Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков. квантовая физика — самые актуальные и последние новости сегодня.
Эфир существует! Российские ученые совершили прорыв в фундаментальной физике
Просто о сложном: принцип неопределенности и другие парадоксы квантовой физики | Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков. |
Российские учёные развивают технологии на основе квантовой физики вместо классической | Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки. |
Квантовая физика • AB-NEWS | Новости компаний. |
С приставкой «супер-»: обзор новостей квантовой физики | Награда присуждается трем физикам–экспериментаторам, чьи новаторские исследования заложили основу квантовой информатики. |
Физики доказали необратимость квантовой запутанности
А как можно оценить ценность жизни? Именно такой вопрос задал Ричарду Фейнману психиатр. А мы расскажем вам его ответ из книги «Вы, конечно, шутите, мистер Фейнман» 393 views Квантач Физики из коллаборации IceCube не обнаружили влияния квантовой гравитации на параметры нейтринных осцилляций Создание непротиворечивой и полной теории квантовой гравитации — одна из важнейших задач современной физики. В поиске квантовой гравитации ученым может помочь экспериментальная проверка ее на состояния движущихся частиц во времени. Например, нейтрино во время взаимодействия с квантовыми флуктуациями пространства-времени могут частично терять квантовую когерентность. Это должно проявляться отклонением от ожидаемой картины нейтринных осцилляций на больших расстояниях и высоких энергиях.
Но гравитационные квантовые флуктуации не повлияли на атмосферные нейтрино.
Макс Борн квантовая теория. Савельев квантовая физика. Львовский квантовая физика. Квантовый физик Дробязко. Квантовый физик 5 букв. Физика от Побединского. Ведущие квантовой физики на канале.
Физика плазмы лаборатория. Квантовый излучатель. Квантовая плазма. Создание плазмы. Квантовая физика. Квантовая физика элементы. Квантовая физика презентация. Постулаты Бора физика.
Законы квантовой физики. Разделы в квантовой физике. Квантовая физика простыми словами. Презентация на тему квантовая физика. Элементы квантовой физики. Формулы по квантовой физике. Основные понятия квантовой физики. Атом водорода в квантовой физике.
Уравнение Шредингера в квантовой физике. Уравнение Шредингера для водородоподобного атома. Уравнения квантовой модели атома. Лекции по квантовой физике ютуб. Ботаник в вопросах квантовой физики 6 букв. Ученые квантовой физики. Квантовый симулятор. Ученые в лаборатории фото.
Квантовая симуляция. Квантовые технологии. Российские ученые. Квантовые ученые. Квантовый компьютер арт. Фильмы о квантовой физике. New Scientist - квантовый мир. Фильм про квантовую физику.
Физик механик. Лекция физики. Лекции по физике. Лекция по физике фото. Профессор квантовой физики из Новосибирска. Создатели квантовой механики. Квантовая физика фото. Школа теоретической физики.
Летняя школа «физика. Квантовый школа. Квантовая физика в школе. Электроника фотоника квантовый компьютеры. Квантовый инженер. Квантовые технологии фото. Физика квантовая физика. Строение атома квантовая физика.
Бозон Хиггса частица Бога. Адронный коллайдер Бозон Хиггса. Бозон Хиггса на большом адронном коллайдере. Питер Хиггс Бозон. Лекция в клубе даешь молодежь квантовая механика.
В работах приняли участие немецкие ученые из Технического университета Кайзерслаутерна-Ландау и Штутгартского университета.
Предложенная концепция для получения энергии использует принципы квантовой механики вместо традиционного воспламенения топлива — как происходит, например, в двигателе внутреннего сгорания. Авторы проекта предложили задействовать охлажденные фермионы и бозоны в качестве основы для «квантовых двигателей», способных преобразовать энергию этих частиц в механическую работу. Схема работы двигателя Дело в том, что при температурах, близких к абсолютному нолю, бозоны имеют более низкое энергетическое состояние, чем фермионы, и эту разницу энергий можно использовать для питания двигателя. В частности, циклическое превращение фермионов в бозоны и обратно дает возможность извлекать энергию для питания квантового аналога механического двигателя.
