Над созданием этой "вечной батарейки" в течении 8-ми лет работала большая команда учёных Роскосмоса и Росатома. Интересно: Ну а пока полмира ждет появления новых «вечных» батареек, другие полмира закупают миллиарды источников питания, чтобы прокормить Пожирателя батареек.
От смартфона до ракеты. Учёные создали "вечную" атомную батарейку
При работе «алмазная» батарейка будет передавать излишки электричества литиевому аккумулятору. Компания Betavolt утверждает, что созданный ею 3-вольтовый прототип атомной батарейки меньше монеты будет работать 50 лет. “Безотходное” производство “вечных” батареек нельзя назвать фантастически дорогим, как о вероятном производстве “атомных аккумуляторов” сегодня рассуждают ведущие специалисты. Российские учёные создали прототип батарейки на изотопе плутония.
Российские учёные сделали диагностику когнитивных нарушений более точной и быстрой
Группа самарских ученых подала заявку в Роспатент на регистрацию революционной энергетической технологии. С ее помощью кардиостимулятор будет работать без подзарядки до самой смерти. А нефтяные компании смогут снизить штат вахтовиков, проверяющих трубопроводы в отдаленных северных районах. Технология представляет собой преобразование энергии, излучаемой радиоактивным источником, в электрическую.
Данная разработка сейчас переводится на коммерческую основу. Совсем недавно разработчик окончил тестирование, которое подтвердило работоспособность устройства.
К концу 2020-го данный вид батареек будет запущен в продажу. В качестве инвестора выступает стартап-инкубатор Volkswagen Future Mobility. Интересно: Подобный продукт имеется и у российских ученых. В структуре присутствует микроканальная объемная конструкция бета-гальванических элементов никеля. Данная ядерная батарея способна прослужить порядка 20 лет.
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности Российские учёные создали атомную батарейку повышенной мощности 19 августа 2020, 21:53 Арсений Скрынников Исследователи из России создали инновационный автономный источник питания — компактную атомную батарейку, которая в десять раз мощнее существующих аналогов. Такая батарейка относительно безопасна для человека и способна работать до 20 и более лет, но из-за дороговизны производства пока не может использоваться в быту. Её применение возможно в специальных приборах, в том числе работающих в критических условиях — в космосе, под водой или в высокогорных районах. Об этом сообщает пресс-служба вуза. Разработка описана в научном журнале Applied Radiation and Isotopes.
Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры.
Join Российские учёные сделали диагностику когнитивных нарушений более точной и быстрой Полностью отечественный прибор поможет в обследовании пациентов, перенесших инсульт или ковид. Портативный ультразвуковой аппарат, не имеющий аналогов в мире, оценивает параметры мозгового кровообращения во время физической и когнитивной нагрузки. Новое устройство представляет собой компактный аппарат размером с книгу.
От смартфона до ракеты. Учёные создали "вечную" атомную батарейку
Об этом сообщает Applied Physics Letters. Эти батарейки представляют собой источник тока, который преобразовывает электричество из энергии радиоактивного распада метастабильных ядер. Как утверждают ученые, они могут работать без подзарядки в течение нескольких лет.
Более того, во времена холодной войны этот вид батареи служил источником питания для радиостанций, работающих вдалеке от населенных пунктов.
Батарея, о которой идет речь сегодня, не превышает в диаметре рублевую монету, но при этом генерирует постоянную энергию в течение 50 лет. Китайцы планируют снабжать таким источником питания не только смартфоны, но небольшие беспилотные аппараты, поскольку самое главное в них — это отсутствие необходимости заряжать устройства. Вечная батарейка в разрезе Фото: Соцсети Представители компании заявили, что в ближайшем будущем надеются обойти некие нормативные препятствия, которые мешают им запустить массовое производство этих чудо-батарей.
В процессе окисления пленок образуется оксидная оболочка, которая увеличит эффективность источника питания. Элемент испускает мягкое бета-излучение, поэтому для него легко создать физическую защиту, что делает его применение доступным.
