Универсальная газовая постоянная численно равна работе расширения, которую выполняет 1 моль газа при его нагревании на 1K при постоянном давлении. Универса́льная га́зовая постоя́нная — константа, численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К. Равна. Единицей измерения универсальной газовой постоянной в системе СИ является Дж/(моль*К). Ее значение с точностью до трех знаков после запятой равно 8,314. Газовая постоянная универсальная (молярная) (R) фундаментальная физическая константа, входящая в уравнение состояния 1 моля идеального газа: $pv=RT$.
Уравнение состояния идеального газа
у англосаксов) в различных системах измерения = в различных размерностях. КлапейронаУравнение Менделеев. Постоянная Больцмана определяется как отношение универсальной газовой постоянной к числу Авогадро.
Чему равна универсальная газовая постоянная: формула
Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия. Это означает, что в таких системах прекратились все наблюдаемые макроскопические процессы. Важным свойством термодинамически равновесной системы является выравнивание температуры всех ее частей. Понятие о термодинамической системе Соотношения неопределенностей и их физические следствия Рассмотрим отклонение результата измерения координаты от среднего значения, то есть абсолютную погрешность координаты:. Так как , то за меру отклонения индивидуальных измерений от среднего значения принимают не , а среднее квадратичное отклонение. Термодинамической системой называется совокупность материальных тел, взаимодействующих, как между собой, так и с окружающей средой.
Газовая постоянная r формула. Газовая постоянная единицы измерения. Универсальная молярная газовая постоянная. Универсальная газовая постоянная 8,314. Газовая постоянная природного газа. Газовая постоянная смеси. Газовая постоянная формула. Постоянная газовая постоянная. Молярная газовая постоянная физика кратко.
Универсальная газовая постоянная и газовая постоянная. Универсальная газовая постоянная для идеального газа. Универсальная газовая постоянная 2. Формула универсальной газовой постоянной. Характеристическая газовая постоянная. Универсальная газовая постоянная в Дж моль. Универсальная газовая постоянная равна Дж моль к. Универсальная газовая постоянная 8. Универсальная газовая постоянная.
R универсальная газовая постоянная. Постоянная оащовая постоянная. R — молярная газовая постоянная. Универсальная газовая постоянная формула химия. Универсальная газовая Константа. Удельная газовая постоянная смеси газов. Определить кажущуюся молекулярную массу смеси. Кажущаяся молекулярная масса смеси формула. Газовая постоянная.
Газовый пост. Газовая постоянная для газов. Уравнение состояния природных газов. Основные параметры состояния газа. Уравнение состояния природного газа. Удельная газовая постоянная r. Удельная газовая постоянная Размерность. Удельная газовая постоянная единицы измерения. Постоянная идеального газа.
Отношение плотностей газов в уравнении а можно заменить обратным отношением удельных объемов. Напишем уравнение состояния для. Это уравнение называют уравнением состояния Клапейрона — Менделеева, так как оно впервые было предложено Д.
Парциальным, или приведенным объемом, называется объем данного компонента vi, который он имел бы, если бы находился при полном давлении смеси и ее температуры. Понятие парциального объема необходимо для того, чтобы сравнивать разные количества газов складывать, делить. А это можно сделать только с такими объемными количествами газов, которые находятся в одинаковых условиях то есть имеют одинаковые Т и р. Согласно закону Амага. Задачей расчета газовой смеси является определение, на основании заданного газового состава смеси, газовой постоянной или средней молярной массы.
Универсальное уравнение состояния идеального газа
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов. Хорошо Студ. Изба как крупнейший сборник работ для студентов Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово. Отлично Спасательный островок Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему. Аноним Отлично Всё и так отлично Всё очень удобно.
Особенно круто, что есть система бонусов и можно выводить остатки денег.
Если ты не птица - отнесись к этим цифрам со всей серьезностью. Сжиженные газы и газы вблизи условий ожижения. Существуют уравнения состояния, описывающие так называемые "реальные газы", то есть, уравнения, учитывающие тот факт, что газы, на самом деле, состоят не из идеальных круглых и абсолютно упругих шариков, а из вполне конкретных молекул, обладающих при определенных условиях некоторым притяжением друг к другу и, в результате, могущих, при достаточно низких температурах и относительно высоких давлениях, переходить в конденсированные состояния жидкость, твердое тело. Однако универсальность и точность описания, которые обеспечивают эти уравнения, не слишком высока, а сложность самих уравнений выходит далеко за рамки школьного курса. Исходя из этих соображений, приводить их здесь не представляется целесообразным.
