Новости коэффициент джини показывает

Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца.

Коэффициент Джини (распределение дохода)

Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру. Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель.

Индекс Джини и неравенство доходов

Расчетом данного показателя занимаются статистические ведомства и международные аналитические организации. Значения и трактование коэффициента Джини Коэффициент Джини может иметь значение от 0 абсолютно равномерное распределение доходов до 1 абсолютно неравномерное распределение доходов. Чем выше значение индекса Джини — тем выше уровень социального неравенства в государстве. Коэффициент Джини показателен не только в абсолютном значении, но и в динамике: если он растет — уровень социального неравенства растет, если падает — соответственно, падает.

Выводы: С точки зрения примера, индекс Джини показывает, что модель A лучше с точки зрения результатов, чем модель B. Вы также можете видеть на кривой Лоренца, что модель A предсказывает более высокую группу риска, больше денег, чем модель B. И, конечно же, коэффициент площади модели А больше коэффициента модели В, а значит, дисперсия фактический рейтинг модели при прогнозировании рискованной политики лучше. Индекс Джини с кривой Лоренца также может быть эффективен при сравнении результатов двух моделей.

Если предположить, что вы хотите предсказать риск утверждение полиса , и в приведенном выше примере мы показываем сравнение между результатами прогнозирования политик, кривая Лоренца очень хорошо наглядно показывает преимущество результатов одной модели по сравнению с другими. Хорошая возможность сравнения результатов модели дает возможность автоматически публиковать новую модель.

Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам.

Напомним, что квинтильные группы — это группы населения домашних хозяйств , образованные путем деления всего населения домашних хозяйств на 5 численно равных частей.

Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство». Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.

Коэффициент Джини. Формула. Что показывает

Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита.

Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные.

Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие. Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом. Создадим искусственную бизнес-задачу из сферы free2play игр. У нас есть база данных пользователей когда-то игравших в нашу игру и по каким-то причинам отвалившихся. Мы хотим их вернуть в наш игровой проект, для каждого пользователя у нас есть некое признаковое пространство время в проекте, сколько он потратил, до какого уровня дошел и т. Оцениваем модель коэффициентом Джини и строим Lift Curve: Предположим, что в рамках маркетинговой кампании мы тем или иным способом устанавливаем контакт с пользователем email, соцсети , цена контакта с одним пользователем — 2 рубля. Мы знаем, что Lifetime Value составляет 5 рублей. Необходимо оптимизировать эффективность маркетинговой кампании. Предположим, что всего в выборке 100 пользователей, из которых 30 вернется.

Это провал кампании. Рассмотрим график Lift Curve.

При этом нет зависимости от масштаба экономики сравниваемых стран. Может быть использован для сравнения распределения признака дохода по разным группам населения например, коэффициент Джини для сельского населения и коэффициент Джини для городского населения. Позволяет отслеживать динамику неравномерности распределения признака дохода в совокупности на разных этапах.

Анонимность — одно из главных преимуществ коэффициента Джини. Нет необходимости знать, кто имеет какие доходы персонально. Так, чем на большее количество групп поделена одна и та же совокупность больше квантилей , тем выше для неё значение коэффициента Джини.

При этом средний индекс в мире — 37. FAQ Какой источник информации вы использовали? Насколько можно полагаться на коэффициент Джини при сравнении стран?

Источник: Всемирный Банк, 2018 год Как можно увидеть, в развитых странах индекс неравенства находится на уровне от низкого до среднего. Это обусловлено как социальной ролью государства в таких странах, осуществляющего прямую поддержку слоев населения с низкими доходами, так и часто применяемой в развитых странах прогрессивной ставкой налогообложения, являющейся универсальным выравнивающим механизмом. По данным Всемирного Банка первые 15 стран с самым высоким неравенством выглядят так: Здесь любопытно нахождение США на 15 месте.

Впрочем, ни для кого не секрет что в США достаточно большое расслоение в доходах. Это плата за высокую эффективность экономики. Рейтинг приведен на основе данных за 2019 год, так как за более поздние периоды данные неполные.