Перед нами — готовая технология для использования в качестве источника первичного питания различных систем и устройств с малым энергопотреблением. Создатели источника питания особо подчеркивают, что он может работать в тех случаях, когда необходимо обеспечить длительную автономную работу устройств период полураспада трития 12 лет при крайне низких температурах до минус 60 градусов. В основе «ЭТАК» — использование трития и радиационно-стимулированных источников света с широким спектром на основе высокоэффективных радиолюминофоров. Основной сферой применения тритиевой батареи будет электропитание необслуживаемых датчиков, систем сбора и передачи информации, систем слежения и обнаружения, систем геолокации, специализированных RFID-меток и радиомаяков.
ТОПАЗ — вечная батарейка. Как это работает?
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности | ТОПАЗ — вечная батарейка. |
Создан вечный аккумулятор — он никогда не испортится | Основная особенность батарейки заключается в оригинальной микроканальной 3D – структуре, а если точнее, то главную роль в ней играет никелевой бетавольтаический элемент. |
Стартап NDB сообщает о прорыве в области бесконечных батарей | Сотрудники НИЯУ МИФИ создали первый прототип атомной батарейки, способной работать до 80 лет без подзарядки. |
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности | В дальнейшем наработки планируется использовать для создания первого прототипа "вечной" ядерной батарейки. |
Стартап NDB сообщает о прорыве в области бесконечных батарей | Батарейку со сроком службы в 28000 лет разработали российские ученые. |
Изобретена "вечная" батарейка
Российские ученые создали батарейку, работающую 100 лет - Российская газета | Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет. |
Российские ученые создали батарейку из плутония, которая может работать вечно | Выставка «Вечная батарейка» о современном мире, переживающем пандемию, открылась в Электромузее на Ростокинской улице. |
Инженеры КНР готовы выпустить на рынок «вечную» ядерную батарейку для гаджетов | Батарейки на основе данной технологии обладают небольшим весом и устойчивостью к радиации. |
Российские учёные сделали диагностику когнитивных нарушений более точной и быстрой
Впрочем, от идеи сделать вечную батарейку наши ученые не отказались и сконцентрировали исследования на другом радиоизотопе — никеле-63, период полураспада которого 100 лет. И несмотря на то, что новость об атомной вечной батарейке полугодичной давности, я не могу мимо нее пройти и предлагаю ознакомить с ней вас, уважаемый читатель. Ученые представили новую разработку — ядерную батарейку, которая не превосходит по размерам монету. Интересно: Ну а пока полмира ждет появления новых «вечных» батареек, другие полмира закупают миллиарды источников питания, чтобы прокормить Пожирателя батареек. Российские ученые разработали технологию "вечной" ядерной батарейки. Батарейка на изотопах плутония, прототип которой создан в НИЯУ МИФИ по заказу Госкорпорации «Росатом», способна работать без подзарядки несколько десятилетий.
Российские ученые разработали технологию "вечной" ядерной батарейки
Разработчик NDB заявляет, что опасность для человека у данных батареек ответствует, также окружающая среда может быть в безопасности. Тестирование показало стабильный фон радиации. А суперпрочная алмазная оболочка отлично защищает сердечник от любых повреждений. Кроме того, в ходе работы нет выделения углекислого газа. Продуктивность и безопасность данного источника подтвердил Кембриджский университет. Сердечник будет «фонить» пару-тройку десятков тысяч лет, поэтому батарейка проработает намного дольше, чем гаджет, куда ее поставят.
Первые версии таких элементов питания, пригодные для повседневного использования, могут появиться в течение двух лет. По их заявлению, использование таких батарей, к примеру, электромобилях намного более эффективно в сравнении с литиевыми. При тех же габаритах они смогут нести в себе большее количество энергии , а использование дешевого искусственного алмаза вместо дорогого лития позволит снизить итоговую стоимость электрокаров. Тем временем в России Отечественные специалисты тоже смотрят в сторону атомных портативных элементов питания. Срок службы такой батарейки — 20 лет. Цифровизация Особенность трехмерной структуры батарейки заключается в том, что радиоактивный элемент наносится с двух сторон так называемого планарного p-n перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадет» мощность батареи. Особая микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока. Батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных или совсем не доступных местах: в космосе , под водой, в высокогорных районах.
