У динамических факторных моде-лей есть две главные характеристики, позволившие им занять доминантное положение в практике статистического наукастинга [12]: их способность опи-сать эмпирические макроэкономические данные. Наукастинг (nowcasting) и сверхкраткосрочные прогнозы погоды очень важны. это cверхкраткосрочный прогноз явлений погоды в пределах 0 – 6 ч от срока наблюдения.
Пример сборки it-метеосистемы для заказчика
- Navigation Menu
- Осадки с небольшим содержанием песка придут в Челябинскую область
- АИИС «МетеоТрасса» для автодорог — IRAM Dev
- АИИС «МетеоТрасса» для автодорог
- Росгидромет: в Москве за полтора часа выпала треть месячной нормы осадков
- ☔ТОП самых точных сайтов прогноза погоды на 2024 год
Как узнать, будет ли дождь, гроза? Смотрим карту осадков!
С тех пор она занималась подготовкой программы с прогнозом погоды. Любопытный диалог состоялся в свое время у Сталина и метеорологической службы. Сталин: «Какой процент точности ваших прогнозов? Сталин: «Тогда вам стоит говорить наоборот, и результат будет более точным». Критерии выбора источника прогнозов Благодаря современной науке мы можем узнать холодно или тепло на улице и брать ли с собой зонт, не выходя из дома, какую одежду надевать. Самые точные предсказания — те, что составлены на ближайшие три дня. Если прогнозируемый срок выше трех дней, то можно более-менее точно сориентировать по температуре воздуха, но не по осадкам.
При поиске сайта стоит обратить внимание на: Период прогнозирования. Если он больше семи дней, его нельзя назвать достоверным. Есть источники, способные спрогнозировать метеорологическую обстановку на несколько месяцев вперед. Рассчитывать на то, что это будут точные сведения, также не приходится. Есть ресурсы, которые рассказывают о погоде не только посредством цифр. Раздел «ощущения» поможет понять какую одежду выбрать для выхода на улицу.
Два градуса тепла могут ощущаться по-разному в зависимости от наличия ветра, влажности и пр.
Третий компонент наукастинга — алгоритм применения векторного поля. Здесь наука умеет довольно многое.
Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео.
Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз. Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30.
Требование было следующим: предсказывать радарные данные где-то на два часа вперед. Предсказания получались вот такие. Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте.
Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем. Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно.
На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты. Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются.
На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке.
С одной стороны, оно способствовало накоплению ошибок. Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4.
Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически?
Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции. Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т.
Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше. Алгоритмически гораздо лучше находить векторное поле с помощью минимизации. Оно быстрее работает, не требует обучения.
Самое интересное — оно не требует всех данных. Можно пропустить какие-то данные — а радары довольно часто запаздывают.
В переводе с древнегреческого это означает «небесные предметы» — поскольку философ считал солнце, звёзды, кометы и дожди явлениями одной природы. Старейшие из дошедших до нас метеорологических записей — это глиняные дощечки из Вавилонии, хранящиеся теперь в Британском музее, в Лондоне.
На них записаны различные приметы погоды большей частью связанные с урожаем. Например, такие: «Когда гром гремит в месяце Себат, то появится саранча» или «Когда солнце окружено кругом, то пойдёт дождь». Под кругом имеется в виду солнечное гало, атмосферное оптическое явление — древний признак ухудшения погоды. Гало и на самом деле может означать, что будет дождь, поскольку эта радужная сфера образуется от сверкания кристалликов льда в облаках на высоте около 5 км, которые относятся к плотным тёплым облакам зимой — снежным, летом — дождевым.
О погоде много писали астрологи Индии и Китая. И даже Гиппократ посвятил этой теме отдельный труд. Первым термометром была стеклянная трубка с полым шаром на конце, а другой конец стоял в воде. Он был похож на барометр, только воздух из трубки не откачивался, а служил детектором температуры.
Остывая, воздух в шаре сжимался, и вода поднималась, а при её повышении происходило обратное. Показания такого термоскопа зависели не только от температуры, но и от давления, поскольку прибор не был запаян. Нужно было сделать приёмником температуры воду и заключить её в герметический резервуар. Исаак Ньютон пытался вывести и использовать формулы, которые помогут рассчитать погоду на несколько дней вперёд, и некоторые его расчёты до сих пор не потеряли актуальности.
Уже в XVII веке учёным было очевидно, что погода «делается» с помощью движения холодных и тёплых воздушных масс, которые встречаются между собой, всегда образуют в месте встречи возмущение атмосферы и двигаются вроде в более-менее предсказуемых направлениях. Но раз на раз не приходится — формула по-прежнему даёт сбои. Эффект бабочки, или Почему метеорологи ошибаются с прогнозами Главная проблема, как раньше, так и сейчас, состоит в изменениях, которые с этими массами или атмосферными фронтами происходят после их смешения. Они меняют и температуру, и плотность, а, значит, и двигаться начинают немного иначе.