Поэтому мы ограничимся некоторыми общими соображениями и экспериментальными фактами, не тратя времени на их теоретическое обоснование. И конкретно сосредоточим усилия на практически важном для нас случае сжиженной углекислоты. Вот он: Понимать изображенное на этом рисунке надо так: в твердом состоянии мы кратко будем называть его "лед" вещество может находится лишь при совершенно определенных температурах и давлениях область "лед" на диаграмме. Пусть вещество находится при некоторой температуре ТА и давлении РА. Тогда на диаграмме эта ситуация может быть отмечена графически точкой точка А. Надо ясно понимать, что все газы есть пары своих жидкостей.
Когда газ пар охлаждается он превращается снова в жидкость. Этот процесс называется "конденсация" капли на крышке кипящего чайника - результат этого процесса, там пар, соприкасаясь с более холодной, чем днище чайника, крышкой, превращается обратно в воду. Она изображает процесс т. Этот процесс весьма характерен для углекислоты. Глядя на диаграмму, легко заметить, что процесс возгонки может идти только при достаточно низких давлениях, а при более высоких - переход из льда в жидкость идет обязательно через промежуточную жидкую фазу. Температура остается неизменной, а жидкость, тем не менее, испаряется.
На этом, в частности, основан процесс вакуумной сушки, широко применяемый в пищевой промышленности бульонные кубики "Магги" и прочая дребедень. Этот момент важный. В реальной жизни мы, как правило, находимся в условиях постоянного атмосферного давления и, поэтому, подсознательно считаем, что процессы перехода "лед" - "жидкость" - "газ" вызваны только нагреванием чайник - на огонь, пиво - в морозилку , но, на самом деле, фазовые переходы наблюдаются в результате действия двух факторов - изменения температуры и давления. Особый интерес представляет точка КТ на фазовой диаграмме. Это - так называемая "критическая точка". Если температура вещества выше, чем соответствующая этой точке "критическая температура", то, независимо от плотности вещества, нет возможности отличить жидкость от газа.
Представить себе такое состояние весьма трудно, так как в реальной жизни, практически мы не имеем дела с достаточно плотными веществами при температуре выше критической из-за малости атмосферного давления. Для общего развития добавим, что точка эта весьма устойчива в экспериментах по температуре, так как пока не расплавится весь лед а на это требуется некоторая энергия , дальнейшее повышение температуры вещества например, воды не происходит, даже если его подогревать. Правда, отличается "правильный ноль" от "приблизительного" лишь на доли градуса. Важно понимать, что фазовые диаграммы вышеуказанного вида характерны для всех вообще веществ, другой вопрос, что конкретный их вид, а также положение тройной и критической точек для разных веществ весьма различаются. Перейдем теперь к собственно к углекислоте. Надо ясно понимать, что представление о фазовых диаграммах мы ввели тоже несколько упрощенное, однако с углекислотой придется разобраться до тонкостей.
С громадным трудом мне удалось-таки добыть ее фазовую диаграмму, причем только из одного источника, который, в свою очередь, ссылается на другой иностранный источник, которого я не видел. Короче, достоверность сведений на этой диаграмме проблематична, однако, приблизительно на ощущения она все-таки чему-то соответствует, кроме того, другой все равно нет. Хуже того: так как она досталась мне практически безо всякого описания, я и сам не могу объяснить всех особенностей поведения углекислоты, на ней присутствующих. Поэтому, по меньшей мере половину из дальнейших рассуждений следует начинать словами: "Как я понял из отрывочных сведений …" или: "Сколько я могу догадаться …", однако для краткости изложения мы все эти периоды и красивости опустим. Итак фазовая диаграмма углекислоты: На диаграмме легко увидеть знакомые черты фазовых диаграмм вообще: тройную точку, критическую точку, линии, разделяющие области, где может существовать лед, жидкость, газ. На следующем рисунке я их выделил черным цветом.
