«Россия продолжает шаг за шагом использовать те уникальные преимущества, которые дают нашей отрасли мощные реакторы на быстрых нейтронах. «Прорыв» относится к поколению так называемых реакторов на быстрых нейтронах, работающих по принципу замкнутого цикла, то есть без отходов. То есть в отработавшем топливе реактора на быстрых нейтронах можно добиться выхода делящегося вещества равного или большего, чем было загружено в него изначально. Фактически реактор на быстрых нейтронах превратится в «перпетуум мобиле».
«Сделали то, что не успели в СССР». В России запущен вечный ядерный реактор
Росатом начал в Северске строительство уникального энергоблока с реактором на быстрых нейтронах БРЕСТ-ОД-300. К тому же реакторы на быстрых нейтронах могут вовлекать в реакцию природный уран-238, что увеличивает общую долю топлива, которую можно «выжечь» в реакторе. «Росатом» начал возводить в Томской области уникальный реактор на быстрых нейтронах. То есть в отработавшем топливе реактора на быстрых нейтронах можно добиться выхода делящегося вещества равного или большего, чем было загружено в него изначально. Элементы многоцелевого исследовательского реактора на быстрых нейтронах (МБИР) отправлены из Волгодонска в Димитроград на место постоянной сборки.
Россия на пороге создания нового реактора на быстрых нейтронах
По мнению ученых, применение нитридов позволит удлинить топливную кампанию, то есть время работы топливной сборки, и тем самым улучшить экономические показатели эксплуатации. Новая жизнь атомной энергетики Как уже было сказано, блок с реактором БРЕСТ — компонент опытно-демонстрационного энергетического комплекса. Кроме реакторного блока в ОДЭК входит пристанционный завод, состоящий из модуля переработки облученного смешанного уран-плутониевого топлива и модуля фабрикации-рефабрикации, где будут изготавливаться тепловыделяющие элементы для БРЕСТ. На заводе планируется производить топливо, компоненты которого со временем будут извлекаться из облученного ядерного топлива ОЯТ. Благодаря переработке ОЯТ топливный цикл удастся замкнуть. Создание такого цикла на ОДЭК предусматривает включение в топливо минорных актинидов радиотоксичных трансурановых элементов, образующихся в процессе облучения для их последующей трансмутации.
Благодаря взаимодействию с быстрыми нейтронами кюрий, нептуний и америций будут превращаться в другие, менее опасные химические элементы. Первый — БН-800, в котором также используются обедненный уран и плутоний из облученного топлива. Но топливо для БН-800 производится на Горно-химическом комбинате, а в Северске оно будет изготавливаться и эксплуатироваться на одной площадке. Это важная особенность концепции проекта «Прорыв»: он нацелен на создание ядерно-энергетических комплексов, состоящих из АЭС и заводов по регенерации и рефабрикации ядерного топлива. Эти комплексы, по замыслу авторов проекта, должны быть, во-первых, безопасны настолько, чтобы исключить любые аварии, требующие эвакуации или отселения местных жителей.
Во-вторых, они должны выдерживать конкуренцию с другими видами генерации при сопоставлении их LCOE — средней расчетной себестоимости производства энергии в течение всего жизненного цикла электростанции.
Главное преимущество реактора на быстрых нейтронах состоит в том, что он позволяет превращать отработавшее ядерное топливо в новое топливо для АЭС, образуя замкнутый ядерно-топливный цикл. Таким образом, атомная энергетика будущего, в создании которой лидируют российские атомщики, не будет иметь ядерных отходов. Кроме того, реактор на быстрых нейтронах позволяет использовать уран-238, запасов которого хватит более чем на три тысячи лет. Вообще-то, Россия не является пионером в создании реакторов на быстрых нейтронах, но она стала первой, кто преуспел в этом. Первым атомным реактором на быстрых нейтронах с натриевым теплоносителем стал американский EBR I, запущенный 20 декабря 1951 года, но к электросетям он подключен не был, энергия использовалась в основном для освещения здания, в котором находился реактор. В 1965 году реактор остановили и запустили второй такой же, но в 1994 году остановили.