Основные постулаты квантовой механики включают принцип неопределенности Гейзенберга, что означает, что нельзя одновременно точно определить местоположение и импульс частицы, и принцип суперпозиции, согласно которому частица может находиться во всех возможных состояниях одновременно до момента измерения. Одним из ключевых достижений квантовой механики является объяснение свойств атомов и молекул. Благодаря квантовой механике стало возможным понять, почему атомы могут иметь только определенные энергетические уровни, что привело к созданию теории квантовых чисел и теории молекулярных орбиталей. Квантовая механика также оказала огромное влияние на развитие технологий.
Например, создание лазеров, технология квантовых точек для создания полупроводниковых приборов, разработка магнитно-резонансной томографии и квантовых компьютеров — все эти технологии основаны на принципах квантовой физики. Одной из самых сложных и волнующих областей квантовой физики является квантовая суперпозиция и явление квантового запутывания. Суперпозиция — это возможность квантовой системой находиться во всех возможных состояниях одновременно, что приводит к уникальным квантовым явлениям, например, интерференция частиц.
Российские учёные развивают технологии на основе квантовой физики вместо классической
Оно неоднородно по разным областям. Если в сфере квантовых компьютеров оно наблюдается из-за колоссальных инвестиций, направляемых на это направление, скажем, в США или Китае, то по квантовым коммуникациям российские решения вполне конкурентоспособны. Иногда мы даже демонстрируем более глубокое понимание в отдельных направлениях, скажем, в создании кудитных квантовых процессоров. Это процессоры нового поколения, которые используют для обработки информации не кубиты двухуровневые квантовые системы , а кудиты многоуровневые квантовые системы с суперпозицией произвольного количества квантовых состояний. Сейчас в мире есть пять-шесть квантовых процессоров на кудитах, и один из них — заслуга российской команды в Российском квантовом центре и ФИАН им.
В нашей работе нам очень помог проект Лидирующих исследовательских центров, Дорожная карта по квантовым вычислениям и Российский научный фонд. Да и по новым типам кубитов, базовых вычислительных элементов для квантовых компьютеров, в России проводятся пионерские исследования на мировом уровне. Например, недавно продемонстрированные кубиты-флюксониумы с рекордными характеристики, в разработке которых принимали участие мои коллеги из МИСИС. То есть мы стараемся не отставать и искать новые пути развития.
Критическая масса людей, интеллектуальный потенциал для развития этого направления есть. Сейчас мы вступили в активную фазу реализации Дорожной карты по квантовым вычислениям координирует Росатом. Это очень важный проект, объединяющий в рамках страны различные научные группы, которые решают задачи квантовых технологий. Мы уже видим первые результаты консолидации научного сообщества в этом направлении.
Есть ли дефицит компонентов, есть ли утечка мозгов? Нынешнюю ситуацию вы рассматриваете как тёмный период или как время возможностей? Вы знаете, очень осторожное отношение к поставкам иностранного оборудования началось гораздо раньше. Эта сфера в последние пять лет постепенно становилась стратегической и всё более и более зарегулированной.
И кардинального изменения в связи с санкциями не произошло. Это был логичный шаг, которому предшествовало всё возрастающее внимание к экспорту технологичных товаров со стороны стран Запада. Конечно, такие глобальные ситуации, как сейчас, осложняют работу и научное взаимодействие. Ведь наука, особенно в таких областях, носит международный характер.
Во многих научных публикациях принимают одновременное участие учёные из самых разных стран мира. Поэтому хотелось бы, чтобы текущая ситуация не касалась напрямую возможностей для научного сотрудничества. Страны между собой обмениваются учёными, и это в карьере учёного совершенно нормально: закончить первую ступень образования в одной стране, потом поступить в магистратуру в другой стране, в аспирантуру — в третьей, а работать — вообще в четвёртой, пятой. Потом вернуться к себе на родину или остаться.
