Новости термоядерная физика

Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF.

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

NIF — самая мощная лазерная система в мире, насчитывающая 192 лазерных пучка. Принцип работы тот же, но в LMJ 176 лазерных луча. ТОП-7 событий в области термояда в 2018 году: В марте специалисты отдела оптики низкотемпературной плазмы ФИАН представили систему контроля концентрации водяного пара в плазме, которая обеспечит безопасность водяной системы охлаждения термоядерного реактора. В апреле ученые Института ядерной физики им. Будкера представили технологию, позволяющую в реальном времени наблюдать поведение конструкционных материалов при термоядерном синтезе. В июле американская Lockheed Martin запатентовала дизайн компактного реактора CFR, прототипы которого были представлены еще в 2017 году. В августе в Оксфордском университете запущена импульсная установка FLF. В сентябре специалисты Токийского университета представили устройство для создания магнитного поля с полностью контролируемыми параметрами, причем магнитное поле экспериментально удается продержать 100 мкс — это абсолютный рекорд. В декабре исследователи из Управления по атомной энергии Великобритании сообщили о создании уникальной системы для охлаждения плазмы в токамаке охлаждение — одна из ключевых проблем в токамаках. Международный проект ИТЭР International Thermonuclear Experimental Reactor ITER — самый крупный в мире токамак, сложнейшая термоядерная экспериментальная машина, призванная продемонстрировать осуществимость технологий термоядерного синтеза и доказать, что термоядерная реакция может быть управляемой.

Идея ИТЭР состоит в том, чтобы на выходе вырабатывать в 10 раз больше энергии, чем на входе. Основан проект ИТЭР на российской концепции токамака с магнитным удержанием плазмы. Строительные работы ИТЭР официально начались в октябре 2007 года, после ратификации cоглашения о проекте всеми сторонами. Стройка развернулась в Кадараше, на юге Франции. Львиная доля вложений приходит не в денежном выражении, а в виде компонентов и оборудования для реактора. А поскольку центральная организация ИТЭР не контролирует расходы семи партнеров, определить фактическую стоимость проекта крайне сложно. Изготовление компонентов, производство оборудования и разработка диагностик для ИТЭР распределены между всеми участниками консорциума. Над дизайном основного элемента реактора, криостата, работала Индия, присоединившаяся к консорциуму в 2005 году. Основа криостата, весом 1250 тонн, будет одной из самых тяжелых одиночных нагрузок при сборке машины весом 23 тыс.

Европейский союз ответственен за вакуумную камеру, однако для оптимизации проекта и минимизации задержек часть работ была поручена Корее, которая продемонстрировала высочайший уровень собственных технологий, запустив токамак со сверхпроводящей магнитной системой KSTAR Korean Superconducting Tokamak Advanced Research , получивший первую плазму в 2008 году, и продемонстрировав рекордную 70-секундную высокопроизводительную плазму в 2016 году. Китай вместе с Россией работают над созданием сверхпроводников, первая поставка которых была осуществлена в июне 2014 года. Шесть кольцеобразных полоидальных магнитов с полевой катушкой будут окружать машину ИТЭР для формирования плазмы и обеспечения ее стабильности путем отстранения от стенок вакуумного реактора. Россия отвечает за широкий спектр электротехнических компонентов, из которых состоят коммутационные сети, блоки быстрого разряда, комплекты поставки измерительной аппаратуры. Налажено производство сборных шин и переключающих сетевых резисторов, завершается программа НИОКР для компонентов блока быстрой разгрузки. Японские инженеры и ученые также работают над магнитной системой, в частности, над дизайн-проектом катушек тороидального поля и над получением сверхпроводящих ниобий-оловянных стрендов. Получение первой плазмы на установке ИТЭР запланировано на 2025 год, выход на полную мощность — на 2035 год. Недавно о желании присоединиться к проекту заявили Австралия и Иран. Это еще одна из важнейших задач, которую должен решить ИТЭР.