Владельцы АЭС США — в основном частные компании, они не видят коммерческих преимуществ в быстрых реакторах по сравнению с обычными «тепловыми». Да и тема обеспечения человечества практически вечной энергетической базой американцам не близка. Не вышло у американцев и с военным использованием натриевых быстрых реакторов. Натрий бурно реагирует с водой и горит на воздухе, что усложняет любую аварию с утечкой теплоносителя. Поэтому после трехлетней эксплуатации единственной американской подлодки с натриевым теплоносителем USS Seawolf были сделаны отрицательные выводы о применимости такого типа реакторов в подводном флоте, на самой подлодке реактор был заменен на обычный водо-водяной, и эксперименты с использованием быстрых реакторов Пентагон прекратил. Однако из-за нескольких аварий его неоднократно останавливали, запускали снова, потом снова останавливали и окончательно заглушили в феврале 2010 года, так и не выведя на проектную мощность. В Японии быстрым реакторам не повезло: в 1995 году на реакторе «Мондзю» через четыре месяца после пуска произошла крупная утечка натрия.
Эксперт отмечает, что разработчики концепции БРЕСТ предлагают новый тип топливного цикла — пристанционный, при котором переработка отработавшего ядерного топлива ОЯТ и фабрикация из него нового топлива осуществляются непосредственно на площадке АЭС. Например, так называемые миноры — нептуний, америций и кюрий, также образующиеся при работе реактора. С ними нужно что-то делать — вернуть ли их в реактор как часть топлива, дожечь ли в специализированной установке реактор или ускоритель , или, например, отдать космонавтам, чтобы они производили из них плутоний-238 для своих нужд. Постоянный адрес новости: eadaily.
Например, это случается при отсутствии напряжения питания, низким или высоким напряжением, пульсацией амплитуды, колебанием частоты, дифференциальным и синфазным шумом, переходными процессами, и т. Благодаря ИБП стабилизируется напряжение и обеспечивается гальваническая развязка выхода на критическую нагрузку. Все это позволяет решать проблемы в сети питания критической системы, которые могут вызывать повреждение программного обеспечения стать причиной неустойчивой работы оборудования.
Существуют три класса источников бесперебойного питания три типа защиты электропитания : — Off-line: обеспечивает питание в случае отсутствия напряжения, но сохраняют все помехи сети; — Line-interactive: защищают...
Реактор БН-800 проработал год на топливе из отработавшего ядерного топлива
Россия остается главным мировым поставщиком атомных технологий и топлива. Первая поставка в Китай топлива для реактора на быстрых нейтронах « Росатом » впервые отправил в Китай топливо для реактора на быстрых нейтронах, о чем госкорпорация объявила 29 сентября 2022 года. Это флагманский проект КНР в области «быстрой» атомной энергетики. Заказчику отгружены первые тепловыделяющие сборки для стартовой загрузки реактора.
Этапы освоения быстрых натриевых реакторов Работы по быстрым реакторам были начаты в Физико-энергетическом институте с создания исследовательской базы — экспериментального реактора мощностью 5 МВт БР-5, 1958 г. В нем впервые были использованы и испытаны в работе научно-технические идеи и решения, на основе которых позднее стали развиваться быстрые реакторы большей мощности. К числу таких решений относились: натриевый теплоноситель для отвода тепла от ядерного реактора, керамическое топливо в виде смеси диоксидов урана и плутония, нержавеющие стали в качестве основного материала конструкций, контактирующих с натрием. Реактор БОР-60 разработчик проекта РУ — ОКБ «Гидропресс» представлял собой следующую ступень в освоении технологии быстрых натриевых реакторов и разрабатывался с более широкими возможностями для проведения различных исследований. Реактор был введен в эксплуатацию в 1969 году и является основной экспериментальной базой натриевых реакторов по настоящее время. Африкантова, научный руководитель проектов — Физико-энергетический институт им.
БН-350: первый в мире опытно-промышленный энергетический реактор на быстрых нейтронах Опытно-промышленная АЭС с реактором на быстрых нейтронах БН-350 была построена на полуострове Мангышлак вблизи г. Шевченко в настоящее время — г. Актау, Республика Казахстан и предназначалась для выработки электроэнергии и опреснения морской воды, что требовалось для нужд промышленных предприятий и города. В период эксплуатации БН-350 это была единственная атомная опреснительная установка в мире. Начало работ над проектом — 1960 год.
ТВЭЛ отдают в воду большое количество тепла. Хранение такого топлива — настоящая проблема для большинства стран мира. Но как может отработавшее топливо заново давать свет и электроэнергию? Это позволяет получать больше тепла и электричества, расходуя меньше топлива.