Это абсолютно нормальные этапы развития. Есть такой тренд во всех странах мира: после определённого цикла получения опыта учёным стараются создать условия для работы в родной стране. Здесь пример демонстрирует Китай со своей национальной программой «1000 талантов». Она позволила вернуть огромное количество учёных — и сделать значительный скачок в квантовых технологиях и не только.
Именно это становится основным трендом. Успешно у нас возвращают мозги? Есть примеры успешных возвратов. Вот я учился во Франции, а когда передо мной стоял выбор, куда поехать, я поехал работать в лабораторию в России.
Есть примеры моих коллег, которые либо полностью вернулись, либо проводят здесь существенную часть своего времени. Но мы привыкли к термину «утечка мозгов», боимся его. Приведу пример: в Германии очень существенный процент людей уезжают после аспирантуры работать в Америку. Но там никто не говорит о какой-то утечке мозгов.
Люди за океаном набираются опыта, потом возвращаются и создают в Германии передовые лаборатории. В одном из ведущих немецких научных центров очень много людей именно с опытом работы в Северной Америке. Поэтому наш фокус должен быть не на величине оттока и связанном с этим расстройстве, а на создании условий для притока. А что может и должно сделать государство, чтобы этот научный импульс не пропал?
Мне кажется, очень важный аспект — это долгосрочные программы финансирования. Вот сейчас есть замечательная программа, которая работает в масштабе 3—5 лет, — гранты Российского научного фонда, которые позволяют молодым учёным создать собственную научную группу с очень большой степенью поддержки. Во многом благодаря поддержке РНФ была создана и моя собственная научная группа. Для этой президентской программы горизонт — три года, после которых грант могут пролонгировать.
Сторонником такой интерпретации был и Эйнштейн, которому приписывают максиму «Бог не играет в кости». В 1960 году Джон Стьюарт Белл вывел математическое неравенство, носящее теперь его имя. Оно чётко формализует эту проблему: если существуют скрытые переменные, корреляция между результатами значительного количества измерений не может превысить некоторого предела. А квантовая механика, в свою очередь, утверждает, что в экспериментах определённого типа неравенство Белла нарушается, то есть возможна более сильная корреляция квантовых частиц. Он работал с атомами кальция, которые могут излучать спутанные фотоны при облучении их светом с определёнными свойствами. Сущность экспериментов была в измерении поляризации двух фотонов в спутанной паре при помощи специальных фильтров. После целой серии измерений удалось показать, что неравенство Белла нарушается. Ален Аспе Alain Aspect из университета Париж — Сакле и Высшей школы политехники развил схему эксперимента, устранив некоторые подводные камни.
Он использовал новый способ возбуждения атомов, так, что удалось добиться более высокой интенсивности испущенных фотонов. Более важно, что он нашёл способ переключения схемы измерения после того, как спутанная пара вылетает за пределы источника. В этом случае исключается влияние на корреляцию фотонов со стороны самой установки, которая существовала в момент запуска пары. Антон Цайлингер Anton Zeilinger из Венского университета также проводил множество экспериментов по проверке неравенства Белла, усовершенствовав методику обоих предшественников.
У поставленного эксперимента была и другая цель — убедиться, что сравнительно большие сверхпроводящие системы могут обладать квантовыми свойствами.
В опыте участвовали две сверхпроводящие схемы, которые играли роль связанных частиц, тогда как обычно речь идёт о запутывании элементарных частиц типа электронов, фотонов или атомов. В эксперименте использовались объекты нашего большого мира, и они отыграли по законам квантовой физики. Это означает, что на основе сверхпроводящих макросистем можно строить квантовые компьютеры, осуществлять квантовую связь и делать много другого интересного не углубляясь до таких тонких и пугливых сверхчувствительных материй, как элементарные частицы. В этом скрыт небывалый потенциал, который учёные намерены разрабатывать дальше. Навигация по записям.