Собственно это и есть фазовая диаграмма. Они просто наложены на ту же фазовую диаграмму для удобной привязки к ней. Причем под плотностью следует понимать усредненную плотность системы в пределах сосуда, ее содержащего. Иными словами, если в сосуде емкостью один литр при некоторых условиях содержится 0,6 кг жидкой углекислоты и 0,4кг газообразной, усредненную плотность газовой системы следует принимать равной сумме масс обоих фаз, деленную на совокупно занимаемый ими объем. Легко объяснимо поведение системы для небольших значений плотности. С повышением температуры начнется более интенсивное испарение углекислоты с поверхности жидкости, однако прирост давления будет не очень значительным, ибо если в какой-то момент испарится чуть больше жидкости, чем нужно, давление в баллоне повысится, система перейдет в область диаграммы "жидкость" и, следовательно, начнется активный процесс конденсации газообразной углекислоты то есть превращения ее обратно в жидкость.
Чуть больше испарилось - увеличивается конденсация, чуть больше сконденсировалось - увеличилось испарение. В этом случае говорят, что газожидкостная система находится в термодинамическом равновесии на границе двух своих сред - жидкости и газа.
Это одна из ключевых термодинамических характеристик идеальных газов. Численное значение Чему равна универсальная газовая постоянная в численном выражении?
Применение Знание универсальной газовой постоянной позволяет вычислять различные термодинамические параметры газов. Данное уравнение позволяет связывать между собой состояние газа, задаваемое значениями P, V, T и n. Расчеты по этому уравнению широко используются в физике, химии, в различных инженерных приложениях. История открытия Универсальная газовая постоянная была введена в обращение выдающимся русским ученым Дмитрием Ивановичем Менделеевым в 1874 году.
Он вывел ее численное значение, опираясь на закон Авогадро и данные об объеме одного моля газа при нормальных условиях.
Газ оказывает на стенки сосуда давление, одинаковое во всех направлениях. Еще одним свойством газов является их способность смешиваться друг с другом в любых соотношениях. Подобно газам, жидкости не имеют определенной формы. Жидкость принимает форму того сосуда, в котором она находится, при установившемся под влиянием силы тяжести некотором ее уровне. Однако в отличие от газа жидкость имеет собственный объем. Сжимаемость жидкостей очень мала. Для того чтобы заметно сжать жидкость, требуется очень высокое давление.
Законы идеального газа, универсальная газовая постоянная
Физический смысл R. Отклонения реальных газов от идеальных. Причины этих отклонений. Уравнение состояния реальных газов. Реальные газы — газы, свойства которых зависят от взаимодействия молекул.
В обычных условиях, когда средняя потенциальная энергия межмолекулярного взаимодействия много меньше средней кинетической энергии молекул, свойства реальных и идеальных газов отличаются незначительно. Поведение этих газов резко различно при высоких давлениях и низких температурах, когда начинают проявляться квантовые эффекты. Отклонения свойств реальных газов от свойств идеального газа объясняются наличием сил притяжения между молекулами газа и наличием определенного объема у каждой молекулы газа в кинетической теории предполагается, что этот объем пренебрежимо мал. Критическое состояние.
Они играют важную роль в обеспечении единства измерений. Стандартные образцы используются для градуировки, поверки и калибровки химического состава и различных свойств материалов механических, теплофизических, оптических и др. Передача информации о размерах единиц. Сохранность этой информации контролируется при первичной и всех последующих поверках средств измерений. Эти эталоны являются национальным достоянием, ценностями особой государственной важности. По государственным эталонам устанавливаются значения физических величин вторичных эталонов.
Среди вторичных эталонов различают: эталоны-свидетели, предназначенные для проверки сохранности государственного эталона и замены его в случае порчи или утраты; эталоны сравнения, применяемые для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличены друг с другом; эталоны-копии, используемые для передачи информации о размере рабочим эталонам. На рис. Количество ступеней от рабочего эталона до средства измерений зависит от требуемой точности передачи размера единицы и особенностей данной единицы.