В начале ХХ века считалось, что при смешении воздушных масс холодный фронт наступает на тёплый, а на их границе обычно выпадают осадки. Название атмосферным фронтам дал норвежский ученый Якоб Бьёркнес — он писал свою работу во время Первой мировой войны. С появлением радаров и спутников стало понятно, что движение вихревое или турбулентное и взаимное влияние воздушных потоков настолько сложное, что никаких чётких фронтов в этом движении нет. По сути, это бесконечное и хаотическое смешивание и закручивание воздушных струй.
Тем не менее движение и модель взаимодействия этих потоков рассчитываются на суперкомпьютерах с относительно высокой точностью, и в этих расчётах учтены огромные массивы данных BigData — многие сотни параметров.
Два градуса тепла могут ощущаться по-разному в зависимости от наличия ветра, влажности и пр. Многие сайты выпускают мобильные приложения. Это делает их использование удобнее. На экране смартфона, планшета или ноутбука отображается небольшое окно, в нем вся необходимая информация. Не нужно никуда нажимать. Виджеты могут быть бесплатными и платными. Среди вторых встречаются бюджетные информаторы и дорогостоящие.
Где купить? В интернет-магазине смартфона. Есть также ресурсы, которые мониторят погоду не только по городам, но и по районам. Москва, например, очень большой город, и температура в разных его частях может сильно отличаться. Конечно, источники, которые берут информацию из официальных структур, например, гидрометцентра, являются наиболее точными. В интернете распространены карты с погодными условиями на всем земном шаре. Можно увидеть какая погода в настоящий момент в разных уголках земного шара.
А можно поточнее? Как делается прогноз погоды и можно ли его улучшить?
Спутниковые снимки Спутниковые снимки облачности позволяют оценить состояние облачного покрова на обширной территории в целом, выявить некоторые его структурные особенности, а также направление движения облачности разных ярусов. Особенно важны наблюдения за кучево-дождевой облачностью, поскольку с нею связаны такие явления, как грозы, шквалы, ливни, град, торнадо, и в ряде случаев они носят локальный характер. Кроме того, кучево-дождевая облачность может развиваться весьма стремительно , что делает наблюдения по спутниковым снимкам особенно ценными. Данные радаров Карты радиолокационной отражаемости делают картину ещё более полной, поскольку с их помощью есть возможность оценить некоторые особенности внутренней структуры облачности, скрытые от любых визуальных наблюдений, а именно — интенсивность осадков, связанных с конкретной облачной структурой, и их фазовое состояние.
Расположение радаров на территории Росси приведено ниже взято отсюда Как видно, в основном они располагаются в Европейской части России. Все что дальше Урала - естественно, будет работать плохо. Поэтому для этих территорий применяют модели численного прогноза погоды вместо радаров. Посмотреть данные радаров по осадкам в реальном времени можно на accuweather. Эта модель может быть глобальной, покрывающей всю Землю, или локальной, покрывающей отдельный участок планеты.
В основе моделей лежат математические уравнения, описывающие аэро- и термодинамические процессы в атмосфере и связывающие такие параметры как плотность, скорость, давление и температуру. Эти уравнения являются нелинейными и не имеют точного решения, поэтому для их решения используются численные методы. Исходные уравнения дискретизируются во времени и пространстве и превращаются в систему линейных уравнений, связывающую наборы физических параметров в выбранных точках узлах вычислительной сетки.
Что касается детализированной сводки погоды для Челябинской области, то 27 апреля будет облачно с прояснениями, в северной половине местами пройдут небольшие дожди, днем в субботу возможны грозы. Температура воздуха предстоящей ночью плюс 4-9, при прояснении — до минус 1, днем 27 апреля — плюс 18-23.
Самым жарким днем станет воскресенье. Ночью 28 апреля ожидается плюс 10-15, преимущественно без осадков.
Ключевые слова: наукастинг, поля осадков, нейронные сети, прогнозирование ошибок, многослойный персептрон.
Введение В настоящее время, существуют различные методы прогнозирования полей осадков, применяемые по всему миру. Однако, данная система обладает ошибками прогнозирования, которые увеличиваются по мере увеличения срока прогноза [2]. Одним из способов увеличения точности прогноза, может стать прогнозирование отклонений, которые возникают в комплексных прогнозах.