И потом с их помощью, скажем так, передаем ключ. В этом случае не происходит передачи непосредственной информации.
Мы передаем именно ключ", — пояснила кандидат физико-математических наук, доцент Московского технического университета связи и информатики Татьяна Казиева. Квантовый ключ представляет собой шифр, и передают его при помощи фотонов света — квантов. Если вы знаете шифр, а точнее, не вы, а ваш компьютер или телефон, они автоматически расшифровывают секретное сообщение.
Это может быть что угодно: электронная подпись, информация из банка или страховой компании. При этом злоумышленники добраться до них никогда не смогут. Система тут же отреагирует на любую попытку взлома.
Но это не все, на что способны кванты. Два года назад в США сумели перевести в квантовое состояние зеркала антенны массой десять килограммов. Это назвали едва ли не величайшим событием десятилетия — огромные зеркала подобно квантам находились в лаборатории и за ее пределами.
И стояли, и двигались, были и в прошлом, и в будущем. Возможно, если мы научимся вводить человека в состояние квантовой гибернации, это с успехом заменит анестезию при операции. А может быть, упростит межпланетные путешествия", — отметил директор лазерно-интерферометрической гравитационно-волновой обсерватории Массачусетского технологического института Дэвид Шумейкер.
Ключевую теорию квантовой физики наконец-то доказали. Главное
На сайте собрана основная информация о главных новостях, инициативах, проектах и мероприятиях Десятилетия науки и технологий. Новости компаний. Позднее он стал работать на стыке атомной физики и квантовой оптики, занявшись изучением бозе-эйнштейновских конденсатов и разработкой методов глубокого охлаждения атомов с помощью лазерных пучков.
Квантовые точки: что это такое и почему за них дали нобелевскую премию?
Долгожданный прорыв: квантовые вычисления стали более надежными | Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния. |
Новости квантовой физики | Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов. |
Ученые продолжили попытки понять квантовую запутанность: есть большой прогресс
свежие новости дня в Москве, России и мире. Представьте, что отпраздновать Всемирный день квантовой науки собрались все великие ученые, которые приложили руку к созданию квантовой физики. Все самое интересное и актуальное по теме "Квантовая физика". Миром станут править квантовые компьютеры", – заявил физик, популяризатор науки и футуролог Мичио Каку.
Долгожданный прорыв: квантовые вычисления стали более надежными
Премия «Вызов» призвана отметить фундаментальные прорывы, идеи и изобретения, меняющие ландшафт современной науки и жизнь каждого человека. Награда, а также 10 млн рублей были вручены российским учёным и разработчикам перспективных технологий в номинациях «Учёный года», «Инженерное решение», «Перспектива» и «Прорыв». Сохраняет и развивает ведущие инженерные научные школы страны.
Он отметил, что философия великого мыслителя не играла большой роли в физике XX века. Более того, существовало противопоставление постулатов Эйнштейна и Канта. Многие ученые утверждают, что взгляды знаменитого физика вместе с копенгагенской квантовой теорией фактически отменили труды философа.
В чем суть научного противостояния? Эйнштейн говорил, что такие понятия, как правда и красота, независимы от человека и существуют как бы отдельно от него. В то же время мы можем осознать лишь то, что видим. Это коррелирует с теорией относительности. Та же гравитация для Эйнштейна являлась искривлением пространства и времени.
Кант же воспринимал ее как некую форму интуиции. Это трансцендентальное знание, нечто, выходящее за пределы чувственного опыта, — подчеркнул доктор Эккарт Штайн. Эйнштейн тоже подвергается критике, ведь возникают дополнительные вопросы.
Но что же такое кванты и почему ученые говорят о революции? То есть, чтобы вы понимали, мир, который нас окружает, все, из чего он состоит, это элементарные частицы. И квант — это одна из элементарных частиц", — пояснил кандидат технических наук, доцент Московского технического университета связи и информатики Олег Колесников. И все это обеспечивает невероятную скорость работы суперкомпьютера.
