По сообщению пресс-службы ФИЦ «Красноярский научный центр СО РАН», новый композиционный материал состоит из нановолокон оксида алюминия и детонационных наноалмазов.
Погода в городе
- Красноярские ученые использовали наноалмазы для выявления фенола в воде
- Новости регионов
- Погода в городе
- В Сибири разработали композит для обнаружения токсичных веществ в воде | ИА Красная Весна
- Погода в городе
В Красноярске создали композит, который светится в магнитном поле
Научные сотрудники институтов неорганической химии им. Николаева и биофизики СО РАН смогли прочно увязать вертикально упорядоченные нанотрубки с нанесенными на их поверхность наноалмазами. Таким образом был получен композит с уникальными свойствами: под воздействием даже слабого электрического поля он может светиться люминесцентным голубым светом.
Сообщается, что над проектом работал коллектив ученых из Красноярского научного центра, Красноярского медицинского университета, Центра ядерной медицины, Сибирского федерального университета и Университета Оттавы Канада. Доставку терапевтических наночастиц к опухоли осуществляют специальные молекулы. Под воздействием лазерного облучения частицы нагреваются и разрушают злокачественную ткань опухоли, оставляя здоровые ткани нетронутыми.
Нанокристаллы силицида железа с различной огранкой позволяют связать другие материалы с кремнием — основным материалом электроники. Они могут применяться в качестве электрических наноразмерных контактов в полупроводниках с низким непредусмотренным сопротивлением тока. Также такие материалы можно использовать для создания нанопроволоки или для выращивания светоизлучающих диодов инфракрасного диапазона.
Благодаря экологической безопасности кристаллы силицида металла с изменяемой формой и ориентацией будут служить для разработки лазерных диодов в волоконно-оптических линиях. Важное значение — их можно использовать для последующего синтеза на их основе других наночастиц и материалов», — рассказал научный сотрудник Института физики им. Исследование проводилось при поддержке Российского научного фонда, Российского фонда фундаментальных исследований и Правительства красноярского края. Фото: pubs.
Но сибирским ученым удалось выяснить, что наноалмаз засветится, если он будет находиться на кончике углеродной трубки, которая в несколько раз усиливает мощность даже небольшого электрического поля», - сообщил подробности уникальной разработки один из авторов исследования - младший научный сотрудник ИНХ СО РАН Юлия Федосеева.
По словам Юлии Федосеевой, полученный сибирскими учеными уникальный материал, созданный по относительно дешевой технологии, найдет применение в медицине в качестве зонда для точной диагностики , электронике при создании дисплеев нового типа или миниатюрных светильников и в других отраслях промышленного производства. Правда произойдет это после небольшой доработки, которая позволит дешевому люминесцентному материалу из России после усиления интенсивности свечения наноалмазов выиграть конкуренцию у западных аналогов.
Новый наноиндикатор
Интерес к подобным работам проявили китайцы и европейцы. Расшифровка генома лиственницы В начале 2019 года группа исследователей лаборатории лесной геномики научно-образовательного центра геномных исследований СФУ объявила о полной расшифровке генома лиственницы. Отметим, геномы хвойных имеют громадный размер, в несколько раз превышающий геном человека. На сегодняшний лишь две команды ученых в мире смогли расшифровать геном хвойного дерева.
Методика расшифровки генома, которую использовали сибирские ученые, позволяет быстро и точно исследовать невероятный объем данных — 12 млрд нуклеотидных оснований. Результаты исследования опубликовал авторитетный журнал BMC Bioinformatics. Полная расшифровка генома хвойного дерева — результат мирового уровня.
Результаты расшифрованного генома могут использованы для создания базы генетических ресурсов лесов и в лесном хозяйстве — например, чтобы использовать для восстановления лесов деревья, оптимально подходящие для конкретных погодных условий и почвы.
Средство массовой информации, Сетевое издание - Интернет-портал "Общественное телевидение России". Главный редактор: Игнатенко В. Адрес электронной почты Редакции: internet otr-online.
