ПЦР (полимеразная цепная реакция) — это молекулярно-биологический метод, в основе которого лежит амплификация (то есть многократное увеличение) фрагментов ДНК в биоматериале. ПЦР диагностика является быстрым и точным методом исследования, когда невозможно вывить возбудителя другими методами. В России метод полимеразной цепной реакции был внедрен и начал использоваться в 1995 г.
Методика, преимущества и недостатки анализа
- Отечественные решения для автоматизации и цифровизации ПЦР-исследований — PCR News
- Что выявляет анализ ПЦР
- Полимеразная цепная реакция (ПЦР). Особенности
- Цепная реакция. Как работают тесты на коронавирус?
- Видео методика и принципы ПЦР (полимеразной цепной реакции) в диагностике
Принципы ПЦР-диагностики
Полимеразная цепная реакция (ПЦР) – это метод молекулярно-генетической диагностики, позволяющий обнаружить в организме человека различные инфекционные заболевания. Лучше всего комбинировать различные методы исследования – помимо определения самого возбудителя методом ПЦР необходимо оценивать и иммунный ответ организма, который определяется традиционными уже серологическими методами, например, ИФА. Методика проведения анализа с использованием метода ПЦР включает три этапа.
ПЦР-анализ: что это такое, когда он назначается и как проводится?
это метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить единственную специфическую молекулу ДНК в присутствии миллионов других молекул. Встречаемость Enterococcus spp и генов обуславливающих резистентность, при анализе методом ПЦР в реальном времени. Методика проведения анализа с использованием метода ПЦР включает три этапа. Материалом, который используется для лабораторного исследования методом ПЦР, являются различные биологические жидкости организма человека. Характеристика метода ПЦР. Исследование при помощи полимеразной цепной реакции относится к количественным анализам.
Что показывает анализ ПЦР
- ПЦР-диагностика: суть подхода
- Что такое анализ ПЦР?
- Анализ методом ПЦР. Что такое ПЦР-диагностика и для чего она используется
- Что такое ПЦР
Все под контролем! Правильный способ использования внутреннего контрольного образца (ВКО)
Согласно внесенным изменениям в санитарные правила, при контакте с зараженным коронавирусной инфекцией тест на COVID-19 методом ПЦР следует делать только при появлении симптомов. В Роспотребнадзоре разъяснили, чем отличается тестирование на коронавирус методом полимеразной цепной реакции (ПЦР) от экспресс-теста. Метод полимеразной цепной реакции (ПЦР).
ПЦР: что это такое? Диагностика инфекционных заболеваний методом полимеразной цепной реакции
Анализ — полимеразная цепная реакция имеет аббревиатуру — ПЦР. В России начали внедрять в клиническую практику ПЦР-анализы на коронавирусную инфекцию по любым доступным пробам биологических жидкостей. При диагностике туберкулёза метод ПЦР применяют в случае получения положительных резуль-татов при проведении плановых аллергических исследований в благополучных по туберкулёзу хозяй-ствах. В середине 1990-х с помощью метода ПЦР-амплификации ДНК исследовали останки царской семьи Романовых.
Достоверность метода ПЦР
Эта стадия называется плавлением денатурацией [fr] , так как разрушаются водородные связи между двумя цепями ДНК. Обычно перед первым циклом проводят длительный прогрев реакционной смеси в течение 2—5 минут для полной денатурации матрицы и праймеров. Отжиг[ править править код ] Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом. Температура отжига зависит от состава праймеров и обычно выбирается на 5 градусов меньше, чем температура плавления праймеров. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей при завышенной температуре , либо к связыванию в неверном месте и появлению неспецифических продуктов при заниженной температуре. Время стадии отжига — 30 секунд [ источник не указан 800 дней ], одновременно, за это время полимераза уже успевает синтезировать несколько сотен нуклеотидов. Элонгация[ править править код ] ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки.
Это — стадия элонгации. Температура элонгации зависит от полимеразы. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации, чтобы достроить все одноцепочечные фрагменты.
Базовые приготовления Образцы могут представлять собой любой материал, содержащий белки.