А квинтиллион — это цифра с 18 нулями. Сравнивать скорость работы Frontier со скоростью работы вашего ноутбука, это как сравнивать скорость улитки и сверхзвукового истребителя", — отметил профессор машиностроения и физики Массачусетского технологического института Сет Ллойд. А все потому, что в основе японского чуда — не обычные процессоры, а квантовые. Ведь большинство квантовых компьютеров могут работать только при температурах, близких к абсолютному нулю, когда все замедляется и "шум" окружающей среды минимален", — рассказал руководитель группы экспериментальных квантовых вычислений компании — производителя квантовых компьютеров Джери Чоу. Но дело не только в размерах. В классических ЭВМ информация зашифрована в битах, то есть в нулях и единицах, а в квантовых — в кубитах. Один кубит — это атом или фотон — мельчайшая частица вещества или энергии.
Причем она одновременно может быть как нулем, так и единицей. Как говорят ученые, такая запутанность позволяет квантовым компьютерам, что называется, "думать" в миллиарды раз быстрее. Они позволяют получить не только количественные результаты за счет ускорения процессов, но и качественные, обеспечивая лучшую адаптацию в средах и ситуациях.
Помимо квантовых компьютеров, специалисты в России развивают квантовые коммуникации, когда информация передается с помощью квантовых состояний. Учёные создают устройства квантовой памяти и квантовых интерфейсов. Например, в МГУ работает «квантовый телефон» для связи между ректоратом и другими отделениями университета, сейчас специалисты внедряют видеоформат такой связи. Другой пример: учёные МГУ и РФЯЦ-ВНИИЭФ запускают проект по созданию квантовой космической связи — платформы с небольшими низкоорбитальными спутниками, которые обмениваются с наземным терминалом квантовой информацией для обеспечения безопасной связи.
Эта перспективная технология решает проблемы защищенной передачи информации на большой территории России; выведение первого пробного спутника на орбиту запланировано в 2024 году. Мы идёт по пути развития квантовой криптографии - квантового распределения ключе - вплоть до создания квантового интернета. Система работает полностью в автоматическом режиме, когда нет системного администратора, через которого могла бы произойти утечка информации; скорость генерации ключей может быть очень высокой, мастер-ключ может меняться тысячу раз в секунду, хотя и раз в минуту — вполне достаточная скорость для большого числа приложений, — отметил научный руководитель Центра квантовых технологий МГУ Сергей Кулик. Физик кратко упомянул и развитие технологий квантовой сенсорики — измерительных приборов на основе квантовых эффектов. Научная программа НЦФМ включает три направления исследований, посвящённых развитию вычислительных и информационных технологий. В рамках НЦФМ специалисты развивают одну из квантовых субтехнологий — квантовые коммуникации.
Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть
Все новости с тегом. Квантовые технологии. Последние новости на сайте. Новый эксперимент подтверждает краеугольное предположение о квантовых вычислениях; удваивая жизнь кубита, исследователи доказали ключевую теорию квантовой физики. Главным научным прорывом 2023 года в области квантовой физики стала разработка и проверка работы сразу нескольких квантовых компьютеров, способных автоматически корректировать случайные ошибки, возникающие в процессе их работы. квантовая физика: Последние новости. Физики из Национальной лаборатории в Брукхейвене (Brookhaven National Laboratory, BNL) открыли совершенно новый тип квантовой запутанности, достаточно известного явления, связывающего квантовые частицы. В МФТИ назвали главный прорыв года в квантовой физике. Читайте последние новости высоких технологий, науки и техники.
