Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть.
Что такое теория струн и может ли она открыть дверь в другие измерения
Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества». Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на. Рассказать о теории струн кратко вряд ли получится. Теория струн возникла в середине 1970-х годов в результате развития струнной модели строения адронов. Антропный принцип в теории струн. Теория струн основана на идее физики о том, что все известные силы, частицы и взаимодействия могут быть связаны.
Концепция развивается
- Теория струн в математической физике: кратко и простыми словами
- О чем теория струн? Самое простое и понятное объяснение – Физика
- Вы точно человек?
- Теория струн простыми словами
Теория суперструн кратко и понятно
Теория струн: простое объяснение неоднозначной идеи | Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки. |
Новости по тегу теория струн, страница 1 из 1 | Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. |
Теория суперструн кратко и понятно | теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. |
Симфония вселенной: теория струн для начинающих | Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на развлекательном портале |
Теория струн простым языком
Итак, фундаментальные оставляющие, согласно стандартной точке зрения, являются точечными частицами, то есть точками без внутренней структуры, описываемые уравнениями квантовой теорией поля. Теория струн утверждает, что частицы не являются точечными и предлагает рассматривать их как мельчайшие струноподобные вибрирующие нити. Струны в частицах разного типа неотличимы, но вибрируют по-разному. Разным вибрационном поведением нитей в теории струн объясняется различные свойства частиц.
По аналогии с гитарными струнами, разные вибрации их - порождают разное звучание музыкальных нот.
Благодаря развитию темы принципа неопределенности ученые смогли сформировать новую теорию струн. Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн. Представьте себе гитару.
До сих пор ни одна из моделей «новой физики» не нашла экспериментального подтверждения, но ученые не теряют надежды: предложенная в 60-х годах XX века теория струн до сих пор не потеряла своей актуальности и в перспективе сможет изменить наш взгляд на мир. Из чего сделаны частицы? Увидеть частицы напрямую ученым вряд ли когда-то удастся. Ни один, даже самый мощный микроскоп в мире не позволит увидеть хотя бы атом. Чтобы изучать структуру частиц, был придуман особый способ: «бомбардировать» объект другими, более мелкими частицами, и изучать, каким образом они разлетаются в разные стороны. Вы можете проделать такой эксперимент дома: взять два предмета, например, коробку и кастрюлю. И покидать в них небольшой резиновый шарик. Шарик будет по-разному отскакивать от ровных стенок коробки и скругленных стенок кастрюли — наших экспериментальных объектов. Немного тренировок — и только по тому, куда отлетает шарик, вы скажете, что именно за предмет сейчас подвергается бомбардировке, даже если не будете на него смотреть. Ученые накопили достаточно статистики, чтобы успешно применять этот принцип. Удалось определить, что одни частицы, например, входящие в состав атома протоны и нейтроны имеют составную структуру, а электроны и многие другие частицы… не состоят из чего-либо меньшего размера, то есть на языке физики являются «бесструктурными». Состоять из ничего Что значит «не имеет структуры»?
Большие и малые масштабы, сильные и слабые константы связи — эти величины всегда считались совершенно чёткими пределами поведения физических систем как в классической теории поля , так и в квантовой. Струны, тем не менее, могут устранять различия между большим и малым, сильным и слабым. Т-дуальность Основная статья: Т-дуальность Т-дуальность связана с симметрией в теории струн, применимой к струнным теориям типа IIA и IIB и двум гетеротическим струнным теориям. Преобразования Т-дуальности действуют в пространствах, в которых по крайней мере одна область имеет топологию окружности. Таким образом, меняя импульсные моды и винтовые моды струны, можно переключаться между крупным и мелким масштабом [46]. Другими словами связь теории типа IIA с теорией типа IIB означает, что их можно компактифицировать на окружность, а затем, поменяв винтовые и импульсные моды, а значит, и масштабы, можно увидеть, что теории поменялись местами. То же самое верно и для двух гетеротических теорий [47]. Благодаря этому оказывается возможным использовать теорию возмущений , которая справедлива для теорий с константой связи g много меньшей 1, по отношению к дуальным теориям с константой связи g много большей 1 [47]. Суперструнные теории связаны S-дуальностью следующим образом: суперструнная теория типа I S-дуальна гетеротической SO 32 теории, а теория типа IIB S-дуальна самой себе. U-дуальность Существует также симметрия, связывающая преобразования S-дуальности и T-дуальности. Она называется U-дуальностью и наиболее часто встречается в контексте так называемых U-дуальных групп симметрии в М-теории , определённых на конкретных топологических пространствах. U-дуальность представляет собой объединение в этих пространствах S-дуальности и T-дуальности, которые, как можно показать на D-бране , не коммутируют друг с другом [49]. Дополнительные измерения Интригующим предсказанием теории струн является многомерность Вселенной. Ни теория Максвелла , ни теории Эйнштейна не дают такого предсказания, поскольку предполагают число измерений заданным в теории относительности их четыре. Первым, кто добавил пятое измерение к эйнштейновским четырём, оказался немецкий математик Теодор Калуца 1919 год [50]. Обоснование ненаблюдаемости пятого измерения его компактности было предложено шведским физиком Оскаром Клейном в 1926 году [51]. Требование согласованности теории струн с релятивистской инвариантностью лоренц-инвариантностью налагает жёсткие требования на размерность пространства-времени, в котором она формулируется. Теория бозонных струн может быть построена только в 26-мерном пространстве-времени, а суперструнные теории — в 10-мерном [16]. Поскольку мы, согласно специальной теории относительности , существуем в