Универсальная газовая постоянная R — это постоянная, которая связывает энергию молекул с их температурой. Ее значение постоянно для всех идеальных газов. Температура T представляет кинетическую энергию молекул газа. Чем выше температура, тем быстрее движутся молекулы, что приводит к увеличению давления при постоянном объеме. Основное уравнение МКТ предполагает, что газ идеальный, что означает, что молекулы газа не обладают объемом и межмолекулярными силами.
Средней в интервале температур T1 — T2 теплоемкостью тела Сm называют количество теплоты q, необходимое для повышения температуры тела на 1o 14 При уменьшении разности температур Т2 — Т1 средняя теплоемкость приближается к истинной. Если к телу подведено бесконечно малое количество теплоты dq и температура тела Т повысилась на величину dT, то отношение 15.
Газовые законы
Чему равна константа R? | Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К. |
Универсальная постоянная идеального газа | Выясним физический смысл универсальной газовой постоянной R. |
Газовые законы | Универсальная газовая постоянная равна разности молярных теплоёмкостей идеального газа при постоянном давлении и постоянном объёме: а энергия моля такого газа — на. |
Чтобы получить доступ к этому сайту, вы должны разрешить использование JavaScript.
у англосаксов) в различных системах измерения = в различных размерностях. универсальная физическая постоянная R, входящая в уравнение состояния 1 моля идеального газа: pv = RT (см. Клапейрона уравнение), где р - давление, v - объём, Т - абсолютная температура. Единицей измерения универсальной газовой постоянной в системе СИ является Дж/(моль*К). Ее значение с точностью до трех знаков после запятой равно 8,314.
Уравнение состояния идеального газа
– это универсальная газовая постоянная. Универсальная газовая постоянная равна разности молярных теплоёмкостей идеального газа при постоянном давлении и постоянном объёме. Уравнению Клапейрона можно придать универсальную форму, если газовую постоянную отнести не к 1 кг газа, а к одному киломолю. идеальная газовая постоянная, универсальная газовая постоянная или молярная газовая постоянная. Газовая постоянная (R) - это константа пропорциональности, используемая в уравнении идеального газа и уравнении Нернста. у англосаксов) в различных системах измерения = в различных размерностях.
Универсальное уравнение состояния идеального газа
Идеальная газовая постоянная (R) | Численные значения универсальной газовой постоянной (далее слово универсальная опускается) в различных единицах измерения приведены ниже [c.108]. |
Размерность универсальной газовой постоянной | Новости Новости. |
Универсальная газовая постоянная — Википедия с видео // WIKI 2 | Рассмотрим вариант решения задания из учебника Мякишев, Буховцев 10 класс, Просвещение: 3. Почему газовая постоянная R называется универсальной? |
9.2. Уравнения состояния и закономерности движения газа
Численно равная - это просто красивая формулировка, которая означает что одно число равно другому числу. Одного моля... Это количество вещества. Такая единица измерения объема. Для тех, кто не помнит, отметим, что моль - это количество вещества массой равной его молекулярной массе. Например, есть молекула водорода, состоящая из двух атомов. У неё есть стандартная масса. Значит, чтобы взять 1 моль водорода, нужно взять массу водорода, равную массе 1 молекулы этого водорода. Для каждого вещества это свой объем. Идеальный газ - это несуществующий в природе газ.
Его упрощенная модель, которая не учитывает взаимодействие между самим частицами газа, кроме их соударений друг с другом или при ударе об стенки. Почему модель? Потому что если брать газ реальный, то крыша может натурально поехать.
Повышение давления сопровождается уменьшением объема, и наоборот. Это не что иное, как закон Бойля—Мариотта — одна из первых экспериментально полученных формул, описывающих поведение газов. С другой стороны, при постоянном давлении например, внутри воздушного шарика, где давление газа равно атмосферному повышение температуры сопровождается увеличением объема. А это — закон Шарля , другая экспериментальная формула поведения газов. Закон Авогадро и закон Дальтона также являются следствиями универсального газового закона.
Этот закон представляет собой то, что в физике принято называть уравнением состояния вещества, поскольку он описывает характер изменения свойств вещества при изменении внешних условий. Строго говоря, этот закон в точности выполняется только для идеального газа.
