Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется. Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов. Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение.
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях. Его установят в клинике города Кливленд в США. Он поможет выявлять новые штаммы вирусов и займется поиском лекарств от болезни Альцгеймера. Но есть и опасения по поводу новой технологии. Наталья Малеева, старший научный сотрудник криолаборатории электронных систем НИТУ МИСиС: «Квантовый компьютер — это разложение больших чисел на простые множители, это несортированный поиск. Обе эти задачи часто вспоминаются в приложении к современной криптографии. Недавно китайские ученые заявили, что им хватило десяти кубитов для взлома 48-битного алгоритма шифрования. Подобный метод, хотя и посложнее, применяют в защите наших банковских счетов». Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «В какой-то.
Gambetta, Jerry M. А манипуляции с двумя связанными кубитами ученые уже научились проводить с очень и очень высокой точностью. Разумеется, квантовые алгоритмы, составленные из двухкубитных вентилей, получаются в разы длиннее своих многокубитных версий, однако фундаментальной проблемы в этом нет. Нужно просто иметь квантовые процессоры с достаточно длинным временем когерентности и достаточно быстрыми одно- и двухкубитными гейтами для выполнения сотен-тысяч элементарных квантовых операций за один вычислительный цикл. Пример разложения 3-кубитного гейта на последовательность 2-кубитных операций. Фраза «нужно просто иметь квантовые процессоры с нужными характеристиками» из конца прошлой главы звучит довольно неплохо и, в целом, это выполнимо. Но есть нюанс. Это значит, что в среднем на сотню правильно выполненных операций будет приходиться одна ошибочная.
В полномасштабном квантовом компьютере, выполняющем сложный квантовый алгоритм, такие ошибки будут быстро накапливаться, приводя к выдаче неправильных результатов вычислений. При этом существенно повысить точность двухкубитных квантовых гейтов в многокубитных квантовых процессорах пока не представляется возможным. К счастью, многие недостатки компьютерного «железа» можно зачастую решить программными методами. Например, физические ошибки, возникающие в классических компьютерах или линиях передачи данных, детектируются и исправляются с помощью действующих в реальном времени алгоритмов коррекции ошибок, разработанных еще в середине 20 века. Похожие алгоритмы были предложены пару десятилетий назад и для квантовых систем. Например, уже упомянутый выше Алексей Китаев в 1998 году предложил так называемый «поверхностный код» англ. Общая идея такого подхода коррекции ошибок довольно проста — соседние физические кубиты объединяются в логические блоки, каждый из которых в дальнейшем используется квантовым алгоритмом в качестве «логического кубита». При этом, если каждый логический блок содержит достаточно большое количество физических кубитов, то, даже несмотря на периодически возникающие в них физические ошибки, уровень ошибок логического кубита можно сделать сколь угодно низким.
Сколько же таких логических, безошибочных кубитов нужно, чтобы запустить какой-нибудь полномасштабный квантовый алгоритм? Возьмем, для наглядности, все тот же нашумевший алгоритм Шора, обещающий взломать интернет. Текущие методы криптографической защиты данных используют ключи шифрования, состоящие из тысячи бит, что потребует несколько тысяч логических кубитов для его эффективной факторизации разложения на множители. Учитывая количество требуемых квантовых операций и желаемый уровень возникновения ошибок, каждый такой логический кубит должен состоять из примерно тысячи физических кубитов. Перемножая эти два числа, мы получаем оценку в миллион физических кубитов, необходимых квантовому компьютеру для выполнения алгоритма Шора. Миссия выполнима? С учетом того, что самые мощные существующие квантовые процессоры оперируют десятками кубитов, желаемый миллион кубитов выглядит несколько заоблачно. Однако, если посмотреть на историю развития традиционной индустрии полупроводниковой электроники, то можно увидеть пример такого инженерного чуда, позволившего увеличить количество транзисторов на чипах с нескольких сотен в конце 1960-х годов до десятков миллионов в конце 1990-х.