четырёхмерном пространстве-времени [52] [53] , необходимо объяснить, почему остальные дополнительные измерения оказываются ненаблюдаемыми. В распоряжении теории струн имеется два таких механизма. Компактификация Проекция 6-мерного пространства Калаби — Яу , полученная с помощью Mathematica Первый из них заключается в компактификации дополнительных 6 или 7 измерений, то есть замыкание их на себя на таких малых расстояниях, что они не могут быть обнаружены в экспериментах. Шестимерное разложение моделей достигается с помощью пространств Калаби — Яу. Классическая аналогия, используемая при рассмотрении многомерного пространства, — садовый шланг [54]. Если наблюдать шланг с достаточно далёкого расстояния, будет казаться, что он имеет только одно измерение — длину. Но если приблизиться к нему, обнаруживается его второе измерение — окружность. Истинное движение муравья, ползающего по поверхности шланга, двумерно, однако издалека оно нам будет казаться одномерным.
Космический эксперимент поставил под сомнение теорию струн
Что такое теория струн | Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. |
Что такое теория струн? Простой обзор | | Действительно, теория струн способна объединить квантовую теорию и гравитацию, но сделать это, как оказалось, можно пятью способами. |
Теория струн для чайников | Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни. |
Симфония вселенной: теория струн для начинающих | Futurist - будущее уже здесь | Основной проблемой теории струн является её незавершенность, то есть, нет какой-то единой теории, способной объяснить все процессы, происходящие во Вселенной, как например уравнение Эйнштейна для гравитации или уравнение Максвелла для электромагнетизма. |
Современное состояние теории струн
Теория струн. Теория всего | В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. |
Простыми словами: что такое теория суперструн? | Пикабу | Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. |
Квантовая механика – следствие теории струн? | Наука и жизнь | Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества». |
Современное состояние теории струн | Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. |
Что такое теория струн? | Описание теории струн простым и понятным языком, или как принято говорить "Для чайников". |
Теория струн: кратко и понятно о сложном. В чем она заключается?
Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты. В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. Первый вариант теории струн назвали бозонным, так как он описывал струнную природу бозонов, ответственных за взаимодействия материи, и не касался фермионов, из которых материя состоит.
Теория струн. Возникновение теории, ее приложения
Но вы не можете многое сделать с этими точечными частицами. Это оказалось серьезным препятствием при формулировании взаимодействия между различными частицами.
Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое — то, что звучит как научная фантастика — подтверждение существования дополнительных измерений пространства. О чем идет речь? Все мы привыкли к трем измерениям пространства и одному — времени.
Но теория струн предсказывает наличие и других — дополнительных — измерений. Но начнем по порядку. На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась.
Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики. Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем? Калуца нашел ответ на этот вопрос — рябь электромагнетизма может существовать в дополнительном, скрытом измерении.
Но где оно? Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть. Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн. Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна — основной компонент Вселенной. Все они имеют очень закрученную и искривленную сложную форму.
И все — невообразимо малы. Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир? Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки. Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух. Благодаря этому и рождаются разные звуки.
Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам. Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая — внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина. Как устроен мир Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной. Именно они определяют свойства и характеристики всего вокруг нас.
Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме… И если мы изменим эти числа даже в незначительное число раз — последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут. Но причем здесь теория струн с ее дополнительными измерениями?
Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон.
Нет прямых экспериментальных доказательств того, что это правильное описание природы. Теория струн требует от нас принять существование дополнительного измерения во вселенной. Суперсимметрия Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн.
Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл. Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения. Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн. Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн. Объединение сил Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика. Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц. Не совсем понятно, как гравитация влияет на мельчайшие частицы. Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн.
Открытые и закрытые струны 5 фундаментальных взаимодействий струны типа I Струны в теории струн имеют две формы: открытые и закрытые струны. Две открытые струны могут соединяться с обоих концов, образуя закрытую струну. Или несколько открытых струн могут присоединиться к одному концу, чтобы сформировать новую открытую струну. Такие струны, известные как струны типа I, могут проходить через 5 основных типов взаимодействий. Эти взаимодействия зависят от способности струны соединять и разделять концы концов. Ученые считают, что у замкнутых струн есть особые атрибуты, которые могут описывать гравитацию в квантовой механике. Считается, что характерная шкала длины струн составляет порядка 10 -35 метров, или длины Планка. Это масштаб, при котором эффекты квантовой гравитации становятся значительными.