Для эффективного получения целевого белка с помощью наноалмазов необходимы только пробирки, пипетки и центрифуга. В целом технологии очисти белков, основанные на применении наноалмазов, отличает быстрота, простота и эффективность. А также в клинической медицине — ведь чистота лекарственного препарата имеет принципиальное значение: когда препарат содержит примеси, могут возникать побочные эффекты. Приведу пример из нашей практики. Несколько лет назад мы сотрудничали с коллегами из Института биоорганической химии ИБХ РАН, Москва , в котором было организовано опытное биотехнологическое производство рекомбинантного инсулина.
Это крайне востребованный гормон пептидной природы, применяемый для лечения сахарного диабета. Коллеги предоставили нам два финальных препарата инсулина, в которых мы нашли загрязняющую примесь. С помощью наноалмазов удалили эту примесь и получили оба препарата в чистом виде. К сожалению, дальнейшего развития это направление совместных исследований не получило. Хотя нам было бы интересно получить с помощью наноалмазов высокоочищенный инсулин сразу из экстрактов биомассы бактерий-продуцентов. Если бы это удалось, мы бы смогли повысить эффективность процесса выделения этого ценного целевого продукта, сократить время и затраты на его производство. Также на основе наноалмазов мы научились конструировать системы биохимической диагностики. Создали три системы, с помощью которых можно определять физиологически важные вещества, например, в крови человека — мочевину, глюкозу и холестерин. В перспективе эти тест-системы могли бы найти применение в медицинской диагностике, мы экспериментально продемонстрировали такую возможность. Отмечу, что мне как учёному прежде всего нужно доказать самому себе состоятельность идеи, проверив её экспериментально, и на основании полученных данных определить границы возможного практического применения.
Но с позиции определённого опыта считаю, что в этой жизни, используя военную терминологию, у каждого из нас есть свой окоп. Если человек профессионально занимается своим делом в своём окопе, боевые действия успешны. Если начинает метаться между окопами, дело потерпит фиаско. Я определил для себя, чем должен заниматься. И к этому призываю молодых коллег. Мы занимаемся фундаментальными исследованиями, получаем новые знания, пытаемся объяснить механизм выявленного феномена, эффекта, явления. Потом подвергаем накопленные экспериментальные данные глубокому и всестороннему анализу, на основании которого делаем более взвешенный вывод о возможности или невозможности применения этого знания на практике. Это абсолютно правильный путь — все практические достижения человечества основаны на фундаментальных знаниях и их анализе. К сожалению, сегодня у нас норовят «поставить телегу впереди лошади». И часто задают преждевременный вопрос: где вы собираетесь это использовать?
Опережая события, хотят сразу видеть практическую реализацию. Но даже при наличии обоснованности практического применения реализовать научную разработку непросто. Приведу пример из нашего опыта. Несколько лет мы пытались «пробить» практическое применение наноалмазов. В частности, их использование в качестве присадок к автомаслам и консистентным смазкам. Мы собрали кипу экспертных заключений с положительными отзывами из целого ряда крупных предприятий. Но осуществить практическое использование так и не смогли. Конечно, можно переквалифицироваться, но зачем? Когда мы занимаемся несвойственным себе делом, страдает то, чем мы должны заниматься. И при этом, к сожалению, дело никого не интересует в достаточной мере.
Досадно, что сейчас между словами и реализацией получается слишком большой промежуток, оттого и практическое внедрение научных разработок существенно хромает. Мне посчастливилось застать времена, когда была бОльшая стабильность в этих вопросах. Когда ты мог планомерно трудиться, не отвлекаясь на посторонние дела, и ощущал значимость того, что делаешь.
Таким образом, они и будут заниматься всей работой как доктора.
Данный метод призван помочь в заживлении ран, хрящей и костей. Подпишитесь и получайте новости первыми Читайте также.