Одним из методов прогнозирования может быть применение различных моделей искусственных нейронных сетей. Описание метода Исходные данные представляют из себя матрицу числовых значений, которые в дальнейшем переводятся в графическое изображение при помощи специализированного ПО [1]. Для решения задачи можно обозначить две возможные архитектуры: сверточные нейронные сети [3]; многослойные персептроны [4].
Первый тип нейросетей целесообразно применять в том случае, если мы используем данные большого размера в изначальном, матричном виде, так как сверточные нейронные сети предназначены для обработки данных, имеющих топологию в виде сетки Второй тип подойдет в том случае, если мы используем данные небольшой размерности. Например, это может быть, когда размерность была сознательно уменьшена в целях облегчения данных для тестирования новых моделей и проверки гипотез. Для использования данного метода будет необходимо использовать данные в виде одномерного массива.
Задача нейронной сети — спрогнозировать значения ошибок на основе входных данных радарных наблюдений.
Подробнее о проекте
- Наукастинг осадков на 2 часа
- Как узнать, будет ли дождь, гроза? Смотрим карту осадков!
- Система прогнозирования “Москва – Погода”
- Прогноз осадков на 2 часа (наукастинг)
осадки в Европе
Usage[edit]. Data extrapolation, including development or dissipation, can be used to find the likely location of a moving weather system. The intensity of rainfall from a particular cloud or group of clouds can be estimated, giving a very good indication as to whether to expect flooding, the swelling of a river. это процесс прогнозирования количества осадков, которые ожидаются в течение двух часов. Грозовые дожди в Новгородской области. Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. Ключевые слова: наукастинг, поля осадков, нейронные сети, прогнозирование ошибок, многослойный персептрон.
Прогноз наукастинга для городов запустил Казгидромет
это cверхкраткосрочный прогноз явлений погоды в пределах 0 – 6 ч от срока наблюдения. Грозовые дожди в Новгородской области. Решение задачи наукастинга осадков, как правило, сводится к прогнозированию следующе-го кадра видеопоследовательности, а входными данными становится серия из более чем двух последовательных изображений, что позволяет более точно моделировать нелинейные. Наукастинг осадков на 2 часа. Радар осадков и гроз. это cверхкраткосрочный прогноз явлений погоды в пределах 0 – 6 ч от срока наблюдения.
Композитная карта
Карты отображают следующие характеристики: количество осадков за период, количество осадков накопленное, температура воздуха и другие основные метеопараметры у поверхности земли и на основных изобарических поверхностях. Рекомендуемое применение Резервирование уборочной техники и работников для оперативного устранения последствий ожидаемых негативных погодных явлений ливни, снегопады, гололед, сильные порывы ветра, грозы Заблаговременная подготовка коллектива и рабочей инфраструктуры, зависимой от погоды, к эксплуатации при возникновении негативных погодных условий. Своевременное проведение профилактических работ, направленных на минимизацию рисков при негативных явлениях погоды. Планирование работ, требующих определенных погодных условий отсутствие порывов ветра, необходимое состояние рабочих поверхностей, температурные режимы, заданная влажность.
В некоторых регионах России уже прошли оранжевые дожди.
Например, вчера такие осадки выпали в Белгороде и Крыму, автомобили покрылись желтой пылью. Начальник Челябинского центра по гидрометеорологии и мониторингу окружающей среды Валерий Кочегоров пояснил, что преодолев большое расстояние африканская пыль немного рассеялась и на Южном Урале в осадках будет небольшое содержание песка.
Полтора года назад, когда мы начинали, у нас не было ничего, кроме данных. В отличие от участников на Kaggle, у нас не было никакой фиксированной метрики, никаких baseline-решений. Единственное, что было, — постоянная гонка технологий, в которой мы хотели обогнать сами себя. Первое решение — просто День сурка. Обогнать прогноз, решить, что завтра будет то же самое, что и вчера. А следующая модель должна улучшать показания предыдущей.
Что нужно для прогноза осадков? Нужны данные, радарные снимки. Нужно понимать, как в атмосфере движутся частицы, какие ветра дуют и как применять это движение к частицам. Расскажу про все три составляющих прогноза. Первое — радарные снимки. Они бывают очень разных форматов и поступают от очень разных поставщиков. Это и просто отдельные картинки в PNG, с договоренностью, что цветом с таким-то кодом обозначается такая-то интенсивность отраженного сигнала. Либо — научный формат NetCDF.
Радары сильно отличаются по частоте обновления. Бывают радары, которые обновляются раз в 10 минут, раз в 15 минут. Самое ужасное, что данные с радаров — в отличие от относительно чистых данных для соревнований — содержат артефакты. Радары работают на физических принципах, на отражении волны, так что у них бывают слепые зоны. Причем когда маленькие фрагменты зоны видимости радиально закрыты зданиями — это еще далеко не самый тяжелый случай. Бывают и сделанные людьми артефакты. Например, в период бета-тестирования мы столкнулись с человеком, который купил себе Wi-Fi-точку, неправильно настроил на ней частоту и номер канала, после чего выставил ее в окно. В результате у нас над Иваново висел огромный лазерный меч в виде облака.