Суть в том, что они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путём кропотливой сборки в один механизм точного набора бран , открытых во время второй суперструнной революции. Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. Тогда энтропия этого состояния по определению равна логарифму полученного числа — числа возможных микросостояний термодинамической системы. Затем они сравнили результат с площадью горизонта событий чёрной дыры — эта площадь пропорциональна энтропии чёрной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания [2] , — и получили идеальное согласие [67]. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Это открытие оказалось важным и убедительным аргументом в поддержку теории струн.
Разработка теории струн до сих пор остаётся слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварков или электрона. Теория струн, тем не менее, даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу , Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг. Данный подход впервые использован в работах Габриэле Венециано [68] , который показал, каким образом инфляционная модель Вселенной может быть получена из теории суперструн. Инфляционная космология предполагает существование некоторого скалярного поля , индуцирующего инфляционное расширение. В струнной космологии вместо этого вводится так называемое дилатонное поле [69] [70] , кванты которого, в отличие, например, от электромагнитного поля , не являются безмассовыми , поэтому влияние данного поля существенно лишь на расстояниях порядка размера элементарных частиц или на ранней стадии развития Вселенной [71].
Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва , для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности , то есть дуальности малых и больших радиусов в его тесной связи с существованием минимального размера в теории струн, имеет значение и в космологии [72]. В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений. Вообще, особенность теории струн состоит в том, что в ней, по-видимому, геометрия пространства-времени не фундаментальна, а появляется в теории на больших масштабах или при слабой связи [73].
Косвенные предсказания Несмотря на то, что арена основных действий в теории струн недоступна прямому экспериментальному изучению [74] [75] , ряд косвенных предсказаний теории струн всё же можно проверить в эксперименте [76] [77] [78] [79]. Во-первых, обязательным является наличие суперсимметрии. Ожидается, что запущенный 10 сентября 2008 года , но полноценно [80] вступивший в строй в 2010 году Большой адронный коллайдер сможет открыть некоторые суперсимметричные частицы. Во-вторых, в моделях с локализацией наблюдаемой вселенной в мультивселенной изменяется закон гравитации тел на малых расстояниях. В настоящее время проводится ряд экспериментов, проверяющих с высокой точностью закон всемирного тяготения на расстояниях в сотые доли миллиметра [81]. Обнаружение отклонения от этого закона было бы ключевым аргументом в пользу суперсимметричных теорий.
В-третьих, в тех же самых моделях гравитация может становиться очень сильной уже на энергетических масштабах порядка нескольких ТэВ , что делает возможной её проверку на Большом адронном коллайдере. В настоящее время идёт активное исследование процессов рождения гравитонов и микроскопических чёрных дыр в таких вариантах теории.
Симфония вселенной: теория струн для начинающих
Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Первый вариант теории струн назвали бозонным, так как он описывал струнную природу бозонов, ответственных за взаимодействия материи, и не касался фермионов, из которых материя состоит. Как и любая неподтвержденная теория, теория струн имеет ряд проблем, которые говорят о том, что она требует доработки. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений.
Почему обычное представление о частицах не совсем верно
- Теория струн. Что это?
- Содержание
- Противоречие физики
- Теория струн кратко и понятно – смотреть видео онлайн в Моем Мире | ₻Sapsan₻ 26
- Из Википедии — свободной энциклопедии
- Краткая история объединения
Симфония вселенной: теория струн для начинающих
Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи. Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку. По мнению авторов статьи, важной частью этого исследования является выявление определенных геометрических строительных блоков, называемых «делителями», внутри каждой поверхности K3.
Часы кропотливой работы, в результате позволили математикам доказать теоремы каждого из четырех расслоений, а затем протолкнуть каждую теорему через сложные алгебраические формулы. Издание SciTechDaily приводит слова авторов исследования о том, что для последней части этого процесса ученые использовали программное обеспечение Maple и специализированный пакет дифференциальной геометрии, который оптимизировал вычислительные усилия.
Однако есть и другие учёные, которые думают, что она является почти псевдонаукой, поскольку её практически невозможно проверить экспериментальным путём. Теория суперструн Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации: учитывает фермионы частица с полуцелым значением спина , учитывает бозоны частица с целым значением спина , включает суперсимметрию связь между фермионами и бозонами. Теория струн — это общее название всей области. Главное теоретическое отличие между теорией струн и теорией суперструн заключается в существовании суперсимметрии. Варианты теории струн Вместо одной теории, которая объясняет всё во Вселенной, на данный момент существуют целых пять теорий струн. Различия между этими теориями очень сложны математически.