Они могут быть получены биологически, например, из прокариотических или эукариотических клеток, тканей, вирусов, проб окружающей среды или очищенных белков. Образец для анализа необязательно смешивают с химическим денатурантом, обычно SDS для белков. SDS - это анионный детергент, который денатурирует вторичные и недисульфидно-связанные третичные структуры и дополнительно придает отрицательный заряд каждому белку пропорционально его массе. Приготовление акриламидных гелей Гели обычно состоят из акриламида, бисакриламида, необязательного денатурирующего вещества SDS и буфера с отрегулированным pH. Раствор можно дегазировать под вакуумом, чтобы предотвратить образование пузырьков воздуха во время полимеризации. Источник свободных радикалов и стабилизатор, такой как персульфат аммония и TEMED, добавляются для инициирования полимеризации.
Реакция полимеризации создает гель из-за добавленного бисакриламида, который может образовывать поперечные связи между двумя молекулами полиакриламида. Гели, как правило, полимеризуются между двумя стеклянными пластинами в гелеобразователе, с гребнем, вставленным вверху для создания лунок для образца. После того, как гель полимеризован, «расческа» может быть удалена, и гель готов для электрофореза. Электрофорез В PAGE используются различные буферные системы в зависимости от природы образца и цели эксперимента. Буферы, используемые на аноде и катоде, могут быть одинаковыми или разными. Электрическое поле воздействует на гель, заставляя отрицательно заряженные белки мигрировать через гель от отрицательного электрода катода к положительному электроду аноду.
В зависимости от их размера каждая биомолекула движется по-разному через матрицу геля: маленькие молекулы легче проникают через поры в геле, в то время как более крупные имеют большую сложность. Гель обычно работает в течение нескольких часов, хотя это зависит от напряжения, приложенного к гелю; Миграция происходит быстрее при более высоких напряжениях, но эти результаты обычно менее точны, чем при более низких напряжениях. По истечении заданного времени биомолекулы мигрируют на разные расстояния в зависимости от их размера. Меньшие биомолекулы движутся дальше вниз по гелю, в то время как более крупные остаются ближе к точке происхождения. Следовательно, биомолекулы могут быть разделены примерно в соответствии с размером, который зависит в основном от молекулярной массы в денатурирующих условиях, но также зависит от конформации высшего порядка в нативных условиях. После окрашивания биомолекулы разных видов появляются в виде отдельных полос внутри геля.
Для калибровки геля и определения приблизительной молекулярной массы неизвестных биомолекул путем сравнения пройденного расстояния относительно маркера обычно используют маркеры размера молекулярной массы с известной молекулярной массой на отдельной дорожке в геле. Кроме «обычного» электрофореза в пластине из геля, в некоторых случаях используют капиллярный электрофорез, который проводят в очень тонкой трубочке, наполненной гелем обычно полиакриламидным. Разрешающая способность такого электрофореза значительно выше: с его помощью можно разделять молекулы ДНК, отличающиеся по длине всего на один нуклеотид. Об одном из важных приложений такого метода читайте в описании метода секвенирования ДНК по Сэнгеру. Элекрофорез в агарозном геле Самым популярным методом электрофореза с гелем является использование агарозного геля. Именно этот гель, как среду с определенным рН, используют в целях разделения, очищения и идентификации отдельных фрагментов ДНК.
Почему эта методика стал столь популярна в современной генетике? Гель электрофорез помогает выделить и разделить фрагменты дезоксирибонуклеиновой кислоты. За счет трений материалов, образующих гель, формируется «молекулярное сито», что помогает дифференцировать молекулы в соответствии с размером и зарядом. Скорость движения заряженных частиц ДНК через образованные поры в электрическом поле зависят от нескольких факторов: Силы образованного электрического поля; Относительной степени «боязни» воды образцов; Температурной кривой буфера и ионной силы. Рисунок 18. Электрофорез в агарозном геле с использованием бромистого этидия для визуализации результатов в ультрафиолете слева.
Вторая слева дорожка-маркер с известными длинами фрагментов. Справа - Установка для проведения электрофореза в геле. Первый, наиболее часто используемый в последнее время - добавление в гель веществ флуоресцирующих, в присутствии ДНК традиционно использовался довольно токсичный бромистый этидий; в последнее время в обиход входят более безопасные вещества. Бромистый этидий светится оранжевым светом при облучении ультрафиолетом, причем при связывании с ДНК интенсивность свечения возрастает на несколько порядков. Другой метод заключается в использовании радиоактивных изотопов, которые необходимо предварительно включить в состав анализируемой ДНК. В этом случае на гель сверху кладут фотопластинку, которая засвечивается над полосами ДНК за счет радиоактивного излучения этот метод визуализации называют авторадиографией Выявление определенной последовательности ДНК в смеси.