Из-за микроканальной структуры увеличивается эффективная площадь преобразования бета-лучей в 14 раз. Что в дальнейшем даст возможность опять понизить производство источника где-то в 2 раза из-за того, что рационально будет расходоваться дорогостоящий радиоизотоп, — сообщил один из её создателей доцент Сергей Леготин НИТУ «МИСиС». Данная батарейка может функционировать до 20 лет. При этом, батарейку можно применить в нескольких высокофункциональных системах: она может быть применена как аварийный источник питания и температурный датчик в приборах, которые применяют, когда наступают экстремальные температуры или она может быть применена в отдалённых или недосягаемых местах. К примеру: — в космическом пространстве, в подводной среде или высоко в горах. На данный момент все создатели этой «бесперебойной» батарейки патентуют своё детище.
Углеродные волокна В 2021 году группа ученых из технологического университета Чалмерса в Швеции представила аккумулятор для автомобиля из углеродного волокна. Пластина аккумулятора из углеродного волокна Фото: Advanced Energy and Sustainability Research Батарея из углеродного волокна в виде крышки багажника Фото: Advanced Energy and Sustainability Research В будущем такие аккумуляторы из композитных материалов можно будет использовать как в автомобилях, так и в самолетах, чтобы сделать их легче и экологичнее. Пока ведутся испытания прототипов разных форм-факторов. Без кобальта В конце 2019 года IBM представила образец аккумулятора без никеля и кобальта, из материалов, которые могут быть получены из морской воды. Он включает комбинацию катодного материала без тяжелых металлов и безопасного жидкого электролита с высокой температурой горения. Специалисты уже подсчитали, что эти материалы могут сделать аккумуляторы дешевле существующих литий-ионных и при этом будут иметь более высокие характеристики скорости зарядки и энергетической плотности, а также будут менее огнеопасными. Авторы разработки считают, что у нее есть потенциал для внедрения в отрасль электромобилей. Кроме того, тесты показали, что батарея способна прослужить достаточно долго, чтобы ее можно было использовать в интеллектуальных электросетях и новой энергетической инфраструктуре. Для будущего производства аккумуляторов IBM уже заключила коммерческое соглашение с Mercedes-Benz, поставщиком электролита Central Glass и производителем батарей Sidus. Полимеры В 2017 году стартап Ionic Materials презентовал полимерный аккумулятор, который в перспективе сможет заменить литий-ионные. Компания заявила, что полимерные литий-металлические аккумуляторы будут безопаснее, долговечнее и экономически выгоднее, так как процесс их производства похож на производство пластиковой упаковки. Аккумулятор Ionic Materials Фото: ionicmaterials. Прототип, как заявляет производитель, выдерживает до 400 циклов заряда-разряда. Компания работает над тем, чтобы увеличить этот показатель втрое. Полимер для аккумуляторов получили из алюминия и других распространенных материалов. На цинке EnZinc, стартап по производству цинковых батарей, заявил в 2021 году, что нашел способ для замены лития на нетоксичный и дешевый цинк в аккумуляторах. До этого на рынке существовали только неперезаряжаемые цинковые батареи. Они выдерживают несколько тысяч циклов зарядки и разрядки. Ведутся испытания образцов.
Российские ученые создали батарейку из плутония, которая может работать вечно
«Вечные» батарейки и аккумуляторы - Общероссийское общественное движение «Народный Собор» | Компания Betavolt утверждает, что созданный ею 3-вольтовый прототип атомной батарейки меньше монеты будет работать 50 лет. |
Ядерные батареи будущего | Российские учёные создали прототип батарейки на изотопе плутония. |
Российские ученые создали батарейку, работающую 100 лет
Да, друзья, вы не ослышались. По информации из университета «МИСиС» НИТУ «МИСиС» поступило сообщение, что в нашей стране разработан инновационный автономный источник питания — прогрессивная автономная батарейка также про эту батарейку я узнал из канала «Время-вперёд». Основная особенность батарейки заключается в оригинальной микроканальной 3D — структуре, а если точнее, то главную роль в ней играет никелевой бетавольтаический элемент. Данный компонент радиоактивен, его наносят с 2 сторон p-n-перехода, который называют планарный. Это делает проще процесс создания элемента и помогает держать под контролем обратное электричество, которое часть мощности забирает себе.