Теория струн тип I: включает открытые и замкнутые струны; содержит форму симметрии, которая математически является группой симметрии O 32. Теория струн тип IIA: открытые струны этого типа прикреплены к структурам D-браны с нечётным числом измерений; замкнутые струны где модели колебаний симметричны перемещаются независимо вправо и влево по замкнутой струне.
Чем больше становится энергия частиц при столкновении в нем, тем значительнее уменьшаются расстояния, которые мы можем на нем «прощупать». На ускорителях физики и проверяют свои умозрительные заключения. Теория струн предсказывает, что если провести эксперимент при еще более высоких энергиях намного больше, чем те огромные энергии, что реализуются на современных коллайдерах , то каждая элементарная частица будет вести себя как двумерная вселенная, которая в заданный момент времени похожа на струну или очень тонкую резинку. И только с больших расстояний такая струна выглядит, как точка. Индустрия 4.
Но разные состояния теории отвечают разным типам элементарных частиц. Ситуация аналогична той, что возникает в случае с гитарной струной: если ее дернуть, возникнет стоячая волна. Тогда первая мода когда между зажимами умещается одна полуволна может отвечать, например, фотону. А вторая когда между зажимами умещается две полуволны или целая длина волны может отвечать какой-то другой элементарной частице: например, электрону. При этом стоит подчеркнуть, что теория струн пока не подтверждена экспериментально. Как появилась теория струн Ученые наблюдали за столкновениями частиц на ускорителях и заметили, что в результате реакций возникали целые семьи частиц. Все выглядело так, будто различные разные частицы внутри одной семьи вели себя, как различные гармоники струны.
Одним из первых придал этому наблюдению математическую форму итальянский физик Габриэле Венециано.
Остальные ответы zz Гуру 3376 10 лет назад Подозреваю, что буду не прав, но выражу свою мысль: мы знаем, что каждая молекула во вселенной вибрирует, и состояния покоя не существует априори. Теория струн рассматривает вселенную с точки зрения этой абсолютной вибрации энергии а существование материальной вселенной лишь побочный эффект.
Но повторюсь, вероятней всего я не прав.
Популярные материалы
- Теория струн кратко и понятно – смотреть видео онлайн в Моем Мире | ₻Sapsan₻ 26
- Теория струн, или Теория всего
- Форма поиска
- Теория струн, Мультивселенная
- Теория струн, или Теория всего
- Для продолжения работы вам необходимо ввести капчу
Теория суперструн популярным языком для чайников
Но на этом история не заканчивается: далее идут элементы ядра, которые состоят из протонов и нейтронов. Внутри нейтрона есть крошечные частицы — кварки. Некоторые физики считают, что далее нет ничего. Однако согласно теории струн, внутри этих кварков будут вибрирующие нитки, похожие на струны. Уровни строения мира: 1. Макроскопический уровень 2. Молекулярный уровень 3. Атомный уровень 4.
Субатомный уровень 5.
Сверхпространство — это пространство, в котором существуют дополнительные измерения. Оно может быть представлено как некоторая компактифицированная или свернутая форма, которая не проявляется в нашем мире. Сверхпространство играет важную роль в квантовой теории струн, поскольку оно позволяет объединить гравитацию и другие фундаментальные взаимодействия.
Суперсимметрия и симметрии струнных моделей Суперсимметрия — это математическая концепция, которая позволяет установить связь между частицами с разными спинами бозоны и фермионы. В квантовой теории струн суперсимметрия играет важную роль, поскольку она позволяет устранить некоторые проблемы, связанные с наличием различных типов частиц и их взаимодействием. Струнные модели также обладают различными симметриями, которые определяют их свойства и поведение. Некоторые из них включают конформную симметрию, которая сохраняется при преобразованиях масштаба, и симметрию Пуанкаре, которая описывает инвариантность физических законов относительно преобразований пространства и времени.
Уникальные математические свойства и симфония гравитации и квантовой механики Квантовая теория струн имеет уникальные математические свойства, которые делают ее сложной и интересной для исследования. Она требует использования различных математических инструментов, таких как теория групп, топология и теория функций. Математические методы, используемые в квантовой теории струн, часто связаны с алгебрами Ли, теорией представлений и дифференциальной геометрией. Квантовая теория струн также стремится объединить гравитацию и квантовую механику, две фундаментальные теории, которые до сих пор не были полностью совмещены.
Она предлагает новый подход к объединению этих двух теорий, позволяя описывать гравитацию в терминах квантовых объектов — струн. Это открывает новые возможности для понимания природы пространства, времени и гравитационных взаимодействий. Применение квантовой теории струн Квантовая теория струн имеет широкий спектр применений и вносит значительный вклад в различные области физики. Вот некоторые из них: Связь с теорией поля и инфляцией Вселенной Квантовая теория струн предлагает новый подход к объединению теории гравитации и теории поля.
