Российские учёные и инженеры успешно установили связь с микроспутником «Импульс-1», который был разработан для изучения Солнца и проверки лазерной спутниковой связи. Выставка «Связь» проходит с 23 по 26 апреля в Центральном выставочном комплексе «Экспоцентр» в Москве. Высокоскоростная лазерная связь обеспечивает передачу информации с пропускной способностью от 34 до 155 Мбит/с. С помощью лазера они смогли установить связь с «Психеей», которая сейчас находится в 16 миллионах километрах от Земли.
Лазерной связью в России будет заниматься «Роскосмос»
НАСА протестировало лазерную связь в космосе на расстоянии свыше 16 000 000 км | Опыт по созданию терминалов лазерной связи АО «НПК «СПП» и результаты космического эксперимента «Система лазерной связи» (КЭ СЛС) могут быть использованы для дальнейших. |
Лазерные системы связи | На прошедшей на этой неделе в Брюсселе конференции SITA IT SUMMIT была представлен проект системы связи в небе при помощи прорывной лазерной технологии. |
Airbus внедрит высокоскоростную лазерную связь
Тогда свет прошел расстояние почти в 16 млн км. Затем «Психее» был отправлен обратный сигнал. Тогда на Землю, которая находилась в 31 млн км, было отправлено 15-секундное видео в сверхвысоком разрешении, рассказывает сайт NASA. Теперь аппарат отдалился от дома еще больше, и скорость передачи данных упала. Когда 8 апреля он снова связался с Землей, это произошло уже на расстоянии 226 млн км. Система лазерной связи подключилась к радиопередачику «Психеи», а затем отослала копию инженерных данных по световому лучу.
Кроме того, фотонам потребуется больше времени для достижения пункта назначения, создавая задержку более 20 минут. К тому времени, как данные достигнут Земли, наземному контролю придётся корректировать новое положение космического аппарата. Тест был первым, который полностью включал наземные станции и передающее устройство, требуя от команд DSOC и Psyche работать вместе. Это было сложное испытание, и нам предстоит ещё много работы, но на короткое время нам удалось передать, принять и декодировать некоторые данные.
После выполнения первого теста команда теперь будет работать над совершенствованием систем, контролирующих направление лазера на борту трансивера.
SpaceX испытала на орбите два спутника Starlink, оснащенных такими межспутниковыми лазерными связями - об этом сообщили во время стрима по запуску очередной партии Starlink. Она добавила, что, как только SpaceX будет иметь межспутниковую лазерную связь, работающую последовательно по всей сети, "Starlink станет одним из самых быстрых вариантов передачи данных по всему миру.
К ним относятся высокоскоростные оптические модемы, разработанные для оптоволоконных телекоммуникаций, и высокоскоростные хранилища большого объёма для хранения данных. Так, компоненты лазера не были предназначены для работы в суровых условиях космоса. Во время теплового испытания, имитирующего экстремальные температуры, расплавились волокна в усилителе оптического сигнала. Чтобы решить эту проблему, исследователи работали с поставщиком усилителя. Устройство модифицировали так, чтобы оно выделяло тепло за счёт проводимости. Кроме того, лазерные лучи могут искажаться из-за атмосферных воздействий и погодных условий.
Это может привести к потере мощности и, в свою очередь, к потере данных. Чтобы решить проблему, учёные разработали собственную версию автоматического повторного запроса ARQ — протокола для контроля ошибок при передаче данных по каналу связи.
Лазерный интернет: как оптическая связь изменит всю авиацию
Основным преимуществом использования лазерной связи по сравнению с радиоволнами является увеличенная полоса пропускания. При помощи инфракрасной лазерной системы можно реализовать связь с орбитой и космосом нового качественного уровня. Как заявил глава «Роскосмоса» Рогозин, в рамках проекта «Сфера» госкорпорация будет заниматься лазерной связью.
Лазерная связь заработает в России
Лазерной связью в России будет заниматься «Роскосмос» | Летный лазерный приемопередатчик для демонстрации технологии оптической связи в глубоком космосе (DSOC) в JPL в апреле 2021 года. |
Луч на Землю: В NASA сообщили о получении лазерного сигнала из космоса | Основным преимуществом использования лазерной связи по сравнению с радиоволнами является увеличенная полоса пропускания. |
Земля впервые получила лазерный сигнал с расстояния 16 миллионов километров
Основным преимуществом использования лазерной связи по сравнению с радиоволнами является увеличенная полоса пропускания. быстро и качественно, надежно и эффективно решает проблему ближней связи между двумя зданиями, находящимися на расстоянии до 1200 м и в прямой видимости. Беспроводные терминалы лазерной связи могут обеспечить надежную связь между научными группами, базовыми лагерями и исследовательскими станциями, преодолевая преграды и. В NASA пояснили, что новая система лазерной связи предназначена для передачи данных из глубокого космоса. В NASA пояснили, что новая система лазерной связи предназначена для передачи данных из глубокого космоса.