Технологический скачок, необходимый для такого масштабирования, по сложности и объему инвестиций можно сравнить разве что с выходом человека в космос или высадкой на Луну. Существенно отличается лишь количество участников. Многие из игроков этого высокотехнологичного рынка представили и регулярно обновляют «дорожные карты» по развитию своих квантовых платформ. Например, компания IonQ, создающая квантовые процессоры на ионах в ловушках, планирует создать полноценный квантовый компьютер с тысячью логических кубитов необходимых для запуска серьезных алгоритмов уже к 2028 году. Лидеры направления сверхпроводящих кубитов, Google и IBM, дают чуть более размытые прогнозы, обещая создать квантовые процессоры с тысячью физических кубитов в ближайшие пару лет и, отработав на них алгоритмы коррекции ошибок, достигнуть отметки в тысячу логических кубитов до конца десятилетия. Похожие амбиции и у многих государственных программ, нацеленных на создание квантового компьютера. Лидером по объему инвестиций по праву можно считать Китай, вложивший в свою национальную квантовую программу более 10 миллиардов долларов еще в 2016-2017 годах. Сейчас эти вложения начинают приносить первые результаты, особенно заметные по прорывным статьям из Китайского университета науки и технологий в Хэфэе University of Science and Technology of China, Hefei.
Пытается догнать Китай и национальная квантовая инициатива в США с бюджетом чуть более миллиарда долларов, направленных на создание новых федеральных лабораторий. Сравнимые бюджеты выделили на развитие квантовых технологий и отдельные европейские страны, а сам Евросоюз еще в 2018 году запустил миллиардную программу Quantum Flagship, направленную на поддержку совместных проектов по квантовым технологиям по всей Европе. Общий объем инвестиций в этот быстро растущий рынок оценивается в 25 миллиардов долларов, что сопоставимо с бюджетом американской лунной программы 1960-х годов.
Существует, однако, одна область, в которой приход квантовых вычислений может совершить мини-революцию. Эта область — химия. До этого химия была по большей части эмпирической наукой, которая основывалась не на строгих теоретических моделях, а на многочисленных опытных данных. Существовали определённые правила, по которым можно было пытаться предсказывать исход новых химических реакций, но эти правила были далеки от совершенства и в лучшем случае давали только грубое приближение, а зачастую предсказывали совершенно неверный результат. Единственным способом проверить, будет ли та или иная потенциально полезная реакция работать, было непосредственное проведение эксперимента. И если в неорганической химии в силу её большей простоты это ещё как-то работало, то в химии органических веществ большинство открытий совершалось или случайно, или в результате долгой кропотливой работы по перебору большого количества реагентов.
В 1920-е годы учёные создали квантовую физику — инструмент, который в принципе позволяет рассчитывать результаты химических реакций на бумаге. Проблема, однако, заключается в том, что точный расчёт даже в простейших случаях требует совершенно немыслимых временных затрат. И даже развитие компьютерных технологий не позволило в полной мере решить эту проблему. Задачу квантового расчёта того, как двигаются молекулы, — а именно это требуется для химических реакций — относят к классу экспоненциально сложных. На практике это означает, что такие задачи не могут быть решены ни сейчас, ни в каком-либо обозримом будущем при поступательном развитии технологий вычислений. Поэтому для расчёта химических реакций применяются приближённые методы. Сначала они были относительно простыми и не очень точными, но со временем их точность повышалась, а сложность росла. Их изучением и развитием занимается вычислительная квантовая химия. Сейчас каждый год собираются огромные конференции, на которых тысячи учёных делятся последними достижениями в этой области.
И хотя компьютеры могут уже очень многое — вплоть до предсказания эффективности действия инновационного лекарства — последнее слово, как и 100 лет назад, остаётся за экспериментами. Все вычисления будут делать квантовые симуляторы, и будут делать их точнее и быстрее, чем мы». Чего же так боятся квантовые химики? Идея квантовых симуляторов восходит к статье знаменитого физика Ричарда Фейнмана, опубликованной в 1982 году.
В январе 2024 г. Ранее D-Wave заявляла также о важных результатах исследований, демонстрирующих успешное устранение квантовых ошибок QEM в прототипе Advantage2. Проблема квантовых систем в том, что они страдают от вычислительных ошибок из-за шума в окружающей среде. Российские достижения Российские разработчики тоже работают над квантовыми технологиями, но соревнуются пока внутри страны.