Она позволяет описывать гравитацию в терминах квантовых объектов — струн, что открывает новые возможности для понимания взаимодействия между элементарными частицами и гравитацией. Это может привести к разработке единой теории, объединяющей все фундаментальные взаимодействия в природе. Квантовая теория струн также имеет важное значение для теории инфляции Вселенной. Инфляция — это модель, которая объясняет быстрое расширение Вселенной в первые моменты ее существования.
Квантовая теория струн может предложить новые механизмы, которые могут объяснить происхождение и свойства инфляционного поля. Вклад в единое поле физики элементарных частиц Квантовая теория струн играет важную роль в поиске единой теории, объединяющей все фундаментальные взаимодействия и элементарные частицы. Она предлагает новый подход к объединению гравитации и других фундаментальных сил, таких как электромагнитная, сильная и слабая силы. Квантовая теория струн может быть ключом к пониманию природы и происхождения всех фундаментальных частиц и взаимодействий.
Кроме того, квантовая теория струн может предложить новые модели элементарных частиц, которые могут быть проверены экспериментально. Она может предсказать существование новых частиц, таких как суперсимметричные партнеры известных частиц, которые могут быть обнаружены на ускорителях частиц или в космических экспериментах. Перспективы и возможности для дальнейших исследований Квантовая теория струн остается активной областью исследований, и у нее есть много перспектив и возможностей для дальнейших разработок. Ученые продолжают исследовать различные аспекты теории струн, такие как сверхсимметрия, дополнительные измерения и свойства струнных моделей.
Математики из университета штата Юта и Сент-Луисского университета опубликовали результаты математических расчетов о двух ветвях теории струн. В ходе работы исследователи изучили специальное семейство компактных K3-поверхностей — связанных комплексных двумерных поверхностей. Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий. Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях. Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях.
Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик.
Несмотря на то, что сегодня популярностью среди физиков пользуются другие теории, ученые постепенно, кусочек за кусочком, продолжают открывать и расшифровывать фундаментальные струны физической Вселенной с помощью математических моделей. Так, согласно результатам нового исследования, математики из университета штата Юта обнаружили новое доказательства теории струн. Всего несколько лет назад казалось, что теория струн — этоновая теория всего. Но сегодня струнная вселенная порождает больше вопросов, чем ответов В теории струн мироздание похоже на невероятно малые, вибрирующие нити энергии, способные извиваться, растягиваться и сжиматься. Физики-теоретики считают, что все сущее состоит из струн, однако проверить это экспериментальными методами до сих пор никому не удалось. Струны Вселенной Искусно сочетая в себе идеи квантовой механики и общей теории относительности ОТО , струнная теория, как полагают физики, должна построить будущую теорию гравитации.
Однако сегодня ученые все больше критикуют теорию струн и все реже уделяют ей внимание из-за огромного количества вопросов, которые она порождает. Однако согласно результатам нового исследования, опубликованного в журнале Letters in Mathematical Physics , теория струн все же, имеет право на существование. Математики из университета штата Юта и Сент-Луисского университета опубликовали результаты математических расчетов о двух ветвях теории струн. В ходе работы исследователи изучили специальное семейство компактных K3-поверхностей — связанных комплексных двумерных поверхностей.
Теория струн, Мультивселенная
В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. На данный момент теория струн вроде бы объясняет все. Все, кроме черных дыр — здесь пока ученые больше предполагают, чем знают.
Применительно к теории струн регулярно вспоминают теорию Янга-Миллса с ней связан один из вопросов , за решение которых Математический институт Клэя обещал миллион долларов. Расскажите, что это такое? В 50-е годы прошлого века ученые обнаружили тогда без участия идей из теории струн , что уравнения для описания сильного и слабого взаимодействия в квантовой механике можно записать в особой симметричной форме. Симметрии, о которых идет речь, напоминают симметрии снежинки — если ее поворачивать на некоторый угол, то она переходит сама в себя. Так же и эти уравнения после определенного «поворота» оказывались такими же.
Такой подход оказался очень удобным, и физикам удалось много чего посчитать с его помощью. Сами Янг, Миллс и их последователи смогли заложить единую и очень изящную с математической точки зрения основу для Стандартной модели. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. То есть пойди история теоретической физики немного по-другому вполне возможно, так и произошло где-нибудь на другой планете или в другой Вселенной , теория Янга-Миллса была бы обычным следствием теории струн. То есть этот факт можно рассматривать как теоретическое а не экспериментальное подтверждение теории струн? В некотором смысле — да. В такую игру с теорией струн можно играть достаточно долго: из теории струн естественным образом вытекает теория Янга-Миллса, разного рода дискретные симметрии, играющие важную роль в квантовой механике. Теория струн также позволяет объяснить, почему элементарные частицы объединяются в семейство — например, фермионы и бозоны.