Саузерн блоттинг Рис. Саузерн-блоттинг от англ. Southern blot — метод, применяемый в молекулярной биологии для выявления определённой последовательности ДНК в образце. Метод Саузерн-блоттинга сочетает электрофорез в агарозном геле для фракционирования ДНК с методами переноса разделённой по длине ДНК на мембранный фильтр для гибридизации. С помощью электрофореза можно узнать размер молекул ДНК в растворе, однако он ничего не скажет о последовательности нуклеотидов в них. С помощью гибридизации ДНК можно понять, какая из полос содержит фрагмент со строго определенной последовательностью.
Сначала необходимо синтезировать ДНК-зонд, комплементарный той последовательности, которую мы ищем. Он обычно представляет собой одноцепочечную молекулу ДНК длиной 10—1000 нуклеотидов. Из-за комплементарности зонд свяжется с необходимой последовательностью, а за счет флуоресцентной метки или радиоизотопов, встроенных в зонд, результаты можно увидеть. Для этого используют процедуру, называемую Саузерн-блоттинг или перенос по Саузерну, названную по имени ученого, ее изобретшего Edwin Southern. Первоначально смесь фрагментов ДНК разделяют с помощью электрофореза. На гель сверху кладут лист нитроцеллюлозы или нейлона, и разделенные фрагменты ДНК переносятся на него за счет блоттинга: гель лежит на губке в ванночке с раствором щелочи, который просачивается через гель и нитроцеллюлозу за счет капиллярного эффекта от бумажных полотенец, сложенных сверху.
Во время просачивания щелочь вызывает денатурацию ДНК, и на поверхность пластины нитроцеллюлозы переносятся и закрепляются там уже одноцепочечные фрагменты. Лист нитроцеллюлозы аккуратно снимают с геля и обрабатывают радиоактивно меченной ДНК-пробой, специфичной к необходимой последовательности ДНК. Лист нитроцеллюлозы тщательно отмывают, чтобы на нем остались только те молекулы пробы, которые гибридизовались с ДНК на нитроцеллюлозе. После авторадиографии ДНК, с которой гибридизовался зонд, будет видна как полосы на фотопластинке рис. Схема проведения Саузерн-блоттинга Адаптация этой методики для определения специфических последовательностей РНК называется, в противоположность Саузерн-блоттингу, норзерн-блоттингом northern blotting : southern по-английски означает «южный», а northern — «северный». Денатурирующий градиентный гель-электрофорез DGGE Выше мы рассмотрели основные принципы работы гель-электрофореза.
Однако все чаще в литературе, посвященной исследованиям по секвенированию ДНК, можно встретить информацию об использовании метода ДГЭ или денатурирующего градиентного гель-электрфореза. В частности упоминается о т. Обнаружено, что определенные денатурирующие гели способны индуцировать расплавление ДНК на различных стадиях. В результате этого плавления ДНК распространяется по гелю и может быть проанализирована на отдельные компоненты, даже такие небольшие, как 200-700 пар оснований. Уникальность метода DGGE заключается в том, что по мере того, как ДНК подвергается все более экстремальным условиям денатурации, расплавленные нити полностью распадаются на отдельные нити. Процесс денатурации на денатурирующем геле очень резкий большинство фрагментов плавятся в пошаговом процессе.
Дискретные части или домены фрагмента внезапно становятся одноцепочечными в очень узком диапазоне денатурирующих условий. Это позволяет различать различия в последовательностях ДНК или мутации различных генов: различия в последовательности фрагментов одинаковой длины часто приводят к тому, что они частично плавятся в разных положениях градиента и поэтому "останавливаются" в разных положениях геля. На чем основан метод DGGE? Метод денатурирующего градиентного гель-электрофореза основан на зависимости свойств плавления или денатурации небольших двухнитевых молекул ДНК от их нуклеотидной последовательности, а точнее - от соотношения А-Т- и G-C-пар в исследуемых фрагментах. Объясняется это тем, что G-C-связь более прочна по сравнению со связью между нуклеотидами А и Т. Подобные различия в динамике плавления могут быть выявлены путем сравнения подвижности нормальных и мутантных двухнитевых фрагментов ДНК при их электрофорезе в денатурирующих условиях.