Например, на нагревание воды необходимо затратить тепла примерно в девять раз больше , чем на нагревание до той же температуры такой же массы железа.
Таким образом, каждое вещество обладает своей теплоемкостью. Теплоемкостью тела называют количество теплоты ,необходимое для изменения температуры тела на один градус.
Одним из важных объектов изучения термодинамики является идеальный газ. Данная статья посвящена рассмотрению концепции идеального газа и единицам измерения универсальной газовой постоянной. Идеальный газ Реклама Газовое агрегатное состояние материи характеризуется хаотичным расположением частиц, расстояние между которыми значительно больше их размеров. Эти частицы находятся в постоянном движении, поэтому газ не сохраняет свою форму и свой объем. Вам будет интересно: Ретироваться — это значит уходить: толкование слова Реклама Идеальным газом называется любое вещество, размерами частиц которого и взаимодействиями между которыми можно пренебречь. В рамках концепции идеального газа считают, что любые столкновения частиц со стенками сосуда носят абсолютно упругий характер. Средняя кинетическая энергия частиц однозначно определяет температуру идеального газа.
Большинство реальных газов, которые находятся при не слишком высоких давлениях и не слишком низких температурах, можно считать с высокой точностью идеальными. Универсальное уравнение состояния Так называют уравнение, которое объединяет в рамках одного выражения все важные термодинамические параметры идеальной газовой системы. Здесь P и V - давление в паскалях и объем в метрах кубических, n и T - количество вещества в молях и температура системы в Кельвинах. Это равенство также называется уравнением или законом Клапейрона-Менделеева в честь французского физика и инженера и русского химика XIX века, которые вывели это уравнение из накопленного предыдущими поколениями ученых экспериментального опыта.
В чем измеряется универсальная газовая постоянная
универсальная физическая постоянная R, входящая в уравнение состояния 1 моля идеального газа: pv = RT (см. Клапейрона уравнение), где р - давление, v - объём, Т - абсолютная температура. Она содержит основные характеристики поведения газов: p, V и T — соответственно давление, объем и абсолютная температура газа (в градусах Кельвина), R — универсальная газовая постоянная, общая для всех газов, а n — число. Универсальная газовая постоянная численно равна работе расширения, которую выполняет 1 моль газа при его нагревании на 1K при постоянном давлении. Универсальная газовая постоянная, её физический смысл, численное значение и размерность.
Чему равна универсальная газовая постоянная: формула
Иными словами, R характеризует связь между энергией и температурой для фиксированного количества вещества. Заметим, что величина R в физике не является базовой фундаментальной константой такой, как скорость света или постоянная Планка. Поэтому с помощью выбора соответствующей температурной шкалы и количества частиц в системе можно добиться того, что R будет равно 1. Впервые постоянную R в физику ввел Д. Менделеев, заменив ею в универсальном уравнении состояния Клапейрона ряд других констант. Отметим, что хотя величина R введена для газов, в современной физике она используется также в уравнениях Дюлонга и Пти, Клаузиуса-Моссотти, Нернста и в некоторых других. Постоянные kB и R Люди, которые знакомы с физикой, могли заметить, что существует еще одна постоянная величина, которая во всех физических уравнениях выступает в качестве переводного коэффициента между энергией и температурой. Эта величина называется постоянной Больцмана kB. Очевидно, что должна существовать математическая связь между kB и R. Здесь NA - это огромное число, которое называется числом Авогадро.
Если количество частиц системы равно NA, то говорят, что система содержит 1 моль вещества.
Начнем с фиксированной температуры и рассмотрим связь давления и объема в этом случае. А процесс, в котором сохраняется температура const , называется изотермическим несложно запомнить: термос — то, что сохраняет температуру.
Умножим обе части уравнения Клапейрона на температуру: Если умножить постоянную температуру на константу, то получим тоже константу, только другую: Нам даже не нужно знать ее значение, главное, что произведение p на V каким было в начале процесса, таким и осталось в конце: Из уравнения видно: при уменьшении объема сжатии при постоянной температуре увеличивается давление, и наоборот на математике мы говорили, что такая зависимость называется обратной пропорциональностью. Мы получили это уравнение, воспользовавшись математической моделью, но еще в XVII веке эту закономерность экспериментально выявили англичанин Бойль и француз Мариотт, поэтому ее назвали в их честь законом Бойля — Мариотта: Для газа данной массы при постоянной температуре произведение давления газа на его объем постоянно. Как это выглядит на практике?