То есть многое из того, что приходилось добавлять в уравнения вручную, исходя из экспериментальных соображений, в теории струн возникает само собой. Это не является, конечно, доказательством истинности теории, но с математической точки зрения означает, что теория включает в себя все, что мы знали до сих пор. У квантовой механики есть множество интерпретаций — копенгагенская, многомировая, теория квантовой информации и прочие. У них имеется общий математический аппарат, однако они кардинально различаются в описании того, что представляет собой реальность. Есть ли такие же интерпретации у теории струн? Во-первых и это, конечно, тема для совершенно отдельного и большого разговора, совсем не связанного с темой нашей беседы , я бы не согласился с первой частью вашего утверждения. Различные интерпретации квантовой механики различаются не только на уровне интерпретации, но и на уровне механики, которую они используют. Точнее, аккуратно определяя квантовую механику в рамках той или иной интерпретации, вы обнаружите, что эти интерпретации либо некорректно определены, либо дают разные теории.
Они могут отличаться как предсказаниями, так и в онтологическом смысле — то есть они расходятся в том, что реально, а что — нет. Например, копенгагенская интерпретация не полна — она не говорит, что происходит во время так называемого коллапса волновой функции, вызванного наблюдением. Многомировая интерпретация и теория де Бройля-Бома дают различные уравнения для описания квантового мира. Поскольку теория струн использует квантовую механику, то, с одной стороны, последняя никак не меняется. С другой стороны, если в квантовой механике есть какие-то вопросы, которые нужно интерпретировать, то они есть и в теории струн. Все эти многомировые и прочие вещи тут присутствуют в полной мере. Сама же теория при этом никаких дополнительных факторов, требующих интерпретации, не привносит. То есть мы имеем дело с квантовомеханическими вопросами и только с ними.
Теория всего - гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия сильное, слабое, электромагнитное и гравитационное. Первые три взаимодействия описываются в настоящий момент квантовой механикой, последнее - теорией относительности С другой стороны, в теории струн есть эффект, называемый двойственностью. Его, если угодно, можно считать двоюродным братом вопроса интерпретации. Дело в том, что в теории одна и та же физическая ситуация допускает несколько математических описаний математических интерпретаций, если угодно. В некотором смысле противоположная история. Главное отличие двойственности в том, что это не источник споров или философских диспутов о том, как и что надо понимать, а мощный инструмент для работы. Расскажу из личного опыта. Некоторое время назад я как раз занимался зеркальной симметрией.
Дело в том, что, как уже говорилось выше, дополнительные измерения в теории струн компактифицированы — то есть свернуты особым образом, так что на первый взгляд наш мир видится четырехмерным. Оказывается, возможные формы дополнительных измерений, то есть то, каким образом они свернуты, существуют парами. В каждой паре элементы могут отличаться геометрией, топологией, но при этом дают одну и ту же физическую теорию. Так как физика одна и та же, то один и тот же эксперимент — скажем, рассеивание частиц — дает информацию о строении сразу двух объектов. Благодаря зеркальной симметрии физикам удается получить информацию о математике, которая стоит за этими объектами. То есть смотрите, пусть мы знаем, что наша теория описывает именно нашу Вселенную. Мы хотим предсказать результаты экспериментов по рассеиванию частиц. Начинаем считать — офигеть, не получается, слишком сложная математика.
Тут мы вспоминаем о зеркальной симметрии и говорим себе: «Стоп! Мы же можем заменить одно пространство на другое, ведь физика, как известно, будет той же самой». Мы так поступаем, и оказывается, что в зеркально-симметричной ситуации тот же эксперимент описывается много проще и мы все можем посчитать. И что, есть примеры, когда эта схема работает? И таких примеров множество. Другое дело, что мы пока точно не знаем, каким параметрам соответствует именно наша Вселенная. Вот в чем проблема. А как устроены эти симметрии, которые дают в результате два пространства?
Исходное и зеркальное пространство связаны через подходящий орбифолд — грубо говоря, фактор многообразия по дискретной группе изометрий. А сама симметрия — это, конечно, просто действие Z2. Никаких континуальных симметрий, только дискретные. Вы говорите очень интересные вещи о математике. На первый взгляд математические утверждения можно получать только с помощью самой математики. А вы говорите, что можно что-то узнать с помощью эксперимента... Ну это относится даже не к теории струн, а ко всей физике элементарных частиц. То есть прямо так: строгие математические утверждения можно получать экспериментально?
Не понимаю, что вас смущает. Вот есть теория относительности Эйнштейна — математическая теория. Если наблюдать за движениями космических объектов, то можно много что узнать о геодезических свойствах самой метрики, которая фигурирует в уравнении Эйнштейна в поле тяжести массивного тела объекты малой массы движутся по геодезическим — кривым, являющимся решением подходящей системы дифференциальных уравнений — прим. Строгие математические факты. Так же и в теории элементарных частиц.