Новости квантовой физики
Цель эксперимента —обнаружение и изучение взаимодействий нейтрино высоких энергий внутри коллайдера. В магнитной ловушке накопили атомы антиводорода, а затем позволили им свободно падать. Перемещение атомов антивещества отслеживали по аннигиляционным вспышкам на стенках установки. Несмотря на кажущуюся простоту описания, эксперимент очень сложный, потребовавший в том числе учёта большого числа факторов, например, влияния магнитов в установке, чьё действие создаёт силу, сопоставимую с гравитационной. На пути к 120-му элементу В октябре 2023 года на Фабрике сверхтяжёлых элементов в Лаборатории ядерных реакций ОИЯИ Дубна, Россия исследователи впервые успешно синтезировали сверхтяжёлый элемент с помощью снаряда-ядра тяжелее 48Ca. В результате бомбардировки ядрами хрома 54Cr мишени из урана 238U они получили ранее неизвестный изотоп ливермория 288Lv 116-го элемента Периодической таблицы Менделеева со временем жизни чуть менее одной миллисекунды. Уникальный атом не был непосредственной целью эксперимента и стал приятной неожиданностью. Дело в том, что сверхтяжёлые элементы от 114-го — флеровия до 118-го — оганесона были синтезированы [1], [2], [3] в реакциях с пучком 48Ca, а самое тяжёлое вещество, которое можно наработать в количестве, достаточном, чтобы сделать мишень — калифорний. Слияние ядер кальция 20-й элемент и калифорния 98-й элемент как раз и образует 118-й элемент — последний из синтезированных на сегодняшний день. Чтобы получить сверхтяжёлые элементы с большим атомным номером надо использовать ядра не кальция, а элементов с большим количеством протонов. Так, для получения 120-го элемента предлагается реакция хрома 54Cr 24-й элемент с мишенью из кюрия 96-й элемент.
Исследованием этого снаряда и занят ОИЯИ. Полученный результат позволяет надеяться на успешное использование ядра 54Cr для синтеза 120-го элемента, приступить к которому ОИЯИ планирует в 2025 году. После этого, видимо, будет сделана попытка синтезировать также ещё не открытый 119-й элемент, бомбардируя Америций 95-й элемент. Рентгеновская подпись атома Команда физиков из нескольких американских лабораторий под руководством профессора Со Вай Хла Saw Wai Hla, Университет Огайо разработала метод, использующий синхротронное рентгеновское излучение для исследования отдельного атома в веществе. В качестве объекта изучения были выбраны атомы железа и тербия. Для решения этой задачи авторы работы сделали своеобразный гибрид рентгеновского спектроскопа и сканирующего туннельного микроскопа, назвав новый метод «синхротронной рентгеновской сканирующей туннельной микроскопией» SX-STM.
Его статистические результаты подтвердят либо опровергнут наличие скрытых параметров в квантово-механической теории и новаторство в области квантовой информатики. То, что происходит с одной частицей в переплетённой паре, определяет происходящее с другой, даже если обе находятся на слишком большом расстоянии, чтобы воздействовать друг на друга. Создание лауреатами экспериментальных инструментов заложило основу для новой эры квантовых технологий», — отметил нобелевский комитет. Учёные провели новаторские эксперименты, используя запутанные квантовые состояния, в которых две частицы ведут себя как единое целое, даже если их разъединить. Их результаты расчистили путь для новых технологий, основанных на квантовой информатике, считают эксперты. Мы видим, что работа лауреатов с запутанными состояниями имеет большое значение, даже помимо фундаментальных вопросов интерпретации квантовой механики», — отметил председатель Нобелевского комитета по физике Андерс Ирбек. Ален Аспе родился в 1947 году во Франции. С 1965 по 1969 годы учился в Высшей нормальной школе в Кашане и Парижском университете, с 1969 по 1971 годы был сотрудником университета Париж-юг, где занимался подготовкой диссертации по оптике. После защиты этой работы в 1971 году уехал в Камерун, где работал в Высшей нормальной школе Яунде до 1974 года.