Ученые из МФТИ сообщили о запуске первого российского 12-кубитного квантового процессора в январе 2024 г. Для практического применения и достижения конкурентного преимущества необходим квантовый процессор минимум из 100 кубитов.
Что такое кубит?
Это позволит решать задачи точного расчёта химических реакций за разумное время и заменить дорогостоящие прямые эксперименты на более дешёвые вычисления. Более того, одна из проблем квантовых компьютеров — разрушающее действие окружающей среды, не позволяющее подолгу сохранять квантовую суперпозицию, — в квантовых симуляторах может быть использовано для пользы дела. Ведь реальные квантовые системы тоже находятся в окружении других тел, которые точно так же разрушают квантовые эффекты в них. Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. Применение квантовых симуляторов Сейчас уже созданы первые, самые простые квантовые симуляторы. Так, в 2010 году группа экспериментаторов из Квинслендского университета в Австралии и Гарвардского университета в США сообщила, что им удалось рассчитать свойства самой простой молекулы — молекулы водорода — с достаточной для химиков точностью при помощи квантового симулятора, кубиты которого были основаны на «частицах» света — фотонах. Молекула водорода пока остаётся основным объектом, который исследуют на квантовых симуляторах, но сами симуляторы при этом с каждым годом улучшаются.
Работа ведётся в нескольких направлениях. Во-первых, учёные пробуют разные реализации квантовых симуляторов. В качестве кубитов могут быть использованы охлаждённые до сверхнизких температур атомы, отдельные электроны или ядра некоторых атомов, сверхпроводящие кольца или, как в работе 2010 года, фотоны. Каждая из этих реализаций имеет свои особенности. Например, системы на охлаждённых атомах требуют больших и относительно дорогих установок, хотя и удобны с точки зрения управления состоянием кубитов. Системы на основе ядер, управляемых при помощи эффекта ядерного магнитного резонанса, относительно просты, но, наоборот, не обладают достаточной гибкостью управления.
Этой проблемы лишены системы, основанные на электронах, пойманных в так называемые квантовые ямы в полупроводниках. Именно они являются сейчас одним из наиболее перспективных направлений с точки зрения технологичности и дешевизны производства. В некоторых приложениях более удобны системы на основе сверхпроводящих колец, которые, однако, имеют относительно большой размер, и поэтому вряд ли удастся создать их с большим количеством кубитов. Другое направление, в котором развиваются современные исследования квантовых симуляторов, — разработка более эффективных алгоритмов, в том числе алгоритмов, способных исправлять или как минимум подавлять неизбежные в подобных системах ошибки. Ну и, конечно, улучшаются методы работы с кубитами: увеличивается время их работы, возрастает гибкость настройки квантовой системы и количество контролируемых параметров. Всё это уже в скором времени приведёт к тому, что квантовые симуляторы начнут применять к реальным сложным ситуациям, к химическим веществам и реакциям, которые в данный момент неподвластны даже самым точным нашим расчётам.
Обычно о важности той или иной технологии говорит интерес к ней правительства. Германия, Канада, Индия и Япония тоже тратят существенные суммы. Уникальные наработки есть и в России, а суммарные инвестиции можно оценить почти в 30 млрд рублей. Возможно, скоро о квантах будут говорить активнее, поэтому пора разобраться в основных терминах. Начнем с относительно простого примера Сначала разберемся, как работает обычный компьютер. Классическая детская задача про волка, козу и капусту вполне подходит для этого. Напомним условия: крестьянину нужно перевести троицу на другой берег в лодке, которая кроме хозяина вмещает еще один объект.