Градиент денатурации достигается разницей температур, различной концентрацией мочевины или формальдегида в гелях. При этих условиях одинаковые по величине двухнитевые молекулы ДНК, отличающиеся по нуклеотидной последовательности, денатурируют по-разному. Разработан компьютерный алгоритм, позволяющий предсказывать характер плавления в зависимости от нуклеотидной последовательности. При электрофорезе амплифицированных двухнитевых фрагментов ДНК в геле с линейно возрастающим градиентом концентраций денатурирующих агентов плавление нитей ДНК происходит в строго специфичной для данной последовательности области, эквивалентной температуре плавления, т. После начала плавления продвижение двухнитевого фрагмента ДНК в геле резко замедляется вследствие сложной пространственной конфигурации молекул, причем эта задержка будет длиться до тех пор, пока не наступит полная денатурация ДНК. В результате происходит разделение фрагментов ДНК, различающихся по нуклеотидному составу.
Клонирование ДНК Молекулярное клонирование - это совокупность экспериментальных методов в молекулярной биологии, которые используются для сборки рекомбинантных молекул ДНК и направления их репликации в организме хозяина. Использование слова клонирование относится к тому факту, что метод включает репликацию одной молекулы для получения популяции клеток с идентичными молекулами ДНК. Молекулярное клонирование обычно использует последовательности ДНК от двух различных организмов: вид, который является источником ДНК, подлежащей клонированию, и вид, который будет служить в качестве живого хозяина для репликации рекомбинантной ДНК. Мы уже знаем, каким образом можно разрезать геном на части а их сшивать с произвольными молекулами ДНК , разделять полученные фрагменты по длине и с помощью гибридизации выбрать необходимый. Теперь настало время узнать, как, скомбинировав эти методы, мы можем клонировать участок генома например, определенный ген. В геноме любой ген занимает крайне маленькую длину по сравнению со всей ДНК клетки.
Клонирование ДНК буквально означает создание большого числа копий определенного ее фрагмента. Именно за счет такой амплификации мы получаем возможность выделить участок ДНК и получить его в достаточном для изучения количестве. Каким образом разделить фрагменты ДНК по длине и идентифицировать нужный — было упрощенно рассказано выше. Теперь надо понять, каким образом можно копировать необходимый нам фрагмент. Клонирование определяется как процесс выделения заданной последовательности ДНК и получения многих её копий с использованием организмов здесь репликация. Основной подход предполагает использование бысто делящихся организмов чаще всего бактериальных клеток, обычно E.
В нашем разделе о клонировании ДНК рассмотрим клонирование с использованием клеток бактерий E. Процесс самой ПЦР полимеразной цепной реакции , как метод амплификаци нуклеиновых кислот in vitro рассмотрим отдельно Прим. Плазмида кодирует гены, регулирующие репликацию и контролирующие копийность 1—2 молекулы на клетку. Искусственные бактериальные хромосомы часто используются для секвенирования геномов организмов в различных проектах, например в проекте Геном человека. Короткий фрагмент ДНК исследуемого организма вставляется в хромосому, а затем амплифицируется и секвенируется. После этого прочитанные последовательности выравниваются in silico в результате чего получается полная последовательность генома организма.
Сейчас такой подход был вытеснен более быстрыми и менее трудоёмкими методами секвенирования, например методом дробовика или методами секвенирования нового поколения. На рисунке - этапы BAC-клонирования фрагмента ДНК с использованием вектора плазмиды , содержащего ген lac Z изображены этапы до выделения плазмид с клонированным фрагментом рис. Этапы клонирования фрагмента ДНК с ипользованием кишечной палочки и вектора, содержащего ген lac Z все этапы см. Если вектор, содержащий такой ген, ввести в клетку E. Исходные мутантные клетки, не содержащие b-галактозидазу, не способны к этому превращению. Следовательно, на среде с X-Gal исходные нерекомбинантные клетки будут давать белые колонии, а рекомбинантные клетки - голубые.
Процесс клонирования ДНК включает следующие этапы: Получение целевых фрагментов ДНК в том числе генов или их частей с помощью ферментов рестрикции ; Выбор вектора Вектор - молекула ДНК или РНК, способная переносить включенные в нее чужеродные гены в клетку, где эти молекулы реплицируются автономно или после интеграции с геномом хромосомой. Вставка фрагмента ДНК в вектор; Введение вектора в популяцию восприимчивых клеток хозяина и трансформация с помощью вектора организма хозяина то есть поглощение бактериальной клеткой молекулы ДНК из внешней среды ; Отбор успешно трансформированной клетки обычно отбор проводят по генетическим маркерам, которыми помечен вектор. Главным образом маркерами служат гены устойчивости к антибиотикам.
Образовавшийся при слиянии двух клеток гибрид наследует признаки обоих «родителей». К настоящему времени получены тысячи разнообразных МАТ, несколько тысяч гибридом, в т. Преимущества МАТ: Главная особенность МАТ — чрезвычайная моноспецифичность против одной антигенной детерминанты и абсолютная однородность. Возможность многократного получения в течение длительного времени воспроизводимость. Неограниченное количество получаемых антител. По специфичности и чувствительности МАТ достигают значений, предельных для живой природы. Отсюда возможность использования для анализа антигенов не высокой степени чистоты.
Метод ИФА находится в постоянном развитии. С одной стороны, расширяется число объектов исследования, с другой - углубляются и совершенствуются методы самого анализа. Это приводит к тому, что упрощается схема анализа, сокращается время его проведения, уменьшается расход реагентов. Идет постоянный поиск все новых и новых веществ, используемых в качестве маркеров. Все возрастающее влияние на ИФА оказывают химия высокомолекулярных соединений, клеточная и генная инженерия, под влиянием которых меняются технологии получения реагентов для ИФА. Еще одним из важнейших современных методов диагностики заболеваний внутренних органов является ДНК-диагностика методом полимеразной цепной реакции. ПЦР позволяет найти в исследуемом материале небольшой участок генетической информации, заключенный в специфической последовательности нуклеотидов ДНК любого организма среди огромного количества других участков ДНК и многократно размножить его. ПЦР — это циклический процесс, в каждом цикле которого происходит тепловая денатурация двойной цепи ДНК-мишени, последующее присоединение коротких олигонуклеотидов-праймеров и наращивание их с помощью ДНК-полимеразы путем присоединения нуклеотидов. В результате накапливается большое количество копии исходной ДНК-мишени, которые легко подаются детекции. Открытию полимеразной цепной реакции сопутствовало развитие молекулярно-биологических технологий.
Первые данные о химических своиствах ДНК появились в 1868 г. К началу 50-годов ХХ в. Основания бывают двух типов: пуриновые — аденин и гуанин и пиримидиновые — цитозин и тимин. В 1953 г. Уотсон и Ф. Крик пришли к выводу, что нативная ДНК состоит из двух комплиментарных полимерных цепей, образующих двойную спираль. Согласно модели Уотсона навитые одна на другую цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей. При этом аденин образует пару только с тимином, а гуанин — с цитозином. Каждая цепь служит матрицей при синтезе новой цепи, а последовательность в синтезируемой растущей цепи задается последовательностью комплементарных оснований цепи-матрицы. В 1955 г.
Корнберг открыл в клетках фермент, который назвал ДНК-полимеразой. Раствор, в котором происходит эта реакция, должен содержать нуклеозидтрифосфаты они используются в качестве строительных блоков. Нуклеотид, который присоединяет ДНК-полимераза, комплементарен основанию в соответствующем положении матричной цепи.
На этапе детекции результат амплификации ВКО позволяет судить о качестве результата при проведении ПЦР-анализа в целом. Хотя использование эндогенного внутреннего контроля — тоже вариант, все же лучше всего использовать экзогенный внутренний контроль — ВКО на основе РНК.
Экзогенный внутренний контроль добавляется непосредственно перед выделением РНК, проходит все стадии и, если в результате ПЦР-анализа мы видим сигнал от ВКО, это свидетельствует о том, что результат анализа можно принимать во внимание. Если же сигнала нет, то результат анализа недействителен. Современная тест-система без внутреннего контрольного образца — это абсурд. Тем не менее почти половина! Конечно, ранее в условиях внезапной пандемии и нехватки времени, это можно было оправдать.