Однако это было только начало длинной цепочки исследований. Белл в своей статье описал мысленный эксперимент, в котором могли бы быть проверены сделанные им выводы, однако его схема не годилась для реализации «в железе». Holt опубликовали работу с новой версией белловского неравенства, которая уже допускала экспериментальную проверку J. Clauser et al. Proposed experiment to test local hidden-variable theories. Эта статья, известная по ссылкам как CHSH, стала важным этапом в развитии белловского подхода к проверке основ квантовой механики. Клаузер, Аспе и другие Выполнить такую проверку удалось далеко не сразу. Изготовление и регистрация спутанных состояний — непростая задача. Первые опыты по верификации теоремы Белла проводились с поляризованными фотонами. Вместо бомовских пар спутанных электронов с нулевым полным спином в них использовали пары световых квантов с альтернативными модами поляризации например, вертикальной и горизонтальной , а вместо магнитных детекторов — поляризационные фильтры. В 70-е годы подобные эксперименты ставились несколько раз. Самые интересные результаты в 1972 году получили Джон Клаузер и скончавшийся десять лет назад его аспирант Стюарт Фридман Stuart Freedman. Они в течение двух лет построили оптическую систему, которая на практике реализовала схему, описанную в статье CHSH, — правда, в модифицированной версии. В их эксперименте использовались световые кванты, испускавшиеся возбужденными атомами кальция. Источник света был расположен в центре экспериментальной установки, смонтированной на оптической скамье. Фотоны направлялись в противоположные концы скамьи и там проходили через пары поляризаторов, ориентированных под разными углами по отношению друг к другу. Эксперимент Клаузера и Фридмана в общей сложности продолжался 200 часов и в целом подтвердил нарушение неравенства Белла, которое они переписали применительно к своему протоколу. Однако соавторы не смогли исключить все потенциальные источники «загрязнения» собранных данных паразитной информацией. Конкретно, их протокол не гарантировал, что наблюдатели на обоих концах скамьи устанавливают поляризаторы полностью независимо друг от друга. Поскольку предположение о такой независимости было важной частью теоремы Белла, итоги эксперимента Клаузера и Фридмана нельзя было считать окончательными. В середине 1970-х годов Клаузер продолжил изучение квантовой нелокальности, включая поиск обобщений теоремы Белла. Следующий шаг в 1981—82 годах сделали 35-летний аспирант Парижского университета Ален Аспе и трое его партнеров. Их экспериментальная установка с лазерной оптикой генерировала спутанные фотоны куда эффективнее и намного быстрее, нежели аппаратура предшественников. Кроме того, она была снабжена высокочастотными оптико-акустическими переключателями, которые позволяли каждые 10 наносекунд перенаправлять фотоны в различные поляризаторы и детекторы. В итоге Аспе и его партнерам удалось доказать нарушение неравенства Белла куда надежней, чем предшественникам. Конкретно, в их версии этого неравенства постулаты квантовой механики могли бы быть поставлены под сомнение, если бы значения функции S лежали в промежутке от нуля до минус единицы. Она не противоречила ожидаемому из квантовомеханических вычислений численному значению функции S, равному 0,112. Если бы их результат был выражен в терминах стандартной версии теоремы Белла, значение функции S составило бы приблизительно 2,7 — явное нарушение белловского неравенства. Результаты этого эксперимента были опубликованы 40 лет назад A. Aspect et al. Схема установки, предложенной Аспе и его коллегами. В 1982 году с ее помощью они показали нарушение неравенств Белла. Спутанные фотоны излучаются кальциевым источником L в противоположных направлениях. Расстояние между поляризаторами составляет примерно 12 м. Рисунок из статьи A. Они показали, что спутанные частицы не просто реальны, но и ощущают присутствие друг друга на вполне приличных расстояниях в экспериментах парижских физиков дистанция между поляризаторами составляла 12 метров. Однако окончательно мощь неравенства Белла была продемонстрирована в самом конце прошлого столетия с участием еще одного