случаев начала дождя — это отношение количества правильно предсказанных случаев начала первого дождя на рассматриваемом окне в два часа ко всем случаям начала первого дождя на двухчасовых окнах. Прогноз осадков на 2 часа (наукастинг). «Русскую» зиму отменили синоптики из-за феномена Эль-Ниньо в сезоне-2023/24. Live wind, rain, radar or temperature maps, more than 50 weather layers, detailed forecast for your place, data from the best weather forecast models with high resolution. В задаче наукастинга осадков необходимо минимизировать отклонение спрогнозированных мм от истинного.

У вас отключён JavaScript

  • В Москве за полтора часа выпала треть месячной нормы осадков - | Новости
  • Как менялась Яндекс.Погода: от виджета до погодных карт
  • Цветные осадки: дождь с песком придет на Южный Урал
  • Карты погоды в Спутнике
  • Антициклон на Урале сменит циклон: синоптики спрогнозировали «погодный калейдоскоп»

Прогноз наукастинга для городов запустил Казгидромет

Новости от 08.04.2024 10:31. За полтора часа в центре Москвы выпала почти треть апрельской нормы осадков, заявила в беседе с РИА Новости ведущий сотрудник Гидрометцентра России Марина Макарова. У динамических факторных моде-лей есть две главные характеристики, позволившие им занять доминантное положение в практике статистического наукастинга [12]: их способность опи-сать эмпирические макроэкономические данные. наукастинг, который позволяет выпускать прогноз об опасных явлениях погоды на ближайшие несколько часов.

ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК

Наукастинг в реальной жизни — по крайней мере, в головах менеджеров — выглядит либо как уведомление человеку в виде текста или пуш-нотификации, либо как карта осадков, которая движется со временем. Опасные явления — шквалистый ветер, сильные ливневые осадки, град — живут недолго, поэтому о них часто предупреждают лишь за несколько часов до возникновения. Продукция региональных краткосрочных прогнозов. Прогноз осадков на 2 часа (наукастинг). Прогноз осадков по ЕТР на 2 часа (наукастинг). высокоточным прогнозам на несколько часов - в зоне действия девяти радаров (Кострома, Нижний Новгород, Валдай, Внуково, Воейково, Тула, Смоленск, Брянск, Курск). Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля.

Похожие новости:

Оцените статью
Добавить комментарий