Мы видели его на карте и ничего не могли с ним поделать, пока не вызвали Частотнадзор. Пожалуйста, если покупаете Wi-Fi-точки где-то в Китае, настраивайте их на российские частоты. Кроме радарных данных, надо еще откуда-то взять векторное поле. Принципиально его можно взять всего из двух мест: либо проанализировав предыдущие радарные снимки и применив, скажем, алгоритмы оптического потока, либо из каких-то других источников. Например, можно воспользоваться метеомоделированием и результатом работы того же ОРФ или Метеума. Берем поле ветров и с его помощью переносим картинки, которые возвращает радар. Оба способа получения векторных полей имеют недостатки. Оптический поток нельзя посчитать в местах, где не летит облако.
Там не от чего отражаться радарному лучу, и нет никаких данных о скорости воздуха и направлении движения. Метеомоделирование может не совпадать с реальностью. Поэтому если бы мы использовали только данные метеомодели, могло бы так получиться, что в исторических данных радара облако летит в одну сторону, а потом в прогнозе ветров резко разворачивается и летит в другую сторону. Третий компонент наукастинга — алгоритм применения векторного поля.
Данные радаров Карты радиолокационной отражаемости делают картину ещё более полной, поскольку с их помощью есть возможность оценить некоторые особенности внутренней структуры облачности, скрытые от любых визуальных наблюдений, а именно — интенсивность осадков, связанных с конкретной облачной структурой, и их фазовое состояние.
Построение аэрологических диаграмм Для этого необходимо кликнуть ЛК мыши по интересующему Вас региону, после чего аэрологическая диаграмма сгенерируется автоматически. Имеется возможность генерировать аэрологические диаграммы на предстоящие 384 часа их построение основано на данных прогностической модели , а так же просматривать небольшой архив диаграмм за прошедшие 7 суток. Построение вертикальных разрезов атмосферы Зажав кнопку Ctrl и ЛК мыши, нужно провести линию на карте, по которой Вы хотите сгенерировать разрез, и выбрать необходимый параметр.
Научно-популярный метеорологический проект
- На что обратить внимание при выборе метеосайта
- Синоптик Вильфанд: около 30% месячной нормы осадков выпало в Москве за час
- Как мы делали краткосрочный прогноз осадков. Лекция в Яндексе
- Навигация по записям
meteoinfo ru [delete] [delete]
Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым | Наукастинг осадков на 2 часа. Радар осадков и гроз. |
Антициклон на Урале сменит циклон: синоптики спрогнозировали «погодный калейдоскоп» - Доступ | В задаче наукастинга осадков необходимо минимизировать отклонение спрогнозированных мм от истинного. |
Классификация современных прогнозов погоды | Доля точно предсказанных случаев начала дождя — это отношение количества правильно предсказанных случаев начала первого дождя на рассматриваемом окне в два часа ко всем случаям начала первого дождя на двухчасовых окнах. |
Классификация современных прогнозов погоды
Космическая гидрометеорология - прогноз погоды по данным со спутников | Пикабу | это.> Анимация текущих данных радарных наблюдений. |
ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК 2024 | ВКонтакте | Опасные явления BUFR Отражаемость 1км BUFR Прогноз ICON-EU 1ч сумма осадков Высота ВГО BUFR Дифференциальная отражаемость 1км BUFR Дифференциальная отражаемость 2км BUFR Доплер скорость 1км BUFR Доплер скорость 2км BUFR Доплер скорость 3км BUFR. |
Как мы делали краткосрочный прогноз осадков. Лекция в Яндексе | есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить. |
Арбат, Москва | Прогноз осадков на 2 часа (наукастинг). последние новости сегодня в Москве. |
Синоптики: на Москву за сутки выпадет 30% месячной нормы осадков | За сегодняшний день в Москве выпадет около 30% месячной нормы осадков. |
Композитная карта
Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля. Радарный наукастинг осадков Анимированная карта явлений погоды за последние 3 часа по данным радарных наблюдений (подготовлено Центральной аэрологической обсерваторией). Порядка 30% от месячной нормы осадков прольется на Москву в субботу, сообщил ведущий специалист центра погоды "Фобос" Евгений Тишковец в своем Telegram-канале. Прогноз осадков по ЕТР на 2 часа (наукастинг). Метеорологическая карта прогноза осадков в Европе. Наукастинг (прогноз на 2 ч).