Как утверждают создатели, их батарейка, если её сравнить с подобными, даёт возможность в три раза сделать меньше величину элемента, в разы повысить удельную мощность и в 2 раза уменьшить её создание.
Ноутбуки, смартфоны, смарт-часы, фитнес-трекеры и вообще любое устройство "интернета вещей" может быть оснащено как упрощённой версией атомной батарейки, так и "топовой" конфигурацией с повышенной выработкой электроэнергии. Средняя цена "простой" версии на будущее — примерно 100 долларов. Цена за атомную батарейку верхнего уровня — около одной тысячи долларов США. Неуловимый русский "Посейдон". Почему США так боятся ядерного удара из глубин Кроме электроники такие источники питания могут служить отличным средством для зарядки аккумуляторов в электрических автомобилях. Пока не известно, купит ли себе патент на производство атомных батареек Илон Маск, но перспектива использования в транспорте сумасшедшая. По сути, владелец электрической машины больше не будет "привязан" к зарядной станции, а литийионный аккумулятор с атомной батарейкой внутри и генератором будет заряжаться практически сразу, как возникнет такая необходимость. В результате может получиться электромобиль с неограниченным запасом хода. Эксперты в области энергетики отмечают, что после начала производства таких батареек мир может вступить в новую энергетическую гонку, по сравнению с которой гонка вооружений может оказаться детской шалостью.
Её суть будет заключаться в том, что атомная энергия в привычных объёмах понадобится только для гражданских объектов, в то время как вся промышленность может быть переведена на автономное энергоснабжение. Однако директор завода по производству автомобильных комплектующих Евгений Чистяков отметил, что экономика такого энергоснабжения ещё не посчитана. То, что атомная батарейка с большим энерговыходом будет востребована, — ясно уже сейчас. Весь вопрос в том, сколько будет стоить готовая технология. К примеру, у нас есть завод, который расходует определённое количество электроэнергии. Мы за электричество исправно платим, но нет никакой гарантии, что стоимость электричества изменится после выхода на рынок этого устройства.
Иванко mos. Он добывает электричество из глюкозы, содержащейся в крови. В перспективе устройство поможет пациентам, которым имплантирован кардиостимулятор, нейростимулятор или инфузионная помпа. Новый источник энергии должен генерировать электричество внутри человека.
Поэтому нет ничего удивительного в том, что разработчики не только справились с решением этой проблемы, но и акцентировали на этом внимание во время презентации концепта. Так, источник энергии в батарее защищается синтетическими алмазами, которые расположены вокруг последнего в несколько рядов. Всем известно, что алмаз является одним из наиболее твердых и прочных материалов, повредить или сломать который будет очень непросто. Кроме того, использование алмаза в производстве данной батарейки имеет еще один практический смысл. Все дело в том, что энергия радиоактивного ядра будет им поглощаться за счет неупругого рассеивания - это же явление применяется для выработки электричества. Предполагаемую сферу использования наноалмазных батарей разработчики обрисовали довольно широко.
Советско-российские разработки. Вечная батарейка
В Китае изобретели ядерную батарейку со сроком работы до 50 лет. Специалисты МГУ вместе с коллегами из химико-технологического университета заявили, что создали батарейку, срок годности которой достигнет 100 лет. Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров. «В наших аккумуляторах более низкая токовая нагрузка, чем в обычных, поэтому они выдерживают намного больше циклов зарядки-разрядки. При работе «алмазная» батарейка будет передавать излишки электричества литиевому аккумулятору.
Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
К примеру, еще с 1960-х ими снабжаются космические корабли, а с 1970-х их используют в кардиостимуляторы, которые работают именно на радионуклидных батареях. Более того, во времена холодной войны этот вид батареи служил источником питания для радиостанций, работающих вдалеке от населенных пунктов. Батарея, о которой идет речь сегодня, не превышает в диаметре рублевую монету, но при этом генерирует постоянную энергию в течение 50 лет. Китайцы планируют снабжать таким источником питания не только смартфоны, но небольшие беспилотные аппараты, поскольку самое главное в них — это отсутствие необходимости заряжать устройства.