Лазерной связью в России будет заниматься «Роскосмос»
Луч на Землю: В NASA сообщили о получении лазерного сигнала из космоса | Лазерная система связи SpaceX Starlink передаёт 42 млн гигабайт данных в день. |
Лазерная связь - еще один способ беспроводной связи | «Роскосмос» планирует заняться лазерной связью на околоземной орбите. |
Лазерный интернет: как оптическая связь изменит всю авиацию — | Лазерная связь между спутниками связи на орбите предоставит возможность абонентам на Земле обмениваться данными с малыми задержками, что позволит пассажирам самолётов. |
NASA установило новый рекорд лазерной связи в космосе - 226 млн км | NASA передало информацию к зонду Psyche, который отправляется к астероиду Психея, с помощью лазерной системы связи. |
Что за эксперимент с космической лазерной связью задумали в России? | SpaceLink планирует провести демонстрацию ретрансляции данных в 2024 году после тестирования на орбите своих спутников связи. |
Российские разработчики представили проект лазерной связи в космосе
Новые лазерные системы связи могут обеспечить быструю передачу огромных объемов данных с Луны. быстро и качественно, надежно и эффективно решает проблему ближней связи между двумя зданиями, находящимися на расстоянии до 1200 м и в прямой видимости. Как объяснили ученые, современные системы подводной лазерной связи имеют высокую стоимость и способны поддерживать широкий канал связи только на небольших дистанциях. Системы лазерной связи легче, гибче и безопаснее радиочастотных систем, при этом могут использоваться совместно с ними. Эксперимент НАСА "Оптическая связь в глубоком космосе" (DSOC) призван проложить путь к использованию лазерной связи для передачи данных из глубокого космоса.
Лазерная связь заработает в России
Кен Эндрюс, руководитель летных операций по проекту в JPL, пояснил: "Это была передача небольшого количества данных за короткий промежуток времени, но тот факт, что мы делаем это сейчас, превзошел все наши ожидания". Недавно JPL провела эксперимент по использованию Паломарской обсерватории, экспериментальной оптической радиочастотной антенны в комплексе глубокой космической связи DSN в Голдстоу, Калифорния, и детектора на горе Столовая для одновременного приема одного и того же сигнала. Организация нескольких станций на Земле, имитирующих большой приемник, может помочь усилить сигнал из дальнего космоса. Эта стратегия также может быть полезна, если одна из станций не работает из-за неблагоприятных погодных условий, поскольку другие станции все равно могут принимать сигнал.
Имея больше данных, исследователи могут делать важные открытия. Лазерная связь значительно увеличивает возможности передачи данных, предлагая более высокие скорости передачи данных и больше информации, упакованной в одну передачу. Добавление лазерной связи к космическим кораблям похоже на переход от коммутируемого доступа к высокоскоростному Интернету.
Серия PTD использует обычный коммерческий космический корабль, чтобы обеспечить надежную платформу для эффективного тестирования технологий с минимальным изменением конструкции между запусками. Исторически сложилось так, что для большинства новых миссий космических аппаратов требовались специальные конструкции космических аппаратов, основанные на требованиях к их полезной нагрузке.
При демонстрации необходимо учесть время, необходимое для прохождения света от космического аппарата до Земли: на самом дальнем расстоянии от нашей планеты фотоны ближнего инфракрасного диапазона, излучаемые DSOC, пройдут обратный путь примерно за 20 минут во время испытаний 14 ноября путь от «Психеи» до Земли занял около 50 секунд. За это время и космический аппарат, и планета переместятся, поэтому лазеры восходящей и нисходящей линии связи должны будут подстроиться под изменение положения. Кроме того, мы смогли отправить некоторые данные, то есть обменяться «битами света» из космоса и в космос». Москва, Большой Саввинский пер. II; Адрес редакции: 119435, г.
Published Date: 18. Это событие знаменует собой значительный прогресс в технологии космической связи и открывает новые возможности для эффективной и быстрой передачи данных в космических миссиях. Использование инфракрасного света позволяет космическим аппаратам передавать и принимать сигналы с более узкой длиной волны, что дает возможность вместить больше данных в каждую передачу.
Такое повышение эффективности передачи данных может привести к ускорению научных открытий и исследований. Преимущества лазерной связи многообразны.