Диагностика ВИЧ: методы и исследования
История открытия современных методов молекулярной диагностики | ПЦР, по сравнению с любым другим методом анализа, чрезвычайно чувствительная, более быстрая, менее дорогая и нетребовательная к образцам пациентов методика. |
ПЦР в режиме реального времени – новейшие технологии в диагностике инфекций | Исследования, проводимые одним из широко применяемых методов – методом, основанным на полимеразной цепной реакции (ПЦР), являются наиболее точными и достоверными. |
Насколько достоверен тест ПЦР – Частная практика | Диагностика методом полимеразной цепной реакции (ПЦР) показывает наличие половых инфекций с очень большой точностью. |
Диагностика ВИЧ: методы и исследования
Но чтобы провести саму реакцию и получить результат, нужно еще специальное оборудование. Ограничения — как на любом производстве: реагенты и материалы, производственные мощности и должная культура производства — не надо объяснять, что будет, если чихнуть в пробирку, — плюс кадры. Каких объемов реально достигнуть — зависит от того, какие мощности будут задействованы: если, например, какие-то линии, которые сейчас производят ПЦР-тесты для других инфекционных заболеваний, волевым решением перебросить на SARS-CoV-2, производство возрастет. С ИФА диагностика была бы быстрее, дешевле? Или это вообще не имеет значения? За подробностями лучше обратиться к специалистам в области молекулярной диагностики. Для ПЦР-тестов характерна высокая чувствительность. В их основе лежит амплификация нуклеиновой кислоты, то есть даже при малом количестве копий в образце можно получить хороший сигнал.
Кроме того, для разработки таких тестов нужен, по большому счету, только геном вируса или часть генома... То есть для того, чтобы начать их разработку, не нужно было никаких образцов, хватило журнальной публикации и специалистов, способных быстро разработать технологию. В том и прелесть ПЦР-теста, что для него достаточно генома вируса. Зимой, как только первый геном был опубликован, специалисты во всех странах начали заказывать синтез генетического материала nCoV-19. Зная нуклеотидную последовательность генома, в лаборатории можно получить участок этого генома и дальше экспериментировать уже с ним. В частности, проверить чувствительность и специфичность теста, используя вместо клинических образцов растворы ДНК. В январе у ученых большинства стран вообще и не было другого выхода, настоящие пациенты имелись только в Китае.
К такому методу могут быть претензии. Например, если чувствительность теста проверяется по растворам кДНК, не учитываются потери при обратной транскрипции.
Еще одним из важнейших современных методов диагностики заболеваний внутренних органов является ДНК-диагностика методом полимеразной цепной реакции. ПЦР позволяет найти в исследуемом материале небольшой участок генетической информации, заключенный в специфической последовательности нуклеотидов ДНК любого организма среди огромного количества других участков ДНК и многократно размножить его.
ПЦР — это циклический процесс, в каждом цикле которого происходит тепловая денатурация двойной цепи ДНК-мишени, последующее присоединение коротких олигонуклеотидов-праймеров и наращивание их с помощью ДНК-полимеразы путем присоединения нуклеотидов. В результате накапливается большое количество копии исходной ДНК-мишени, которые легко подаются детекции. Открытию полимеразной цепной реакции сопутствовало развитие молекулярно-биологических технологий. Первые данные о химических своиствах ДНК появились в 1868 г.
К началу 50-годов ХХ в. Основания бывают двух типов: пуриновые — аденин и гуанин и пиримидиновые — цитозин и тимин. В 1953 г. Уотсон и Ф.
Крик пришли к выводу, что нативная ДНК состоит из двух комплиментарных полимерных цепей, образующих двойную спираль. Согласно модели Уотсона навитые одна на другую цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей. При этом аденин образует пару только с тимином, а гуанин — с цитозином. Каждая цепь служит матрицей при синтезе новой цепи, а последовательность в синтезируемой растущей цепи задается последовательностью комплементарных оснований цепи-матрицы.
В 1955 г. Корнберг открыл в клетках фермент, который назвал ДНК-полимеразой. Раствор, в котором происходит эта реакция, должен содержать нуклеозидтрифосфаты они используются в качестве строительных блоков. Нуклеотид, который присоединяет ДНК-полимераза, комплементарен основанию в соответствующем положении матричной цепи.
В ходе репарации и репликации двойной спирали ДНК каждая цепь служит матрицей для синтеза другой цепи. В 1962 г. Уотсон, Ф. Крик и М.
Уилкинс получили Нобелевскую премию по физиологии и медицине за установление молекулярной структуры нуклеиновых кислот и ее роли в передаче информации в живой материи. В 1971 г. Клеппе и соавт. Однако возможность использования ПЦР в плане наработки огромного количества копий нуклеиновых кислот еще не рассматривалась.