При этом человек не может оставить наедине ни волка с козой, ни козу с капустой по понятным причинам. Если решать задачу с помощью обычного компьютера, можно использовать 4-битную систему, в которой 0 или 1 будут означать берег — левый и правый соответственно. Например, запись вида 0000 означает, что все находятся на левом берегу, а 1000 — что крестьянин уплыл один, бросив имущество. Единственно верным первым шагом при решении, как мы знаем, будет перевозка козы — это комбинация 1001. Чтобы ПК понял, что именно этот шаг верный, он должен перебрать все варианты по очереди, последовательно пребывая в каждом из 16 состояний. Квантовые компьютеры используют для хранения информации кубиты, которые могут принимать значение 0 и 1 по отдельности, а также 0 и 1 одновременно. То есть они могут пребывать во всех 16 состояниях сразу — это называется суперпозицией в противовес двоичной позиции в обычных устройствах.
Для примера мы использовали простую задачу, но представьте, если состояний не 16, а триллион, и вам нужно найти среди них одно. Даже если обычный компьютер будет обрабатывать каждое состояние за 1 микросекунду это миллионная доля секунды , ему понадобится не меньше недели на решение задачи. Квантовый компьютер справится за 1 секунду, действуя по алгоритму Гровера. Еще раз: что такое квантовый компьютер? Квантовый компьютер — новый тип устройств, он использует в своей работе принципы квантовой механики. Это раздел науки, которая изучает поведение атомов и еще более мелких субатомных частиц: фотонов, электронов, нейтрино.
Проблема квантовых систем в том, что они страдают от вычислительных ошибок из-за шума в окружающей среде. Российские достижения Российские разработчики тоже работают над квантовыми технологиями, но соревнуются пока внутри страны. Ученые из МФТИ сообщили о запуске первого российского 12-кубитного квантового процессора в январе 2024 г. Для практического применения и достижения конкурентного преимущества необходим квантовый процессор минимум из 100 кубитов.
В феврале 2024 г. Мы его реализовали на ионной платформе.
По словам заведующего лабораторией квантовых информационных технологий НИТУ МИСИС Алексея Фёдорова, куквинт хорош тем, что его состояние позволяет уменьшить количество физических носителей в виде кубитов и упростить декомпозицию многокубитных вентилей гейтов — сложных операций с кубитами. В итоге в квантовой системе можно сократить число двухчастичных гейтов, которые в работе используют две физические системы. В представленном на страницах Entropy примере специалисты показали, как можно реализовать модель декомпозиции обобщенного вентиля Тоффоли обобщенную на n-кубитов версию вентиля контролируемое НЕ. С помощью этого алгоритма можно построить любую обратимую классическую логическую схему, например, классический процессор.
Оказалось, что при использовании кудитов, в частности куквинтов, для реализации 8-кубитного алгоритма Гровера требуется выполнить 88 двухчастичных гейтов против более 1000, когда работа строится на стандартных кубитах.
Кудиты лучше кубитов? Российские учёные доказали превосходство отечественной технологии
или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации. В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры. Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. Поисковые системы интернета переполнены запросами: «наука и технологии новости», «квантовый компьютер новости», «что такое кубит, суперпозиция кубитов?», «что такое квантовый параллелизм?». Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы.
Квантовые компьютеры: как они работают — и как изменят наш мир
Кубит может хранить намного больше информации, чем классический бит. С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами. Кубит, минимальная единица передаваемой или хранимой квантовой информации, аналогичная биту в классической информации.
Что такое кубит?
Им были предложены тесты, с которыми квантовые, имея всего несколько десятков кубитов, справились за несколько минут. Так вот суперкомпьютерам они оказались вообще не под силу. Безоговорочная победа? Значит, квантовые машины уже сейчас можно выпускать в "люди"? Руслан Юнусов: Увы, к этому мы еще не пришли.
Да, квантовый победил, но в специальных, абстрактных тестах. А вот для реальных задач в промышленных масштабах он пока не приспособлен. Не может соперничать с традиционными компьютерами. Для этого нужны системы с многими тысячами, а возможно, миллионами кубит.
Но если уже собрали вычислитель из сотен кубитов, почему нельзя, как в конструкторе ЛЕГО, объединить десятки тысяч, миллионы? Руслан Юнусов: Собрать, конечно, можно, но есть проблема - надежность. И она сейчас является ключевой. Чем больше мы хотим объединить кубитов, тем сильней они влияют друг на друга.
Как следствие, начинают вылезать ошибки. Понятно, что нам нужны точные, безошибочные вычисления. Кроме того, в отличие от работы кремниевого устройства квантовые состояния довольно неустойчивые. Для защиты от разных внешних воздействий необходимы специальные условия.
Все это дает повод скептикам утверждать, что собрать одновременно много кубитов и обеспечить надежность, безошибочную работу такой большой системы никогда не удастся. Либо одно, либо другое. Но с таким же упорством скептики заявляли, что никогда не удастся достичь квантового превосходства, а это произошло. Важно, что таких примеров становится все больше.
Ключевой вопрос Квантовая криптография обеспечит полную защиту информации. Фото: iStock У лидеров собраны системы из сотен кубитов, движутся к тысячам, у нас 16. Грустная цифра. Руслан Юнусов: Год назад, когда у нас было 4 кубита, а у них сотни, я бы признал, что мы сильно отстаем.
Сейчас ситуация кардинально иная. Важно, что мы не только достигли 16 кубитов, главное - есть четкое понимание, как к концу 2024 года выйти на сотню, а затем и на тысячи кубитов. А также достичь квантового превосходства. На самом деле число кубитов - не самоцель.
Как я уже говорил, надо иметь не просто много кубитов, а много хороших кубитов. Например, ионный процессор одного из наших зарубежных коллег всего на 20-30 кубитах бьет системы с сотнями кубитов. И мы знаем, как из наших 16 сделать такую же точную систему. Реализовав "дорожную карту", рассчитанную до конца 2024 года, значительно сократим отставание от лидеров.
Это связано и с настройками, и с созданием такой программы. Именно достоверность лимитирует сложность алгоритма. Точнее сказать пока не могу: не проверяли. Модернизировав адресацию и считывание, мы повысили число кубитов, с которыми можно работать. Мы занимаемся и улучшением достоверности. На сегодня она лимитирована двумя факторами. Это значит, что у нас есть только одна частота, и на ней вся мощность. Чем меньше шумов в лазере, тем выше достоверность.
Задача нетривиальная, в мире не так много людей умеют это делать. Это одни из самых точных и чистых спектральных лазеров в мире. Он изготовлен, идет измерение характеристик и калибровка. После того как мы поставим новый, немного изменим систему привязки к нему лазера. Хотим использовать схему injection locking. Смысл такой: берем свет, прошедший через резонатор, и заводим его в лазерный диод, и этот лазерный диод начинает генерировать точно такое же излучение, какое прошло через резонатор. Излучение, пройдя через резонатор, становится очень чистым. В итоге мы глубоко улучшаем лазерную систему, которая используется для взаимодействия с ионами.
Нам надо, чтобы они двигались всегда одинаково, а сейчас они двигаются в течение большого промежутка времени — дня например, немного по-разному. С высокой достоверностью — В целом удается повысить достоверность? Мы далеко продвинулись, но последние проценты всегда самые сложные. Мы также увеличиваем время когерентности нашей системы, модернизируя систему компенсации магнитного поля вблизи иона. Добиваемся, чтобы магнитное поле было одинаковым и стабильным. Раньше мы для этого использовали катушки и прецизионные источники тока, сейчас переходим на постоянные магниты.