Так, благодаря изменениям в конструкции главного циркуляционного насоса второго контура, системы перегрузки, переходу от секционно-модульных на крупномодульные парогенераторы, улучшениям системы аварийного отвода тепла и холодной ловушки первого контура активной зоны снизились масса и стоимостные характеристики оборудования реакторной установки. А детальная проработка схемно-компоновочных и архитектурно-строительных решений и оптимизация генерального плана привели к сокращению строительных объемов. В итоге проектные показатели капитальных затрат на сооружение и, соответственно, себестоимость производства электроэнергии снизились, обеспечена конкурентоспособность по сравнению с перспективными блоками атомной и традиционной энергетики. Благодаря физическим особенностям активной зоны быстрого реактора для топлива можно использовать плутоний различного изотопного состава — из переработанного топлива как быстрых, так и водо-водяных реакторов, и добавлять минорые актиниды для их дожигания в реакторе , нарабатывать плутоний для новых порций топлива и востребованные изотопы. Срок службы блока с БН-1200М составляет минимум 60 лет. Как отмечает Сергей Шепелев, есть потенциал для роста до 80 лет, увеличения КИУМ — с 0,9 до 0,91, назначенного срока службы парогенераторов — с 30 до 60 лет, а также для удлинения топливной кампании. В 2023 году должны быть утверждены финансовые параметры проекта и пройдены общественные слушания. Следующий шаг — одобрение Главгосэкспертизы и получение в Ростехнадзоре лицензии на размещение энергоблока. Затем — разработка проектной документации и прочих документов и еще одна Главгосэкспертиза.
Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей
«Сделали то, что не успели в СССР». В России запущен вечный ядерный реактор | Несмотря на то, что разработкой реакторов на быстрых нейтронах занимались еще в СССР, для промышленного производства МОКС-топлива пришлось построить отдельный завод. |
В Волгодонске отгрузили реактор на быстрых нейтронах | важный этап в развитии технологий реакторов на быстрых нейтронах и замыкания ядерного топливного цикла в России. |
Радиационные явления в реакторных материалах обсудили в Обнинске | Внедрение замкнутого топливного цикла осуществляется прежде всего для реакторов на быстрых нейтронах, которые по своей физике изначально более «всеядны» с точки зрения топлива и делящихся материалов. |
Россия сделала шаг к энергетике будущего
Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива | «Росатом» начал возводить в Томской области уникальный реактор на быстрых нейтронах. |
Бесконечная энергия: в России придумали способ сделать атомные электростанции «вечными» | Реактор БРЕСТ-ОД-300 работает на быстрых нейтронах, в качестве теплоносителя выступает свинец. |
АО "ТВЭЛ" представило инновационные решения для замыкания ядерного топливного цикла | К тому же реакторы на быстрых нейтронах могут вовлекать в реакцию природный уран-238, что увеличивает общую долю топлива, которую можно «выжечь» в реакторе. |
Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода
Раньше в российские реакторы на быстрых нейтронах загружали обычное урановое топливо, так как на них отрабатывали натриевые технологии. БН-1200М, как следует из названия — это модернизированный реактор на быстрых нейтронах электрической мощностью 1200 МВт. Именно этот инновационный реактор на быстрых нейтронах стал настоящей мировой сенсацией, когда первым на планете целый год вырабатывал энергию на МОКС-топливе. Кроме того, реакторы на быстрых нейтронах, работая на МОКС‑топливе, способны нарабатывать плутоний, которого хватит, чтобы обеспечить себя и при необходимости другие реакторы новым топливом. С моей точки зрения именно реактор на быстрых нейтронах это самое значимое, что создала Россия после перестройки.
Росатом получил лицензию на производство ядерного топлива для «реактора будущего»
БН-1200М, как следует из названия — это модернизированный реактор на быстрых нейтронах электрической мощностью 1200 МВт. По сути, реактор на быстрых нейтронах превратится в “перпетуум мобиле”. Россия продолжила работу с реакторами на быстрых нейтронах единственная в мире. Новый перспективный отечественный реактор БРЕСТ на быстрых нейтронах решает одновременно множество проблем.