Возможно, это было связано с техническими трудностями связанными с необходимостью трудоемкого синтеза праймеров. В 70-х годах были открыты специальные ферменты — рестрикционные эндонуклеазы, которые расщепляют ДНК в специфических точках. Исследователи получили возможность "разрезать" ДНК на более короткие и более стабильные фрагменты, которые просто идентифицировать. При этом стало проще выделять и изучать фрагменты ДНК с находящимися в них генами.
Постановить окончательный диагноз могут помочь дополнительные исследования, такие как иммуноблотинг для иммуноферментного анализа. Отличия ИФА и ПЦР диагностических методов: Иммуноферментный анализ позволяет установить лишь факт контакта организма с возбудителем инфекции. В то время как при помощи полимеразной цепной реакции возможно определить какой именно возбудитель проник в организм. Благодаря ИФА, реально подтвердить или опровергнуть факт распространенности инфекционного процесса в любом участке организма. Метод ПЦР же предназначен для обнаружения возбудителя только в исследуемом образце, то есть биологических жидкостях, фрагментах органов и тканей, которые были предоставлены для исследования. Для проведения иммуноферментного анализа пригоден абсолютно любой материал для исследования кровь, моча, слюна, частички органов и тканей. Потому как иммуноглобулины при ответе организма на проникновение возбудителя могут находиться где угодно. Для исследования путем полимеразной цепной реакции берется тот биологический материал, где предположительно может присутствовать возбудитель.
Как видно из перечисленных особенностей каждого лабораторного исследования различия между ИФА и методом ПЦР существенные. Если коротко сформулировать, то ИФА направлен на обнаружение продуктов жизнедеятельности белков-маркеров. А ПЦР нацелен на установление конкретного возбудителя, который может относиться к группе бактерий, вирусов или грибков. С той лишь целью, чтобы сразу получить полномасштабную клиническую картину о происходящих патологических процессах внутри организма пациента.
Преимуществом данного подхода является возможность совмещения детекции и количественного определения специфической последовательности ДНК в образце в реальном времени после каждого цикла амплификации. Москва, ул. Касаткина, За тел. Новгород, ул. Невзоровым д. Также менее строгие требования предъявляются к организации ПЦР-лаборатории, становятся возможны автоматическая регистрация и интерпретация полученных результатов. Применяя специфические олигонуклеотидные праймеры, варианты метода теперь используют не только в молекулярной биологии и биотехнологии, но и в медицине например, для идентификации микроба или вируса по его ДНК, для контроля излечения пациента от инфекционного заболевания, идентификации типа мутации в геномной ДНК при анализе наследственных заболеваний. Находит применение эта реакция и в криминалистике для идентификации личности по ДНК-содержащим жидкостям и тканям модификацию исходного метода криминалисты назвали в стиле своей профессии - «геномная дактилоскопия». Используется она и для установления отцовства, степени родства, популяци-онных исследований - словом, везде, где нужно установить для той или иной цели уникальную последовательность ДНК, опираясь на минимальное количество исходного ДНК-содержащего материала: капельку крови, мочи, соскоб с ткани, отдельный волос.
Что такое анализ ПЦР?
Изящность, простота исполнения, непревзойденные показатели чувствительности и специфичности принесли новому методу небывалую популярность. История открытия и разработка метода пцр Молекулярная биология началась с эры ДНК. ДНК была провозглашена "главной молекулой жизни", "нитью жизни", началом начал и основой всего живого. Белки, ранее рассматриваемые как основной компонент живых систем, теперь "увольнялись" со всех руководящих позиций и "назначались" на второстепенные роли катализаторов, обслуживающих существование ДНК. Роль другого типа нуклеиновых кислот - РНК - сводилась к функции посредников, производимых на матрицах ДНК и направляющих синтез белков. Появление ПЦР было обусловлено определенными достижениями молекулярной генетики. В 1953 г.
Эта их работа впоследствии была отмечена Нобелевской премией.