Воспроизвести процессы, идущие в сердцах звезд, — непростая задача. Наиболее распространенная конструкция термоядерных реакторов — токамаков — работает за счет перегрева плазмы. Термоядерным реакторам требуются температуры во много раз выше, чем на Солнце, потому что они должны работать при гораздо более низком давлении. Разогреть плазму несложно, но пока не получается найти способ долго удержать ее, чтобы она не прожигала стенки реактора, не нарушая при этом процесс термоядерного синтеза.

Их обновленный «Глобус» стал называться «Глобусом-М2». Конечно, это меньше, чем на большом торе у европейцев, но их показатели нельзя сравнивать из-за небольших размеров нашего «Глобуса», который имеет диаметр всего 36 сантиметров диаметр JET — около 3 метров. На «Глобусе-М2» мы пытаемся проверить правильность выбора сферической формы для термоядерного реактора, понять, будет ли у него преимущество по удержанию плазмы, будет ли он превосходить классический тор по энергозатратам. Но у него будет ряд принципиальных отличий. Прежде всего из-за увеличенных размеров качественно изменятся параметры плазмы. Кроме того, будут впервые испытаны в таком масштабе сверхпроводящая магнитная система, новые системы дополнительного нагрева плазмы и многое другое.

И есть подозрение, что у них это получится быстрее, чем у международного консорциума. Кто в итоге выживет, это пока вопрос. Скорей всего, термоядерный реактор будет построен на базе классического токамака. Но для сферических токамаков может найтись своя ниша, а их коммерческое применение может начаться гораздо раньше. Гибридные технологии Как выяснилось, мало нашим физикам-ядерщикам сферической модернизации термоядерного реактора. Сейчас, по словам Минаева, в нашей стране параллельно запускается процесс разработки и создания гибридной электростанции, основанной на термоядерной и ядерной технологиях. Это позволит эффективней удерживать плазму? Мы хотим за счет термоядерных технологий решить проблему с «замыканием» ядерного топливного цикла. Представляете, мы сможем нарабатывать искусственное топливо для атомных реакторов, получать в реакторе энергию, а после дожигать отработанное топливо до безопасного состояния, чего раньше никогда не было. До сих пор мы просто захоранивали ядерные отходы, накапливая их.

В целом новая гибридная атомная станция будет значительно безопасней и экологичней. Отсутствие большого количества опасных отходов также позволит повысить экспортный потенциал нашей атомной промышленности. Развивая эту технологию, мы оставим своим потомкам более чистую планету, без залежей ядерных отходов. Мы будем использовать термоядерный реактор как мощный источник нейтронов для получения ядерного топлива. При этом параметры плазмы в таком термоядерном источнике нейтронов могут быть существенно ниже, чем в чисто термоядерном энергетическом реакторе, а размеры — существенно меньше, чем у того же ИТЕРа. Следовательно, такой реактор-источник будет значительно дешевле. Но самое главное: реализация гибридной концепции позволит существенно сократить время, требующееся для внедрения уже наработанных термоядерных технологий в коммерческий оборот. Существует еще и открытый тип реактора — зеркальные ловушки, или, образно говоря, «магнитные бутылки», имеющие на концах магнитные «пробки» или магнитные «зеркала». На концах такого реактора, возле «пробок», магнитное поле сильное, в центре — слабее. Частицы плазмы привязаны к силовым линиям магнитного поля и движутся от одной «пробки» к другой, каждый раз отражаясь от них.

Конструкция такого реактора получается более простой, а значит, дешевой и легкой в сборке.

То есть условия в центре мишени сравнимы с условиями внутри Солнца. Энергия самого лазерного луча при этом составляет около 1 МДж. Представьте теперь цепочку падающих в лазерное перекрестье шариков с компонентами термоядерного топлива фактически миниатюрных водородных микробомбочек. И, соответственно, непрерывную цепочку микровзрывов… Даже сложно вообразить, как физикам удалось достичь синхронности работы этих лазеров и идеально равномерного обжатия мишени! Совершенно справедливо администратор Нaциoнaльнoй администрации по ядерной безопасности NNSA Джилл Хруби назвала проведенный эксперимент «чудом инженерной мысли».

Но вот придумали такую схему… в СССР. Идея инерциального термоядерного синтеза была сформулирована в 1962 году академиком Николаем Геннадьевичем Басовым и тогда еще не академиком Олегом Николаевичем Крохиным. Басов выступал на сессии Академии наук СССР и определил лазерный термояд как одно из направлений управляемого термоядерного синтеза. Он даже оценил, какая мощность лазера должна быть, чтобы зажечь термоядерную реакцию в этих условиях. Как раз 13 декабря, за день до 100-летнего юбилея Николая Басова, на заседании Президиума Российской академии наук, посвященном этой дате, академик, заместитель директора Российского федерального ядерного центра «ВНИИЭФ» по лазерно-физическому направлению Сергей Гаранин подчеркнул: «Фактически достигнуто зажигание термоядерного горючего. Эти результаты достигнутые на NIF.

Михаил Мишустин 18 мая 2021 года принял участие в церемонии физического пуска установки управляемого термоядерного синтеза токамак Т-15МД в Курчатовском институте. Впрочем, не надо переоценивать его немедленную практическую значимость. От этого результата до электростанций, работающих на реакциях термоядерного синтеза, — дистанция огромного размера». Вот и директор LLNL Ким Будил считает, что еще предстоит преодолеть «значительные препятствия» в отношении технологии термоядерного синтеза, прежде чем ее можно будет использовать в глобальных масштабах — или для начала в любом масштабе, если уж на то пошло. Такой процесс может занять годы или даже еще несколько десятилетий. Прежде всего NIF — это неимоверной сложности установка.

Например, накопители конденсаторы для питания лазеров — это целое футбольное поле. Во-вторых, сейчас уже вполне отработана технология реакторов на быстрых нейтронах. Уран, который эти реакторы позволяют вовлечь в ядерно-топливный цикл, дешевый, его много. В общем, физика процесса — интересная: исследование свойств веществ при сверхвысоких давлениях и сверхвысоких температурах. Пусть занимаются.

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и.
Эра термоядерного синтеза Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии.
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии.

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Американцы совершили прорыв в изучении термоядерной энергии. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза.

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». Российские учёные разработали новый материал для термоядерного реактора.

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад. Что же касается той новости, которую вы пересказываете сейчас, то это типичная армия Венка, которая вот-вот придет и спасет Берлин;.

Заражение может распространиться по всей Земле и выпасть осадками в другом регионе, стране — это негативные последствия, которые возможны повсеместно. А катастрофические — локальны, — ответили на запрос корреспондента NGS. RU в институте. От такого взрыва могут погибнуть миллионы людей. Просчитать точно все последствия просто невозможно. Но вопрос об угрозе ядерной зимы всё же остается открытым. Электронику отрубит, а вот со спутниками — вопрос У любого взрыва есть свой радиус. RU Вероятность выхода из строя электроприборов после термоядерного взрыва очень высока, так как даже большая вспышка на солнце может оставить людей без гаджетов и электричества. Всё вырубилось вообще из-за сильной вспышки на Солнце.

Но опять же это локальные вещи, — отметил физик. И это всё равно что подключить неожиданно к проводу колоссальный источник с огромным напряжением, на которое вся система не рассчитана. И всё это просто вырубается, если не сгорает. Все чипы могут сгореть навсегда. Но есть важное уточнение — влияние на весь мир, а тем более на спутники, термоядерный взрыв над Сибирью не окажет. Валерий Христофоров в свою очередь добавил, что страшно представить, что может сделать взрыв с людьми, а не только гаджетами. Выпадения радиоактивных осадков избежать точно не получится. Никто не может и гарантировать, что они выпадут над Сибирью, а не переместятся, например, в Москву, где живет и не дает своим детям гаджеты, а еще записывает эфиры Маргарита Симоньян. Кто-то сгорел мгновенно — полностью превратились в атомы, только тень осталась на мосту, кто-то позже умер в муках, — объяснил ученый. Думаете, в этот раз по-другому будет?

RU поговорил с географом, геофизиком и политологом о том, можно ли назвать Новосибирск самым безопасным местом из-за его места расположения. Читайте, что об этом думают ученые.

За одну реакцию термоядерного синтеза длительностью 5 секунд было получено 69 МДж энергии. Этого достаточно, чтобы на несколько минут обеспечить питанием обычный дом или вскипятить чайник примерно 70 раз. По данным Space. Это крупнейший в мире действующий экспериментальный термоядерный реактор.

Когда установки были запущены, почти у всех трех была выявлена одна общая проблема — плохо удерживались заряженные частицы с большой энергией.

Для исправления ситуации требовалось увеличить магнитное поле. В итоге все три «ушли» на модернизацию до 2016—2017 годов. Однако после перерыва, в 2018 году, запустить свой токамак удалось только ученым из Санкт-Петербурга. Их обновленный «Глобус» стал называться «Глобусом-М2». Конечно, это меньше, чем на большом торе у европейцев, но их показатели нельзя сравнивать из-за небольших размеров нашего «Глобуса», который имеет диаметр всего 36 сантиметров диаметр JET — около 3 метров. На «Глобусе-М2» мы пытаемся проверить правильность выбора сферической формы для термоядерного реактора, понять, будет ли у него преимущество по удержанию плазмы, будет ли он превосходить классический тор по энергозатратам. Но у него будет ряд принципиальных отличий. Прежде всего из-за увеличенных размеров качественно изменятся параметры плазмы.

Кроме того, будут впервые испытаны в таком масштабе сверхпроводящая магнитная система, новые системы дополнительного нагрева плазмы и многое другое. И есть подозрение, что у них это получится быстрее, чем у международного консорциума. Кто в итоге выживет, это пока вопрос. Скорей всего, термоядерный реактор будет построен на базе классического токамака. Но для сферических токамаков может найтись своя ниша, а их коммерческое применение может начаться гораздо раньше. Гибридные технологии Как выяснилось, мало нашим физикам-ядерщикам сферической модернизации термоядерного реактора. Сейчас, по словам Минаева, в нашей стране параллельно запускается процесс разработки и создания гибридной электростанции, основанной на термоядерной и ядерной технологиях. Это позволит эффективней удерживать плазму?

Мы хотим за счет термоядерных технологий решить проблему с «замыканием» ядерного топливного цикла. Представляете, мы сможем нарабатывать искусственное топливо для атомных реакторов, получать в реакторе энергию, а после дожигать отработанное топливо до безопасного состояния, чего раньше никогда не было. До сих пор мы просто захоранивали ядерные отходы, накапливая их. В целом новая гибридная атомная станция будет значительно безопасней и экологичней. Отсутствие большого количества опасных отходов также позволит повысить экспортный потенциал нашей атомной промышленности. Развивая эту технологию, мы оставим своим потомкам более чистую планету, без залежей ядерных отходов. Мы будем использовать термоядерный реактор как мощный источник нейтронов для получения ядерного топлива. При этом параметры плазмы в таком термоядерном источнике нейтронов могут быть существенно ниже, чем в чисто термоядерном энергетическом реакторе, а размеры — существенно меньше, чем у того же ИТЕРа.

Следовательно, такой реактор-источник будет значительно дешевле. Но самое главное: реализация гибридной концепции позволит существенно сократить время, требующееся для внедрения уже наработанных термоядерных технологий в коммерческий оборот.

Американские физики повторно добились термоядерного зажигания

Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF). Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке». Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции.