Критика и альтернативные подходы Квантовая теория струн, несмотря на свою значимость и потенциал, также подвергается критике и вызывает дискуссии среди ученых. Вот некоторые из основных критических моментов и альтернативных подходов, которые были предложены: Ограничения и проблемы квантовой теории струн Одним из основных ограничений квантовой теории струн является ее сложность и математическая трудность. Формализм теории струн требует использования высокоабстрактных математических концепций, таких как теория операторов и топология.
Это делает ее трудно доступной для понимания и применения в практических расчетах. Кроме того, квантовая теория струн страдает от проблемы отсутствия экспериментального подтверждения. В настоящее время нет прямых экспериментальных данных, которые могли бы подтвердить или опровергнуть предсказания теории струн. Это ограничивает ее статус как научной теории и вызывает сомнения в ее достоверности. Альтернативные модели и гипотезы Существуют альтернативные модели и гипотезы, которые предлагают альтернативные подходы к объединению гравитации и квантовой механики. Некоторые из них включают: Петлевая квантовая гравитация: Это альтернативная теория, которая основана на квантовании гравитационного поля в терминах петель. Она предлагает другой математический формализм и подход к описанию гравитации, который может быть более фундаментальным и ближе к экспериментальным данным. Теория супергравитации: Это теория, которая объединяет гравитацию и суперсимметрию.
Она предлагает другой подход к объединению фундаментальных взаимодействий и может быть более простой и понятной, чем квантовая теория струн. Нелокальные теории: Это класс теорий, которые предлагают изменить принцип локальности, который является основой квантовой теории струн. В нелокальных теориях взаимодействия могут распространяться на большие расстояния и быть связаны с неклассическими эффектами. Эти альтернативные модели и гипотезы предлагают другие подходы к объединению гравитации и квантовой механики и могут быть объектом дальнейших исследований и экспериментов. Дискуссии и перспективы развития будущих теорий Дискуссии и дебаты вокруг квантовой теории струн и ее альтернативных подходов продолжаются в научном сообществе. Ученые исследуют различные аспекты и проблемы теории струн, а также альтернативные модели и гипотезы. Будущие теории могут включать в себя комбинацию различных подходов и идей, а также новые математические и физические концепции. Они могут предложить новые предсказания, которые могут быть проверены экспериментально и привести к новым открытиям и пониманию фундаментальных взаимодействий и структуры Вселенной.
Заключение Квантовая теория струн представляет собой уникальный и амбициозный подход к объединению гравитации и квантовой механики. Она предлагает новый математический формализм и концепции, которые могут пролить свет на фундаментальные взаимодействия и структуру Вселенной. Несмотря на свою сложность и ограничения, квантовая теория струн имеет большой потенциал для дальнейших исследований и развития. Она может помочь нам лучше понять природу гравитации, создать единое поле физики элементарных частиц и раскрыть новые аспекты Вселенной. Однако, критика и альтернативные подходы также играют важную роль в развитии науки. Альтернативные модели и гипотезы предлагают другие пути и идеи для объединения гравитации и квантовой механики, и могут привести к новым открытиям и пониманию фундаментальных взаимодействий. В целом, квантовая теория струн и ее альтернативные подходы представляют собой захватывающую область исследований, которая продолжает привлекать внимание ученых и исследователей. Будущие исследования и эксперименты могут привести к новым откры Квантовая теория струн обновлено: 28 августа, 2023 автором: Научные Статьи.
А без математического прорыва и прямого эксперимента в теории струн иногда в ход идут такие хитровыебанные аргументации, что любой продажный адвокат пожал бы физикам руку. Элементарные частицы, дополнительные измерения и некто Карл Поппер. Десятимерная теория струн на более привычных масштабах должна, естественно, сводиться к известной и ОЧЕНЬ хорошо проверенной физике элементарных частиц. Но, как выясняется, способов такого сведения существует по меньшей мере 10100 , хотя не исключено, что и 100500 , а то и вовсе бесконечность. При этом каждая из получившихся четырёхмерных теорий описывает свой собственный мир, который может быть похож на реальность, а может и принципиально отличаться от нее. Проблема здесь в том, что свойства частиц считаются способом колебания струн, а возможные способы колебания струн зависят от точной геометрии дополнительных измерений. Но существующим приближенным уравнениям удовлетворяет туева хуча разных геометрий. То есть эти уравнения были бы справедливы не только в нашем мире, но и в туевой хуче других миров, а возможно — в любом мире.