Но в целом ученые сработали очень оперативно. ПЦР полимеразная цепная реакция — это метод тестирования, который способен находить генетический материал вируса непосредственно в крови пациента, слюне или любой другой жидкости, изобретенный в 1983 году американским биохимиком Кэрри Муллисом. Он основан на многократном копировании амплификации определенных участков вирусной ДНК в лабораторных условиях. По факту, чтобы «засечь» вирус в организме, с помощью специального фермента, собирающего из нуклеотидов по образцу вирусной ДНК ее копию, ученые дублируют фрагменты генетического материала вируса, пока их число не станет настолько большим, что будет возможно зафиксировать его присутствие с помощью флуоресцентных меток. Как это работает? Затем добавляют так называемые праймеры — начальные звенья цепочки, которые необходимы для старта синтеза новой копии, и так называемую полимеразу — тот самый фермент, который и будет заниматься репликацией ДНК. РНК-праймер изображен белым прямоугольником в начале каждой из двух цепей Как правило, для лабораторной ПЦР используются ДНК-полимеразы из термофильных бактерий, поскольку в течение реакции смесь многократно охлаждают и нагревают. На последующей стадии элонгации полимераза начинает синтез на каждой из двух цепочек разделенной ДНК недостающей пары. Происходит это по принципу комплементарности: фермент присоединяет напротив каждого нуклеотида, из которых состоят ДНК, противоположный.
По завершении реакции цикл неоднократно повторяется см. Общая схема полимераной цепной реакции. Цифрами обозначены ее этапы. В случае с вирусами, содержащими не «двойную» ДНК молекулу, а «одинарную» РНК а это коронавирусы, или, например, ВИЧ , ученым приходится сначала провести обратную транскрипцию РНК с помощью фермента обратной транскриптазы, а уже потом производить амплификацию по той схеме, что была указана выше. Именно так, собственно, поступает и сам вирус, попадая в клетку, перед тем как встроить свою ДНК в человеческую и приступить к синтезу собственных белков, из которых состоит его «тело» то есть не генетического материала, а самих вирусных частиц, при ПЦР же, наоборот, копируется генетический материал, а не новые частицы вируса. Ингибиторы обратной транскриптазы — одни из самых распространенных видов лекарств от ВИЧ-инфекции. К ним относятся, например, зидовудин и ламивудин — самые первые препараты АРВТ, разработанные еще в 80-х. Производится ПЦР на специальных приборах, амплификаторах, или так называемых термоциклерах Thermal cycler.
То есть из одной нити ДНК мы получаем сотни или тысячи. Этапы проведения ПЦР исследования Забор биологического материала для исследования В качестве пробы служит различный биологический материал: кровь и ее компоненты, моча, слюна, отделяемое слизистых оболочек, спинномозговая жидкость, отделяемое раневых поверхностей, содержимое полостей тела. Все биопробы собираются одноразовыми инструментами, а набранный материал заключают в пластиковые стерильные пробирки или помещают на культуральные среды, с последующей транспортировкой в лабораторию. В забранные пробы добавляют необходимые реагенты и ставят в программируемый термостат — термоциклер амплификатор. В амплификаторе 30-50 раз повторяется цикл ПЦР, состоящий из трех этапов денатурация, отжиг и удлинение. Что это означает? Рассмотрим подробнее. При этом «затравка» для выявления, например, хламидии, работает только для хламидии и т. Таким образом, если тестируется биоматериал на наличие хламидийной инфекции, то в реакционную смесь помещается «затравка» для хламидий; если тестирование биоматериала на вирус Эпштейн-Барра, то и «затравка» для вируса Эпштейн-Барра. II этап — Объединение генетического материала возбудителя инфекции и «затравки». Этот процесс присоединения «затравки» и есть второй этап ПЦР. III этап - Копирование генетического материала возбудителя инфекции.
ПЦР «в реальном времени». Лаборатория знаний, 2009. Vysotin S. Polymerase chain reaction as a method of laboratory diagnosis of tuberculosis in HIV-infected. Gilmiyarova F. Polymerase chain reaction. Discovery history. A new stage of development. Lopukhov L. Polymerase chain reaction in clinical microbiological diagnostics. Nesterov S. Current state and prospects. New information technologies. Oradova A. Polymerase chain reaction in laboratory diagnostics. Razumovskaya I.
Улучшение качества обследования пациентов с помощью ПЦР-лаборатории
40. Исследование биоценоза урогенитального тракта у женщин методом ПЦР с детекцией результатов в режиме реального времени: Методиче-ское пособие для лаборантов / Сост. Основу процесса исследования составляет метод ПЦР в реальном времени, который зарекомендовал себя как очень быстрый и чувствительный способ, подчеркивают в Роспотребнадзоре. Методика проведения анализа с использованием метода ПЦР включает три этапа.