нобелевского лауреата этого года Антона Цайлингера. Он и члены его группы продемонстрировали нарушение этого неравенства на дистанции 400 метров, причем для обеспечения полной стохастичности они применили квантовые генераторы случайных чисел G. Weihs et al. Правда, даже им всё же не удалось окончательно разделаться с подводными камнями, возникавшими при тестировании квантовой нелокальности. Контрольные эксперименты этого рода с другими протоколами еще не раз ставились и в нашем столетии, причем опять-таки не без участия Цайлингера. Работа Аспе сильно подхлестнула и теоретические, и экспериментальные исследования всё более сложных спутанных состояний. В конце 80-х годов американцы Дэниэл Гринбергер Daniel Greenberger и Майкл Хорн Michael Horne вместе c Антоном Цайлингером и при участии Абнера Шимони Abner Shimony теоретически показали, что опыты с тройками спутанных частиц демонстрируют особенности КС много лучше, чем «парные» эксперименты это так называемая квантовая нелокальность Гринбергера — Хорна — Цайлингера, см. Greenberger—Horne—Zeilinger state. Подтверждение этому пришло лишь в 1999 году, когда в лаборатории Цайлингера в Венском университете впервые создали спутанные триады, опять-таки фотонные J. Pan et al. Experimental test of quantum nonlocality in three-photon GHZ entanglement. С тех пор число спутанных в лаборатории частиц стало быстро расти. Например, в конце 2005 года физики из американского Национального института стандартов и технологий изготовили шестерку спутанных ионов бериллия. А уже в январе 2006 года немецкие ученые сообщили, что им впервые удалось «спутать» атом с фотоном. Но это уже другая история. Исследования Цайлингера также стали важным этапом на пути разработки методов, позволяющих переносить состояние одной квантовой частицы на другую — так называемой квантовой телепортации. Один из самых первых экспериментов этого рода он вместе с коллегами осуществил еще до своей новаторской проверки нарушения неравенства Белла D. Bouwmeester et al. Experimental Quantum Teleportation. Используя квантовую спутанность частиц, такие операции можно производить практически с нулевой вероятностью ошибок. Эти методы нашли применение в разработке протоколов квантовой криптографии. Цайлингер также приложил руку как к созданию теоретической концепции так называемого обмена спутанностью entanglement swapping , M. Zukowski et al. Event-ready detectors: Bell experiment via entanglement swapping , так и к ее первой экспериментальной реализации J. Experimental entanglement swapping: entangling photons that never interacted. Схема эксперимента, реализующего обмен спутанностью. В начальном состоянии квантовая система состоит из четверки фотонов, которые приготовляются в виде двух спутанных пар. Оптическая система белловского типа включает четыре канала, в каждый из которых поступает один фотон. Фотоны первой пары идут в каналы 1 и 2, второй — в каналы 3 и 4. Одновременное измерение производится над фотонами, вошедшими в каналы 2 и 3, в результате чего фотон из второго канала телепортируется в четвертый. В результате эксперимента фотоны в каналах 1 и 4 образуют спутанную пару, хотя физически они друг с другом никак не взаимодействовали. Такой исход эксперимента полностью противоречит интуиции, основанной на нашем обитании в мире классической физики, однако он совершенно реален. Рисунок из пресс-релиза Нобелевского комитета, с сайта nobelprize. Кому это нужно? Исследование феномена КС имеет множество практических выходов. Система спутанных частиц, как бы сильно она ни была размазана по пространству, — это всегда единое целое. Поэтому такие системы — буквально золотое дно для информатики.
Но качество операций лучше на ионной платформе». До конца этого года должны успеть 50 сделать. Посмотрим, может быть, получится и больше», — добавил Юнусов. Квантовые компьютеры в будущем будут использоваться для решения задач, с которыми не могут справиться привычные нам электронные вычислительные машины. Это, например, моделирование природных процессов или очень сложные математические расчеты. Перспективным и активно развивающимся также является направление квантового машинного обучения.