Будь эти приближенные уравнения окончательными, это был бы тотальный экстерминатус в связи с нефальсифицируемостью по Попперу, то есть признаком ненаучности теории. А так — хвост пистолетом и искать точные уравнения. Квантовая гравитация[ править ] Основным результатом теории струн ну или М-теории, всем похуй принято считать возможность проквантовать гравитацию. Ясно дело , что кроме теории струн есть ещё и другие способы эту вашу гравитацию квантовать, которые убоги каждый в чем-то. Поэтому надо тут остановиться подробнее. Квантовая теория поля учит нас, что все взаимодействия между частицами можно представить в виде картинок, диаграмм Фейнмана. Например взаимодействие электрона и позитрона можно нарисовать в виде диаграммы справа, как обмен одним фотоном. Электрон и позитрон взаимодействуют, обмениваясь фотоном Но это только так называемое древесное приближение — на деле эта диаграмма даёт лишь классическую теорию, а квантовые эффекты появятся, если мы будем рисовать петли.
Петлевые поправки к взаимодействию между электронами На этих диаграммах волнистая линия — фотон, прямые линии — электрон и позитрон. Но все это можно рисовать для любого взаимодействия. Ты, анон, уже догадался, что этих петель можно рисовать чуть более, чем дохуя. А именно, бесконечно. Каждая такая картинка соответствует совершенно невменяемому выражению, включающему в себя интегралы, логарифмы и прочую матаническую поебень. Но самый пиздец в том, что каждое из этих выражений само по себе равно бесконечности. И тут хитрый расовый американский еврей Ричард Фейнман с дружками придумали, как обмануть общественность и бесконечности спрятать как он сам выразился, под ковер. Эта процедура наебки называется перенормировкой квантовой теории поля.
И если теорию можно вот так вот перенормировать, то она считается адекватной и называется перенормируемой. Всю эту хреноту можно с успехом повторить и для ОТО ровно до момента перенормировки. Ибо гравитации вообще до пизды все эти ваши процедуры, и бесконечности прут со все новой силой. Тут физики разом охуели и сделали Квантовую Гравитацию своим священным Граалем. Ясно дело, все остальные взаимодействия успешно квантуются и перенормируются, кроме гравитации это связано с тем, что у всех векторных бозонов спин равен 1, а у гравитона 2. Чтобы справиться с непокорной гравитацией, физики стали придумывать разные обходные пути к ее квантованию. Во-первых, напридумывали кучу других гравитаций с целью сделать формулы похожими на формулы в других теориях: калибровочная теория гравитации, теория Макдауэлла-Манзури-Штелле-Веста Macdowell-Mansoure-Stelle-West и т. А во-вторых, стали думать, как ее, родимую, квантовать правильно.
Например, петлевая квантовая гравитация учит нас, что пространство на малых расстояниях состоит из маленьких ячеек-петель данное учение находится на полпути к фейлу — впрочем, что пытались опровергнуть опровергатели , они и сами толком не знают. Можно представить себе, например, двумерную поверхность, сотканную из треугольников. Главная фишка этой самой петлевой квантовой гравитации в том, что пространство и время теперь становятся объектом квантования. Мы помним, что обычная квантовая механика пространство-время не трогает и рассматривает его как фон. А тут пространство само себя создает из этих треугольников. Причем интересно, что эта система сама может себе выбирать размерность, складываясь из двумерного листика в нечто объемное. Это можно увидеть дома, скомкав лист бумаги, он из двухмерной фигуры превратится в трехмерное тело. Перенормируемость а точнее уже конечность диаграмм гарантируется конечным размером этих петель.
Другая возможность квантовать гравитацию — супергравитация. Как было уже сказано выше, суперсимметрия — это равное количество фермионов и бозонов. И оказывается чудо! То есть, супергравитация вообще конечна. Зато она говорит о существовании каких-то новых фермионов, которых никто не видел и которых ищут на БАКе. Update: на самом деле давно известно, что супергравитация таки не является ни конечной, ни перенормируемой, а значит сама-по-себе в смысле квантования ничем не лучше обычной гравитации пруф: [1] Интересно, что супергравитация получается как предел низких энергий из М-теории. Алсо[ править ] Профессор Фарнсворт из Футурамы разбирается в сабже — в серии Mars University он читает курс лекций по предмету с подозрительным названием «Суперпуперсимметричная струнная теория», на который никто не ходит, кроме Фрая. Теория струн — направление исследований Шелдона Купера из сериала Теория большого взрыва.
Шелдон свято верит, что теория станет в итоге Единой теорией, и люто, бешено ненавидит сторонников альтернативного подхода — теории петлевой квантовой гравитации в лице Лесли Уинкл. Миша Вербицкий в пояснительной записке к сочиненной им программе изучения математики утвеждает, что «математика лишь постольку интересна, поскольку она связана со струнной теорией; это базовое предположение, которое я не хочу сейчас обсуждать». Небезызвестный Кастанеда , пребывая чуть более чем полностью в состоянии накурки, видел Вселенную как бесконечное скопище светящихся струн. В сабже хорошо разбирается Верданди — её родной мир десятимерен, о чём она не раз говорила. А разрушение суперструны, по её словам, может привести к БП. Этот момент попал и в аниме — см.