Считается, что квантовый компьютер, манипулируя отдельными атомами, лучше справится с созданием новых материалов и новых лекарств. Он сможет взломать системы современного шифрования, но в то же время квантовая криптография защитит информацию на фундаментальном уровне. Ждут появления полноценного квантового компьютера финансисты и климатологи. Первым он крайне необходим для моделирования рынков и финансовых операций, вторым - для составления более точных сценариев климата и прогнозирования погоды. Даже самый мощный суперкомпьютер, по сравнению с квантовым, больше напоминает примитивный калькулятор Но я назвал только то, что мы знаем уже сейчас. Вы удивитесь, но на самом деле мы даже не представляем, на что по большому счету способен квантовый компьютер, в какие сферы он может проникнуть. Так происходит с большинством прорывных технологий. Руслан Юнусов: Да, аналогичная ситуация была когда-то с обычными компьютерами. Их авторы создавали устройства под вполне конкретные задачи. Они были уверены, что жителям Земли, чтобы решить свои проблемы, достаточно примерно тысячи таких машин. Однако новые задачи стали расти как грибы после дождя. Если бы в 50-е годы создателям компьютеров сказали, что через 70 лет основные мощности компьютерного времени будут потрачены на игры или на майнинг криптовалют, они посмеялись бы над подобной ересью. Не сомневаюсь, что такая же история повторится и с квантовыми компьютерами. Эта техника будет совершенствоваться, начнет проникать в самые разные сферы жизни, кардинально их меняя. А когда это произойдет, когда квантовый компьютер станет достаточно мощным, те страны, у которых его не будет, окажутся неконкурентоспособными. А это уже вопрос не только технологического суверенитета, но и национальной безопасности. Поэтому ведущие государства активно включились в гонку, вкладывая в разработки миллиарды долларов. Что такое квантовый "рубильник" Итак, квантовый компьютер сулит революцию, какую когда-то совершил в нашей жизни традиционный. Можно на пальцах объяснить его суть? Руслан Юнусов: Чтобы было понятней, начну с классического компьютера. Сегодня каждый школьник знает, что для кодирования информации применяется двоичная система с "0" и "1". Они реализуются в транзисторе, у которого есть два положения: "включен" и "выключен". В любом смартфоне таких "рубильников" несколько миллиардов. Принципиально важно, что в каждый момент времени каждый из миллиарда "рубильников" может быть только в одном положении. Это наименьшая единица информации - один бит. В квантовом компьютере все иначе. Квантовый бит кубит может быть одновременно и в состояниях "0" и "1", и во всех их комбинациях. Кубит - это элементарная единица информации в квантовых вычислениях. Конечно, с точки зрения большинства людей, это звучит совершенно невероятно, но квантовая физика открывает такую возможность. Именно она позволяет квантовому компьютеру за счет параллельного выполнения сразу нескольких операций быстро решать задачи, которые не по силам мощному суперкомпьютеру. Самое главное, что квантовый выбирает из множества вариантов решения по-настоящему лучший, а не просто оптимальный. Основа традиционного компьютера - кремниевый транзистор, а на чем строится квантовый? Руслан Юнусов: Здесь пока ситуация неопределенная.
Исследователи заморозили газообразный неон в твердое тело при очень низких температурах, распылили электроны из лампочки на твердое тело и захватили там один электрон, чтобы создать кубит. Ученые всего мира спешат разработать компьютер нового типа, основанный на использовании квантовых битов, или кубитов, которые могут одновременно быть 0 и 1 и когда-нибудь сможет решать сложные задачи, недоступные любым классическим суперкомпьютерам. Теперь группа исследователей объявила о создании новой кубитной платформы, которая открывает большие перспективы для превращения в будущие квантовые компьютеры. Ученые создали свой кубит, заморозив газообразный неон в твердое тело при очень низких температурах, распылив электроны из лампочки на твердое тело и захватив там один электрон. Хотя существует множество вариантов типов кубитов, команда выбрала самый простой — один электрон. Нагрев простой световой нити, такой как в детской игрушке, может легко выпустить безграничный запас электронов. Одним из важных качеств кубитов является их способность оставаться в состоянии 0 или 1 одновременно в течение длительного времени, что известно как «время когерентности». Это время ограничено, и этот предел определяется тем, как кубиты взаимодействуют с окружающей средой.
Квантовые компьютеры. Почему их еще нет, хотя они уже есть?
Еще одна хорошая новость — логические операции с большим массивом кубитов всегда можно представить в виде последовательности двухкубитных операций. Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. Кубит (q-бит, кьюбит, кубит; от quantum bit) — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений. С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами. Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений.
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
Кубиты в квантовом компьютере расположены не слишком далеко, однако именно запутанность связывает их в единую, согласованно реагирующую систему. Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. В качестве физического кубита используются фотоны, нейтральные атомы, ионы, квантовые точки, примеси в кристаллах.