Академик В.П. Смирнов: термояд — голубая мечта человечества

Там в феврале 1944 года с Фуксом была установлена новая связь через связника Гарри Голда, коммуниста из семьи украинских евреев, которому Клаус передавал важную информацию, касающуюся своей части исследовательской работы по «Манхэттенскому проекту». Однако во второй половине 1944 года связь оказалась прервана: Фукс был переведён в Лос-Аламосскую лабораторию со строжайшими мерами секретности. Там он работал в группе Ганса Бете и добился выдающихся научных результатов. Восстановить связь советской разведке удалось только в январе 1945 года, до конца года состоялись три встречи, на которых Фукс передал исключительно важную информацию как о ходе работ, так и о первом испытании атомной бомбы, в котором он лично участвовал. Читайте также В Суоми решили исключить из истории Ленина, чтобы снова стать чьим-то областным центром? Финляндия тонко намекает, что может вновь стать частью Российской Империи В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини. В июле 1946 года с другими британскими участниками проекта вернулся в Великобританию, где стал начальником отдела теоретической физики Научно-исследовательского атомного центра в Харуэлле. С 1947 года связь с Фуксом вёл заместитель резидента по технической разведке А. Феклисов, которому Фукс передал информацию о производстве плутония в США, о реакторах британского атомного центра в Уиндскейле, принципиальную схему водородной бомбы, результаты испытаний ураново-плутониевой бомбы на атолле Эниветок, данные о британо-американском атомном сотрудничестве и многое другое. Между тем над головой Клауса начали сгущаться тучи. Среди выданных Гузенко оказался и британский физик-ядерщик Алан Мэй.

Он был арестован в марте 1946 года, а уже 1 мая того же года приговорён к 10 годам каторжных работ. Предъявить что-либо конкретное Фуксу британская контрразведка не могла, но за ним была установлена открытая слежка. Фукса допрашивал лучший британский следователь из МИ-5 — Скардон, тот самый, который пытался расколоть и некоторых членов Кембриджской пятёрки. Но и он уже было решил отказаться от бесполезных допросов Клауса Фукса. И тут совершенно неожиданно Фукс сломался. Читайте также 89 — много.

Когда вы сюда пришли, все здесь только разворачивалось. Вы участвовали в создании установки «Ангара 5-1», на фоне которой мы сейчас разговариваем. Расскажите, пожалуйста, для чего создавался этот институт, какие цели и задачи перед ним ставились? Здесь была создана магнитная лаборатория, задача которой состояла в проведении исследований, связанных с размагничиванием военных кораблей. За работой этой лаборатории наблюдал будущий директор Института атомной энергии им. А потом эта лаборатория трансформировалась в филиал Курчатовского института. Этот филиал возглавлял академик М. Миллионщиков, к которому пришел работать Е. Это ученый мирового уровня с очень широким диапазоном интересов. Но главная его активность состояла в развитии термоядерных исследований в нашей стране. Первые работы института были связаны с низкотемпературной плазмой. Были выполнены замечательные исследования по лазерной физике, по созданию мощных газоразрядных лазеров. Эта работа продолжается до сих пор. Поскольку было необходимо создать площадку для крупномасштабных плазменных работ в области термоядерных исследований, здесь было решено создать два крупных комплекса. Один — «Ангара-5-1», а другой — токамак с сильным полем ТСП. Комплекс ТСП еще больше, он просто громаден, занимает целое здание в семь этажей. К нему примыкают четыре здания с ударными генераторами с общим энергозапасом в 4 ГДж. Строительство таких огромных комплексов, таких термоядерных устройств было начато в 1978 г. В настоящее время этот институт, переживший переименование из Филиала Института атомной энергии им. Исследования по управляемому термоядерному синтезу первоначально начались в середине 50-х гг. У нас же первый термоядерный проект был запущен в начале 1970-х гг. Куртмуллаев, и у него была очень интересная идея магнитной ловушки. Она была пионерской, лучшей по тем временам, но не смогла стать кардинальным решением термоядерных проблем. Самое интересное, что в настоящее время эта часть работы остановлена, а в США с использованием той физики, которая здесь была наработана, строится термоядерная установка, в которой обещают получать энергию синтеза в безнейтронном цикле. Это реакция «протон — бор-11». Это была трудная работа? Надо сказать, что одновременно с большим токамаком, который здесь строился, был привезен из Курчатовского института небольшой токамак. И на этом токамаке начались и идут по сей день очень важные исследования и по физике, и по технологиям. В термояде существуют два направления. Одно из них, называемое магнитным удержанием, связано с созданием реактора, в котором в плазме, удерживаемой магнитным полем, постоянно выделяется энергия синтеза, как в непрерывно работающей топке. А второе направление — так называемое инерционное удержание, которое предполагает организацию повторяемых взрывов небольшой порции смеси дейтерия и трития и высвобождение энергии. И если вы делаете такие последовательные взрывы, то это подобно двигателю внутреннего сгорания. Сегодня, спустя очень большое время, по мере развития работ по термоядерной энергетике абсолютное первенство принадлежит системам с магнитным удержанием. В первую очередь это токамаки, изобретенные в Курчатовском институте. Другие магнитные ловушки бесконечно отстали. Системы с инерционным удержанием, может быть, в будущем найдут применение в энергетических реакторах. Но на основе сегодняшних знаний очевидно: энергия взрыва мишени настолько велика, что ее будет трудно удержать в камере разумных размеров. Кроме того, сами средства, способные инициировать этот взрыв, очень большие. Это прежде всего лазеры, в которых мы преуспели. На них трудилась и трудится замечательная команда, созданная под руководством М. Пергамента и Н. Другое направление в инерционном удержании — использование мощных электрофизических генераторов для инициации взрыва термоядерной мишени. Помимо исследований в интересах идеи импульсно-периодического термоядерного реактора, электрофизические установки могут создавать сверхмощные пучки заряженных частиц — электронов или ионов, токи с величиной в десятки мегаампер. С их помощью изучают физику высоких плотностей энергии.

Один из них — управляемый термоядерный синтез. Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи. Он взял интервью у ряда экспертов, чтобы узнать, способны ли термоядерные реакции обеспечить электроэнергией весь мир. Большинство исследований в этой области сосредоточено на другом подходе — так называемом синтезе с магнитным удержанием. При нем водородное топливо удерживается на месте мощными магнитами и нагревается настолько, что атомные ядра сливаются. Исторически эти исследования вели крупные государственные лаборатории формата ДЖЭТа или Объединенного европейского токамака в Оксфорде, но в последние годы инвестиции хлынули и в частные компании, которые сулят выработать термоядерную энергию уже в 2030-х. По данным Ассоциации термоядерного синтеза, за год до конца июня компании из этой области привлекли 2,83 миллиарда долларов инвестиций, в результате чего общий объем инвестиций частного сектора на сегодняшний день достиг почти 4,9 миллиарда. Николас Хоукер, исполнительный директор стартапа First Light Fusion из Оксфорда, чей подход аналогичен Ливерморской национальной лаборатории, назвал это событие прорывным. Статья написана при участии Дэвида Шеппарда и Дерека Брауэра.

Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Стартап Helion Energy планирует запустить энергоэффективную установку термоядерного синтеза в 2024 году. Владимир Губайловский Схема установки Trenta. Helion energy Самый экологичный способ получения ядерной энергии — это термоядерный синтез. Но он начинается при температуре и давлении, примерно таких, как в недрах Солнца. Создать такие условия на Земле совсем непросто, но есть надежда, что все получится Самый знаменитый проект получения термоядерной энергии — это международный проект ИТЭР. Россия принимает в нем самое активное участие. Это — огромная установка, чья стоимость сегодня оценивается в 22 млрд евро. Чтобы запустить процесс на ИТЭР, плазму надо разогреть в токамаке — огромной полой баранке, где высокотемпературную плазму «держат на весу» мощные сверхпроводящие магниты. Это позволит проводить первые операции по разогреву плазмы. В 2035 году реактор должен выйти на полную мощность и будет производить больше энергии, чем потребляет.

Похожие новости:

Оцените статью
Добавить комментарий