Россия находится в третьем десятке и имеет средний индекс неравенства, на уровне Китая, Индонезии, Таиланда. Что дает индекс? Равенство распределения доходов часто отождествляют со справедливостью, однако это не совсем так.

В России зафиксирован рост доходного неравенства

Как рассчитывать коэффициент Джини — Лицей имени Вернадского Что такое коэффициент Джини и кривая Лоренца: показатель концентрации доходов и по какой формуле он определяется, сколько составляет в России и в мире.
Индекс концентрации Джини - Студенческий научный форум Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе.
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами.

Социальная поддержка сократила уровень неравенства в России

Коэффициент Джини — Википедия Переиздание // WIKI 2 В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат.
Income inequality: Gini coefficient - Our World in Data «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство».
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами.
Коэффициент Джини (распределение дохода) Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%.
Индекс Джини и неравенство доходов | Conomy GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes.

В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи

Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат. Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%.

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини

Индекс Джини представляет собой число от 0 до 1, измеряемое в соответствии с отношением между площадью, заключенной между кривой Лоренца и линией 45 градусов, и площадью всего треугольника того, который находится ниже линии 45 градусов и площадь которого составляет 0,5. Нулевой коэффициент означает полное равенство, то есть у всех одинаковый доход; Тогда как коэффициент 1 означает абсолютное неравенство, означающее, что у одного человека есть весь доход, а у остальных вообще нет дохода. Джини — это мера статистической дисперсии, и как таковая она может измерять любой ряд числовых данных, а не только доход, богатство или политический риск. Это индекс, который на самом деле пытается объяснить распространение неопределенности, а оценка риска — это на самом деле неопределенность, которую мы пытаемся уменьшить. Когда мы проверяем результаты моделей оценки риска, мы стремимся к как можно более высокому индексу Джини, то есть неравенству, которое будет максимально отражать предсказание только политики высокого риска. В примере мы построили две модели оценки риска страховых полисов в данном случае транспортных средств и оценили риск группы полисов. Прогноз каждой модели — это значение утверждения каждой политики.

Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля.

Системы прогрессивного налогообложения и трансфертных платежей приближают " кривую Лоренца " к биссектрисе.

Одна из причин этого явления - институты, которые позволяют богатым людям наращивать свои доходы. К плюсам такой системы можно отнести появление "компаний-единорогов" с миллиардными оборотами, таких как Apple, Google, Microsoft, Amazon, рассказывает Аникин. Но оборотной стороной становится экстремальное неравенство, когда доход руководителя компании в сотни раз отличается от зарплаты его самого низкооплачиваемого подчиненного. Экстремальное неравенство наносит серьезный урон экономике, констатирует Аникин.

Экстремальное неравенство искажает мотивы трудовой деятельности. Люди склонны к поиску быстрых социальных лифтов, а не к долгосрочным инвестициям в образование и навыки. В то же время статистика Росстата свидетельствует, что в России разрыв заработных плат неуклонно снижается. Средняя зарплата по 10-процентным группам работников показывает, что в 2021 году зарплаты наиболее низкооплачиваемых сотрудников были в 13,5 раз ниже зарплаты наиболее высокооплачиваемых сотрудников. В 2000 году разрыв между теми же группами составлял 34 раза.

Разрыв между зарплатами руководителей и рабочих составлял 2,5 раза в октябре 2021 года по всем формам собственности.

На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство.

И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам.

Напомним, что квинтильные группы — это группы населения домашних хозяйств , образованные путем деления всего населения домашних хозяйств на 5 численно равных частей. На основании данных по распределению доходов в России за 2021 год составим сводную таблицу [1].

Индекс Джини в 1980–2022 годах

  • Коэффициент Джини | это... Что такое Коэффициент Джини?
  • Коэффициент Джини - индекс концентрации доходов — Тюлягин
  • Полезные статьи
  • Предложение месяца
  • Частный случай кривой Лоренца и коэффициента Джини: попарное сравнение.
  • World Development Indicators

Что бы сделал Робин Гуд?