К «Прорыву» добавляется реактор
Россия запустила модель Реактора будущего или «Секрет» поставок урана в США | Мне тут задали вопрос, на который сходу не получилось ответить, "а чем реакторы на быстрых нейтронах лучше обычных, ВВР например? |
Multi-Purpose Fast Reactor (MBIR) | Против продаж реакторов на быстрых нейтронах резко выступает США. |
Ядерный спор: Ученый и "Росатом" разошлись в вопросе о развитии отрасли | Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл, поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. |
Россия создала нейтронный «Прорыв» | «Прорыв» предусматривает создание ядерных энергетических технологий нового поколения на базе замкнутого топливного цикла с использованием реакторов на быстрых нейтронах. |
Росатом получил лицензию на производство ядерного топлива для «реактора будущего» | Этот проект нужен для отработки технологии реакторов на «быстрых» нейтронах с использованием уранплутониевого топлива. |
Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива
Такие планы можно только приветствовать, ибо севшей на «газовую иглу» России нельзя отставать от Китая, Индии, других стран в области мирного атома. Но для нормальной работы АЭС также необходимо топливо, только ядерное. Поэтому с самого начала своей деятельности в Росатоме С. Кириенко активно работает еще в одном направлении - в обеспечении ядерной энергетики природным ураном. Прошедшие годы свидетельствуют, что и здесь имеются значительные результаты. Во-первых, серьезно увеличены масштабы будущего пополнения ураном страны из-за рубежа. Это и масштабные совместные работы с Казахстаном, с которым имеется договоренность на 135 тыс. Это разведка и добыча урана в Армении, где объем залежей оценивается до 40 тыс. Имеются планы и договоренности о совместных работах по добыче урана в Африке и Канаде.
Это, наконец, поставки урана из Австралии, занимающей первое место в мире по объему запасов урана - 990 тыс. Последняя договоренность вызвала недовольство в некоторых кругах США. Объясняется все просто: это свидетельствует о разработке планов по значительному увеличению добычи урана в нашей стране. Не останавливаясь подробно на этом вопросе, отметим некоторые моменты. Во-первых, это произошедшее за последние годы многократное повышение цен на природный уран - с 6,4 долл. Как результат - пересмотрены оценочные запасы урана в России в сторону увеличения, по меньшей мере, до 600800 тыс. А согласно информации руководителя Федерального агентства по недропользованию Анатолия Ледовских, ресурсы урана «по категории Р-1 должны быть увеличены до 2020 г. И, во-вторых, увеличены планы добычи урана в республиках Бурятия и Саха Якутия , Забайкальском крае и в Курганской области.
Это значительная по объемам и очень серьезная работа всей отрасли - строителей, геологов, других специалистов. В этой связи возникает вопрос, все ли есть сегодня в России для широкого развития ядерной энергетики, для достижения объемов, намечаемых многими странами мира? Представляется, что пока еще не все! Нет достаточной четкости у авторов проекта расширения числа АЭС в России, что видно из плана создания атомных станций до 2020 г. И тем не менее из них не ясно, где намечается строительство станции «Центр» два блока по 1200 МВт или «Кола» четыре блока по 1200 МВт. Вот, например, руководитель отрасли считает, что «до 2030 г. Россия может претендовать на строительство у себя мощностей до 40 ГВт». В то же время, если строительство будет идти в соответствии с намеченной «дорожной картой», то к 2030 г.
Но это, по-видимому, мелочи по сравнению с другими более серьезными недостатками плана. Главное для реализации столь грандиозных планов - необходимое количество квалифицированных строителей и монтажников, притом значительное, а также надежно обеспеченные поставки оборудования. К сожалению, Минатом России в чрезвычайно сложные девяностые годы не досчитался в своем составе трех главных управлений строителей и монтажников. Ряд предприятий, поставлявших в отрасль механическое оборудование, были переориентированы на иные задачи, другие оказались за рубежом, например на Украине. Поэтому сегодня руководство Росатома вынуждено решать и эти задачи, поскольку без них построить станции будет сложнее и дороже. Уже сейчас отставание с окончанием стройки Ростовской АЭС на полгода из-за задержки изготовления оборудования - первая ласточка возможных трудностей в будущем. И имеющаяся договоренность с Европой по обеспечению России оборудованием для машинных залов АЭС - тоже вынужденная мера, не характерная для развитых государств мира. Отрицательно сказываются на увеличении общих затрат и такие факты, как отставание наших ядерных энергоблоков по мощности от зарубежных аналогов.