Представьте шар с мягкой резиновой оболочкой или цилиндр со скользящим поршнем, в которых находится определенная масса газа. Как добиться того, чтобы при сжатии газа его температура оставалась постоянной? Газ должен обмениваться теплотой с большим телом с неизменной температурой — термостатом см.
Сжатие газа, отвод теплоты для постоянной температуры Реально ли поддерживать таким способом постоянную температуру? Нет, для этого газ нужно сжимать очень медленно, чтобы он успевал остывать, едва начиная нагреваться. Но если не будет разности температур, то и теплообмена не будет: тепло передается от теплого холодному.
Поэтому процесс сможет протекать так: небольшими шагами сжимаем газ, чтобы на каждом таком шаге он немного нагревался и это тепло тут же забирал термостат. Постоянная температура — это приближение, тем не менее достаточно точно описывающее реальный процесс и позволяющее решать задачи. Зафиксируем второй параметр — давление, при этом меняться будут температура и объем.
Разделим обе части уравнения Клапейрона на давление: Если разделить константу на постоянное давление, то получим тоже константу: А если рассмотреть объем и температуру в начале и в конце изобарного процесса, можно записать: Из уравнения видно: при увеличении температуры нагревании при постоянном давлении увеличивается объем газ расширяется , и наоборот, при охлаждении — сжимается. Это пример прямой пропорциональности. До того как вывели этот закон математически, его экспериментально получил Гей-Люссак это двойная фамилия одного человека, французского ученого , поэтому его назвали законом Гей-Люссака: Для данной массы газа при постоянном давлении отношение объема к температуре постоянно.
Пример реального процесса, который можно описывать как изобарный: газ, который находится в цилиндре под поршнем, который свободно перемещается и на который снаружи действует постоянное давление, например атмосферное. Тогда, если нагреть этот газ, он будет расширяться, но давление как было равным атмосферному плюс давление самого поршня , так и останется. На самом деле, если давление газа совсем не будет увеличиваться, у поршня не будет причин двигаться, давления будут все время уравновешены.
Так что давление немного увеличивается, но под его действием поршень сдвигается вверх, и оно тут же понижается до прежнего значения.
Измерение R было получено путем измерения скорости звука ca P, T в аргоне при температуре T тройной точки воды при различных давления P и экстраполяция до предела нулевого давления c a 0, T. Однако после переопределения СИ в 2019 базовые единицы , R теперь имеет точное значение, определенное в терминах других точно определенных физических констант. Удельная газовая постоянная.
Для тех, кто не помнит, отметим, что моль - это количество вещества массой равной его молекулярной массе.
Например, есть молекула водорода, состоящая из двух атомов. У неё есть стандартная масса. Значит, чтобы взять 1 моль водорода, нужно взять массу водорода, равную массе 1 молекулы этого водорода. Для каждого вещества это свой объем. Идеальный газ - это несуществующий в природе газ.
Его упрощенная модель, которая не учитывает взаимодействие между самим частицами газа, кроме их соударений друг с другом или при ударе об стенки. Почему модель? Потому что если брать газ реальный, то крыша может натурально поехать. Для упрощения мы рассматриваем модель. Изобарный процесс - это процесс, который протекает при постоянном давлении.
Скажем, если кипятить воду в открытой кастрюле, то процесс изобарный. Давление постоянное, так как крышки нет, а температура с объемом могут изменяться.
9.2. Уравнения состояния и закономерности движения газа
Универсальная газовая постоянная была, по-видимому, введена независимо учеником Клаузиуса А. Ф. Хорстманном (1873 г.) и Дмитрием Менделеевым, которые впервые сообщили о ней 12 сентября 1874 г. Используя свои обширные измерения свойств газов, Бесплатно читать. Рассмотрим вариант решения задания из учебника Мякишев, Буховцев 10 класс, Просвещение: 3. Почему газовая постоянная R называется универсальной? Универса́льная га́зовая постоя́нная — константа, численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К. Равна.