Сфера информационных технологий IT привлекательна на российском рынке труда из-за высоких зарплат и льготной ипотеки. Как добавил доктор экономических наук, профессор Вадим Заусаев, неравенство обусловлено ростом военно-промышленного комплекса. По его мнению, эффект будет усиливаться в ближайшем будущем. Узнать подробнее Читайте также:.

Список коэффициентов Джини по странам можно найти здесь. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. Шаг 2: Рассчитайте площади под кривой Лоренца Затем нам нужно рассчитать отдельные площади под кривой Лоренца , которую мы используем для визуализации распределения доходов в стране.

Расчет индекса Джини Пойдем шаг за шагом. Первым шагом является получение результата двух моделей в предикации. Построенные нами модели показывают группу риска и сумму требования всех полисов в них в предикации. В итоге мы создали три столбца: первый — рейтинг риска от 1 до 10, второй — сумма денег, которую претендовала группа полисов в одной модели, и второй столбец — то же самое, но результат второго модель. Итак, кадр данных выглядит так: Следующий код генерирует область, которая будет отображаться на кривой Лоренца для каждого результата модели.

Теперь в DataFrame добавлены столбцы. Выводы: С точки зрения примера, индекс Джини показывает, что модель A лучше с точки зрения результатов, чем модель B.

Когда вы видите коэффициент, вы не знаете, на основании какого количества групп он рассчитывался — чем меньше групп, тем больше коэффициент. Кроме того, для плановой экономики этот коэффициент не применим. Выводы Коэффициент или индекс Джини — это число, показывающее распределение доходов населения.

Ваш пароль

Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.).

В России зафиксирован рост доходного неравенства

Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными.

Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов. В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5. В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты. Он полностью учитывает разброс значений признака вариационного ряда, в то время как фондовый и децильный коэффициенты учитывают разрыв, складывающийся между крайними децильными группами[3]. Таким образом, коэффициент Джини может быть использован как дополнительный показатель к коэффициенту фондов в оценке состояния экономической безопасности по уровню неравенства населения по доходам.

Список источников и литературы: 1. Указ Президента РФ от 13.

Итак, кадр данных выглядит так: Следующий код генерирует область, которая будет отображаться на кривой Лоренца для каждого результата модели. Теперь в DataFrame добавлены столбцы. Выводы: С точки зрения примера, индекс Джини показывает, что модель A лучше с точки зрения результатов, чем модель B. Вы также можете видеть на кривой Лоренца, что модель A предсказывает более высокую группу риска, больше денег, чем модель B. И, конечно же, коэффициент площади модели А больше коэффициента модели В, а значит, дисперсия фактический рейтинг модели при прогнозировании рискованной политики лучше.

Индекс Джини с кривой Лоренца также может быть эффективен при сравнении результатов двух моделей. Если предположить, что вы хотите предсказать риск утверждение полиса , и в приведенном выше примере мы показываем сравнение между результатами прогнозирования политик, кривая Лоренца очень хорошо наглядно показывает преимущество результатов одной модели по сравнению с другими.

Экономическое неравенство, что же еще! В 1912 году итальянский статистик и демограф Коррадо Джини предложил в своем труде «Вариативность и изменчивость признака» новую модель определения степени расслоения общества страны или региона по какому-либо признаку. Модель стала важнейшим инструментом оценки экономического неравенства в мире и получила имя в честь своего создателя — коэффициент Джини.

Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period. Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if missing data account for more than one third of the observations in the series. Weighted Mean 66POP: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if countries with missing data represent more than one third of the total population of your custom group. Note 1: In none of the above methodologies are missing values imputed. Therefore, aggregates for groups of economies should be treated as approximations of unknown totals or average values. Note 2: Aggregation results apply only to your custom-defined groups and do not reflect official World Bank aggregates based on regional and income classification of economies. Results may be inappropriate e.

Как рассчитать коэффициент Джини в Excel (с примером)

Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even. Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе.

Похожие новости:

Оцените статью
Добавить комментарий