И мы верим, что госкорпорация «Росатом» справится с имеющимися сложностями. Названные выше меры, предпринимаемые в целях развития ядерной энергетики в нашей стране, - еще не весь объем необходимых работ. В России он должен быть комплексным - от добычи урана до захоронения радиоактивных отходов. Сегодня для заключительной стадии ядерной энергетики под Красноярском г. Железногорск срочно строится хранилище для отработанных твэлов. В практике ядерной энергетики всегда было три направления окончания ядерного топливного цикла. Понятно, что со временем позиции стран претерпевают изменения. Так, в США объем захоронений ОЯТ может стать столь велик, что трудно будет найти новые площадки помимо ныне строящегося хранилища в горах Юкка-Маунтин в штате Невада примерно в 145 км от Лас-Вегаса , поэтому придется принимать решение о переработке ОЯТ и т.
Наиболее перспективным направлением является, конечно, полезное использование плутония, а с ним и других накапливающихся трансурановых элементов нептуния, америция, кюрия. Оптимальным в этом направлении является также использование плутония в реакторах на быстрых нейтронах. Это позволяет производить в них и сжигание урана-238, и увеличение за этот счет сырья для ядерной энергетики на сотни и тысячи лет.
Генеральный директор «Росатома» Алексей Лихачев считает, что переработка ядерного топлива бесконечное количество раз сделает ресурсную базу атомной энергетики практически неисчерпаемой. Успешная реализация этого проекта позволит нашей стране стать первым в мире носителем атомной технологии, полностью отвечающей принципам устойчивого развития — в экологичности, доступности, надежности и эффективности использования ресурсов», — сказал Алексей Лихачев. Интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения. Ранее, к 2023 году, планируют построить комплекс по выпуску топлива, а к 2024 году — модуль переработки облученного топлива. Такие аппараты ранее не строились, то есть это принципиально новые реакторы.
В Сибири начинают строить первый в истории человечества комплекс с замкнутым ядерным топливным циклом. Российские ученые нашли способ получения бесконечной энергии. Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. БРЕСТ — это опытный образец. Его примерная стоимость — 100 миллиардов рублей, но затраты на производство энергии будут значительно ниже, чем на обычных АЭС.
Заказчику отгружены первые тепловыделяющие сборки для стартовой загрузки реактора. Топливная компания в очередной раз подтвердила, что готова реализовывать сложные проекты в нестандартных условиях, гибко подходить к требованиям наших партнеров. Это уникальная по своей сложности и инновационности задача, а топливная компания Росатома «ТВЭЛ» строго выполняет свои обязательства по поставкам серийного топлива CFR-600, заявил Григорьев. В конце 2021 года заказчику были направлены макеты сборок системы управления и защиты для испытаний имитационной зоны реактора.
Росатом получил лицензию на производство ядерного топлива для «реактора будущего»
«Прорыв» относится к поколению так называемых реакторов на быстрых нейтронах, работающих по принципу замкнутого цикла, то есть без отходов. На Белоярской АЭС после планово-предупредительного ремонта (ППР) включили в сеть энергоблок № 4 с реактором на быстрых нейтронах БН-800. — лидерство России в мире по реакторам на быстрых нейтронах с натриевым теплоносителем. Раньше в российские реакторы на быстрых нейтронах загружали обычное урановое топливо, так как на них отрабатывали натриевые технологии. Поскольку реакторы на быстрых нейтронах способны работать на плутонии и, таким образом, позволяют замкнуть ядерный топливный цикл, оптимальным топливом для таких установок является уран-плутониевая смесь.
Атомный феникс для вечного двигателя
Железногорск Красноярского края ФГУП «ГХК» состоялась приемка первых трех тепловыделяющих сборок с уран-плутониевым МОКС-топливом, которые в своей топливной композиции содержат не только плутоний, но и другие трансурановые элементы — америций-241 и нептуний-237. Опытные топливные кассеты будут загружены в реактор БН-800 на Белоярской АЭС весной 2024 года и пройдут опытно-промышленную эксплуатацию в течение трех микрокампаний ориентировочно полтора года. Минорные актиниды также называемые «младшие актиноиды» — это все остальные трансурановые элементы, помимо плутония, образующиеся в ядерном топливе в результате ядерных реакций во время эксплуатации в реакторе. Как и плутоний, эти элементы не встречаются в природе, а возникают только в результате трансмутации урана. Для атомщиков-радиохимиков особенно важны изотопы нептуния, америция и кюрия, поскольку именно они имеют наибольшее значение при переработке отработавшего ядерного топлива ОЯТ и обращении с радиоактивными отходами. Эти элементы обладают высокой радиоактивностью и токсичностью, выделяют много тепла, имеют большой период полураспада и являются наиболее опасными компонентами ядерных отходов. Российским решением проблемы минорных актинидов должны стать инновационные реакторы на быстрых нейтронах.