Стволовые клетки для восстановления спинного мозга
- Категории статьи
- Красноярские ученые синтезировали кристаллы для терапии шизофрении
- Красноярские ученые придумали, как лечить рак наноскальпелем без операций
- Полезные ссылки
- Красноярские ученые использовали наноалмазы
- Новосибирские ученые скрестили алмаз и графен для получения нового материала
В Сибири разработали композит для обнаружения токсичных веществ в воде
При этом частицы наноалмазов можно использовать многократно — до семи раз. Учёные из Красноярска завершили исследование избирательного способа борьбы с раковыми клетками. Красноярские ученые предложили использовать наночастицы золота в борьбе с раком.
Красноярские ученые научились находить яды в воде с помощью наноалмазов
Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде. Смотрите свежие новости на сегодня в Любимом городе | Красноярские ученые научились определять токсичность наночастиц. Красноярские ученые разработали метод получения наночастиц оксида железа, покрытых крахмалом, с помощью которых можно быстро и легко очистить рекомбинантные белки, применяемые в биомедицине в качестве биомаркеров различных болезней.
Ученые из Красноярска создали материал из наноалмазов и нанотрубок
В СО РАН хотят получить наноалмазы | Также красноярские ученые научились выращивать помидоры без солнечного света. |
Ученые из Красноярска изобрели кристаллы для лечения шизофрении - | Ученые «Енисейской Сибири» с коллегами-исследователями Красноярского научного центра СО РАН и Красноярского государственного медицинского университета разработали магнитный наноскальпель для адресной и малоинвазивной микрохирургии трудноизлечимых опухолей. |
Красноярские учёные нашли новые пути к лечению рака
- Сибирские ученые «скрестили» наноалмазы с нанотрубками - Сибирь -
- Сейчас на главной
- Красноярские ученые использовали наноалмазы
- В Красноярске создали композит, который светится в магнитном поле
- Сибирские ученые «скрестили» наноалмазы с нанотрубками
Покрытые крахмалом магнитные наночастицы помогут в очистке биомедицинских молекул
Ученые из Красноярска научились определять загрязнение воды с помощью наноалмазов | Ученые отмечают, что исходные наноалмазы такими свойствами не обладают, из них крайне сложно получить устойчивую суспензию даже при ее длительной обработке ультразвуком, позволяющим разъединить наночастицы. |
Первые наноалмазы получили красноярские ученые | Правительство Красноярского края | Ученые из Новосибирска вместе со своими коллегами из Красноярска создали интересный материал, соединив для этого углеродные нанотрубки с наноалмазами. |
Красноярские ученые придумали, как лечить рак наноскальпелем без операций | красноярские ученые предлагают использовать для этого алмазы. |
Красноярские ученые создали нанодиски для выжигания злокачественных клеток | Город - 14 марта 2018 - Новости Красноярска - |
Красноярские учёные разработали уникальный способ анализа воды
Новосибирские ученые скрестили алмаз и графен для получения нового материала - Вести | Красноярские ученые вместе со специалистами НПП "Радиосвязь" холдинга "Росэлектроника" (входит в Ростех) разработали метод быстрого сращивания костей с помощью доработанных наночастиц, а также слабых магнитных полей. |
Красноярские ученые создали материал из наноалмазов и нанотрубок | Главная Новости Наука Красноярские ученые научились находить яды в воде с помощью наноалмазов. |
Новосибирские ученые скрестили алмаз и графен для получения нового материала | красноярские ученые предлагают использовать для этого алмазы. |
Красноярские ученые создали новый нанокомпозитный 2D-материал | красноярские ученые предлагают использовать для этого алмазы. |
Новый наноиндикатор
Ученые добавляют, что новый светящийся материал можно использовать в различных отраслях: в медицине, электронике и других. Ученые из Красноярского научного центра Сибирского отделения Российской академии наук представили инновационный метод лечения рака, используя наночастицы золота. Красноярские учёные в сотрудничестве с коллегами из Индии, Туниса и Саудовской Аравии достигли прогресса в области медицинских исследований.