Выбранный плутоний-238 — элемент с 87-летним периодом полураспада. Гарантированный срок службы изделий обозначен разработчиками в 30 лет.
Как и в любом «рукотворном» устройстве со сложными элементами, в том числе в РЭА, отдельные элементы изделия неравномерно сохраняют свойства, а общая надёжность зависит от расчёта «наработки до отказа» самых нестабильных компонентов. Поэтому в расчётах долговременности эксплуатации учитываются риски разрушения проводников в том числе с алмазным напылением , деградация поверхности и кристаллов фотоэлементов, возможная потеря вакуума в капсуле. При нарушении целостности оболочки и корпуса изотопный источник автономного питания можно переместить в новую оболочку, и сохранённая энергия обеспечит разность потенциалов на полюсах. Таким образом, теоретически ядро, если оно сохранено, можно использовать и далее в других источниках питания РЭА. Но вот что крайне важно: чем меньше живёт активный изотоп, тем выше при одинаковой энергии распада и прочих равных условиях его энергоёмкость и отдаваемая в нагрузку полезная мощность.
Как мы отметили выше, изотопный источник тока практически лишён эффекта саморазряда, так как реакция происходит только при наличии «внутреннего тока» и ЭДС, связанной с подключением внешней нагрузки. Применяемый в плутониевой электрической батарее принцип преобразования энергии ядерного распада в электрическую называют термофотовольтаическим [4]. Альфа-источник окружён вакуумной капсулой, внешние стенки которой покрыты слоем наночастиц. Тепло от ионизирующего излучения нагревает капсулу до 1500 К, заставляя её поверхность светиться. Чувствительные и адаптированные к среде фотоэлементы, окружающие капсулу и способные выдерживать колоссальный нагрев окружающей температуры, улавливают эти изменения спектра.
В принципе работы изделий особенности фотогенерации: образование подвижных электронов и дырок при поглощении квантов света, в том числе в органических полупроводниках с изменениями от освещённости и температуры. Это знание способствует созданию разных устройств в сегменте органической фотовольтаики, таких как солнечные панели и батареи. Перенос заряда и энергии в конденсатах квантовых точек описан довольно давно [3, 5]. Однако с появлением изотопных источников тока задача моделирования транспорта носителей заряда, необходимого для оптимизации характеристик оптоэлектронных устройств на основе квантовых точек, решается лучше. Наногибридные материалы Неупорядоченные органические полупроводники применяются в РЭА даже в производстве кристаллов светодиодов.
Активно исследуются возможности применения в тонкоплёночных транзисторах, фотовольтаике, сенсорах и др. Преимущества неупорядоченных органических полупроводников перед другими материалами — гибкость, лёгкость, разнообразие свойств и возможность производства по дешёвой массовой технологии. В связи с относительно малой величиной диэлектрической проницаемости поглощение фотона приводит к образованию пар, в которых электрон и дырка разделены в пространстве, но связаны кулоновским взаимодействием геминальные пары. Вероятность полного разделения геминальной пары определяет фотогенерацию свободных носителей заряда: «электронов» и «дырок». Вот почему увеличение эффективности фотогенерации важно для развития устройств органической фотовольтаики и, в частности, солнечных элементов.
Разъяснение феномена и предтечи открытий связано с физическими свойствами наногибридных материалов. Изготовление конденсатов квантовых точек производится доступными методами, но для получения качественного покрытия необходимо тщательно соблюдать технологию и условия изготовления, а также выбирать тип органических молекул, «сшивающих» квантовые точки между собой [5]. Возможность замены лигандов позволяет менять расстояние между квантовыми точками и оптимизировать перенос энергии и заряда. Технология замены лигандов при комнатной температуре облегчает данный процесс, а наногибридные материалы с квантовыми точками разработчики РЭА используют не только для создания фотовольтаических элементов или светодиодов, но и для сложных полупроводниковых структур как основы новейших высокочувствительных сенсоров. Он работал на бета-частицах стронция-90 по термоэлектрическому принципу, почти как термопара: между холодным и разогретым от активного источника полюсами-контактами возникала разность потенциалов напряжение , при подключении нагрузки создавалась классическая электрическая цепь с постоянным родом тока.