Российским решением проблемы минорных актинидов должны стать инновационные реакторы на быстрых нейтронах. В качестве топлива эти установки могут использовать не только обогащенный природный уран, но и вторичные продукты ядерного топливного цикла — обедненный уран и плутоний. Кроме того, расчеты показали, что минорные актиниды из ОЯТ под действием быстрых нейтронов в реакторе будут делиться на осколки, представляющие собой достаточно широкий спектр радиоактивных и стабильных изотопов, но в целом их потенциальная опасность будет гораздо ниже, чем у исходных минорных актинидов. Процесс трансмутации минорных актинидов также называют «дожиганием» в реакторе.
Внедрение МОКС-топлива позволяет многократно расширить сырьевую базу атомной энергетики за счет обедненного урана и плутония и перерабатывать облученное топливо вместо хранения. Дожигание минорных актинидов — это следующий шаг в замыкании ядерного топливного цикла, который должен не только уменьшить количество ядерных отходов, подлежащих финальной изоляции, но и значительно снизить их радиоактивность. В перспективе это дает возможность отказаться от сложного и дорогостоящего глубинного захоронения отходов», - прокомментировал старший вице-президент по научно-технической деятельности АО «ТВЭЛ» Александр Угрюмов.
Не нужно будет обеспечивать его длительное хранение с особыми условиями. Таким образом, технология, которую в СССР и России разрабатывали более 70 лет, принесет максимальную пользу и сохранит мировое лидерство нашей страны в реакторах на быстрых нейтронах. Эта задача успешно решается учеными, конструкторами и проектировщиками. А с учетом того что энергоблоки с реакторами БН совместно с выработкой электрической и тепловой энергии будут производить новое топливо и минимизировать радиоактивные отходы, их эффективность оценивается еще выше. MOX — mixed oxide — это смешанное оксидное ядерное топливо, состоящее из изотопов урана и плутония.
Основное предназначение МБИРа — в проведении массовых реакторных испытаний инновационных материалов и макетов элементов активных зон для ядерно-энергетических систем «Generation 4» или Поколения 4 , включая реакторы на быстрых нейтронах с замыканием топливного цикла и тепловые реакторы малой и средней мощности. Сегодня в России успешно работает исследовательский реактор на быстрых нейтронах с натриевым теплоносителем БОР 60, однако его возраст уже перевалил за 45 лет. Принципиальное отличие реактора МБИР от установки БОР 60 заключается в том, что первый проектируется и строится как исследовательская установка. Дизайном МБИР предусмотрено наличие трех независимых петель, которые могут использоваться для испытания различных теплоносителей газ, свинец, раствор солей и, соответственно, проведения материаловедческих исследований в данных средах. Срок ввода МБИРа в эксплуатацию в соответствии с федеральной программой — 2019 г. Мировая тенденция развития быстрых исследовательских реакторов показывает, что к 2025 г. МБИР можем стать единственной подобной установкой в мире. Максимальная плотность потока нейтронов 5. Предусматривается, что новая исследовательская ядерная установка будет иметь несколько независимых петель с автономным охлаждением, набор инструментованных ячеек в активной зоне, а также большое количество ячеек для размещения материаловедческих сборок. Технические характеристики МБИРа позволят решать широкий спектр задач, в том числе в области экспериментального обеспечения научно-исследовательских и опытно-конструкторских работ по созданию инновационных ядерно-энергетических установок нового поколения.
Росатом получил лицензию на производство ядерного топлива для «реактора будущего»
Здесь были выдвинуты и реализованы идеи создания реакторов на быстрых нейтронах и реакторов с прямым преобразованием ядерной энергии в электрическую. «Росатом» приступил к строительству в России атомного энергоблока с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300. И реактор на быстрых нейтронах немного уменьшает их количество. Научно-техническая конференция «Развитие технологии реакторов на быстрых нейтронах с натриевым теплоносителем (БН-2023)».