Интересно, что для безопасной утилизации последних РИТЭГов с автономных антарктических метеопостов в 2015 году снаряжали полярную миссию. Пока же необслуживаемые метеостанции в труднодоступных районах питают электроэнергией от возобновляемых источников ветра и солнца. В рассматриваемом прототипе изотопной батареи он в 2,5 раза больше. Специальные термо-фотоэлементы, преобразующие свет ближнего диапазона ИК-спектра в электрический ток, дают такой эффект, что энергии тратится меньше [4]. Можно сказать, батарея «сама себя экономит» и является аккумулятором для своей же энергии.
Теплопроводность в сердцевине изделия отсутствует, а в перспективе добиваются, чтобы максимум возможной энергии альфа-распада переходил в излучение. Нагрев рабочей зоны капсулы имитирует ТЭН, поэтому вакуум в рабочей камере нужен для исключения конвекционных потерь. По теме РИТЭГ уместно вспомнить, что тепло, как неизменный спутник процесса радиоактивного распада, уже является условием возникновения электрического тока после соответствующего преобразования. Для иллюстрации этого тезиса уместно вспомнить принцип работы элементов Пельтье; кроме прочего, ими комплектуются электронные устройства охлаждения: кулеры, пурифаеры и др. Из истории автономных элементов питания История автономных элементов питания по-своему любопытна.
Древняя багдадская она же парфянская электрическая батарея была похожа на глиняный горшок, внутрь которого вставлен и зафиксирован полый цилиндр из меди. По центру, так, чтобы тот не соприкасался со стенками трубы, установлен металлический железный стержень. Конструкция закрывалась пробкой из битумной смолы.
Возможно применение в портативной носимой электронике. Представители «Электросервиса» сообщают также, что в ходе испытаний была подтверждена бесперебойная работа и автономность источника питания в сложных климатических условиях: при крайне низких температурах, в условиях повышенной влажности, высокого и низкого давления. Особо акцентируется внимание на тот факт, что использование новой российской тритиевой батареи не требует специальных условий и лицензий на эксплуатацию: она безопасна даже в случае нарушения целостности корпуса или элементов. Также разработаны и успешно испытаны технические решения по использованию новой технологии.
Selectel Разработка представляет собой специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный сердечник. В процессе неупругого рассеивания бета-излучение изотопов преобразуется в электрический ток. В качестве топлива используются переработанные ядерные отходы углерода-14. Этот изотоп применяется для радиоизотопного датирования и диагностики некоторых заболеваний желудочно-кишечного тракта. Он также накапливается в графитовых деталях ядерных реакторов, которые поглощают излучение ядерных топливных стержней.
Хранить такие отходы опасно, дорого и трудно. Батареи на углероде-14 решают сразу две проблемы — недолговечность обычных элементов питания и переработки радиоактивных отходов. В Nano Diamond Battery отмечают, что батарейки безопасны для человека и окружающей среды. В процессе испытаний радиационный фон оставался в норме. А алмазная оболочка дешевые искусственные алмазы успешно защищала корпус от возможных повреждений.
Ядерные батареи будущего
Этих вечных батареек изобретают каждый год по несколько штук в разных НИИ. 28 тысяч лет без подзарядки: как устроена батарейка на ядерном топливе и насколько она безопасна? Рассказываем о "вечных" технологиях. Китайский стартап Betavolt представил новую «вечную» батарею, которая может генерировать электроэнергию в течение 50 лет. Смотрите видео онлайн «Российские ученые создали батарейку из плутония, которая может работать вечно» на канале «Телеканал МИР» в хорошем качестве и бесплатно. «Вечный» ресурс работы аккумулятора объяснили тем, что радиоактивное вещество внутри сердечника способно сохранять активность на протяжении тысячи лет. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры.