После приобретения телевизора с большей диагональю и погружения в геймерство это стало ещё более актуально, ведь светодиодная подсветка не только создаёт идеальную атмосферу для просмотра фильмов. В наличии более 300 моделей светодиодных подсветок для телевизоров всех известных производителей, таких как lg, самсунг, филипс и т.д.
QLED в телевизоре: все, что нужно знать
Производитель утверждает, что такой сетап предназначен для обеспечения «настоящего 4D-эффекта», который расширяет контент за пределы телевизора. Настроить степень свечения и нужный режим можно в фирменном приложении Nanoleaf. Более того, новинка совместима с Apple HomeKit, что позволяет интегрировать её в существующую систему умного дома.
Максимум возможностей новой системы подсветки выжимается с помощью многослойного светофильтра Ultra Clear Panel, пропускающего свет изнутри экрана и не отражающего его снаружи, так удаётся достигнуть лучшей яркости и контраста при минимуме бликов вне зависимости от того, как экран освещён снаружи — солнечным светом или искусственным электрическим освещением. Светодиодная подсветка позволяет добиться белой подсветки ЖК ячеек, в результате чего удаётся добиться отображения более широкой и натуральной гаммы цветовых оттенков. Цветовая палитра LED-телевизоров получается сочней и насыщенней, зелень и синева ярких участков по сравнению с обычными моделями уже не выглядят выцветшими и бледными. Зачастую слабым местом ЖК экранов является смазанность картинки при большом времени отклика, от чего падает резкость изображения и снижается плавность движения объектов в динамичных сценах. В новых LED-телевизорах Samsung за этим следит система интерполяции Motion Plus: модели серий 6000 и 7000 обладают удвоенной 100-Гц развёрткой, а флагманская серия 8000 обладает учетверённой 200 Гц развёрткой. Немаловажный фактор — расход электричества. Традиционные ЖК телевизоры, конечно же, экономнее былых моделей с электронно-лучевыми кинескопами, но не стоит забывать, что и диагонали нынче уже не те, так что с большими ЖК телевизорами электросчетчики и сейчас крутятся достаточно быстро.
Что касается новых LED-моделей, светодиодная подсветка позволяет значительно сократить расход энергии без ущерба для яркости изображения. LED TV Samsung: это не только телевизор… В телевизоре всё должно быть прекрасно — и характеристики, и внешний вид, и набор функций. Раз уж мы сегодня говорим о конкретных LED-телевизорах Samsung, выпускаемых нынче в Калуге, было бы упущением не упомянуть их основные характеристики. К теме сегодняшней статьи это имеет лишь косвенное отношение; тем не менее, полагаю, несколько строк подробностей о потенциальном предмете покупки не будут лишними. Когда бы не настала эра повсеместного цифрового телевидения в России, вы уже готовы к этому. Помимо этого, применяемый в этих моделях тюнер LNA plus создан специально с учетом российской специфики — помех, необъятных просторов и не первой свежести телевизионных ретрансляторов. Телевизор можно "прописать" в домашней сети с выходом на ноутбуки, десктопы и внешние хранилища данных, а пульт ДУ телевизора при этом превращается в беспроводную клавиатуру для перехода по папкам, вывода на дисплей контента из разных мест сети. Система звука в ультратонких LED-телевизорах — на уровне лучших моделей Samsung. Специально для ультратонких LED-телевизоров телевизоров был создан уникальный плоский сабвуфер, плюс, используются хорошо зарекомендовавшие себя скрытые динамики.
LED TV: есть ли минусы? Есть, а как же: это цена. Пока что LED-телевизоры значительно дороже своих собратьев с традиционной подсветкой. Впрочем, выход из такой ценовой ситуации будет традиционным: снижение цен по мере роста спроса и роста массовости производства. Пока что объём рынка LED-телевизоров невелик, но интерес к таким моделям за счёт их выдающихся характеристик огромен во всём мире. По мнению аналитиков Display Search, уже в следующем году каждый пятый проданный телевизор будет изготовлен по технологии LED TV, а ещё через пару лет — каждый второй.
LED Light-emitting diode — в LED телевизорах в качестве подсветки используются диоды — полупроводниковый прибор, создающий излучение свечение при прохождении через него электрического тока. LED подсветка матрицы светодиодами, сейчас таких телевизоров большинство.
Nanoleaf 4D Screen Mirroring Lightstrip Kit обеспечивает подсветку телевизора или монитора в соответствии с содержимым на экране. Комплект состоит из светодиодной ленты Nanoleaf Lightstrip, которая крепится к задней части телевизора, а камера должна быть направлена на экран для определения цветов. Производитель утверждает, что такой сетап предназначен для обеспечения «настоящего 4D-эффекта», который расширяет контент за пределы телевизора.
Умный Свет - Ambilight подсветка телевизора
Что собой представляет и для чего нужна подсветка для телевизоров? | Почти двадцать лет назад компания Philips разработала и запатентовала технологию фоновой подсветки Ambilight для телевизоров. |
Дополнительная подсветка телевизора и монитора: польза и вред | Лучшие светодиодные ленты 2024 года. КП и эксперт Анна Васютина представляют рейтинг светодиодных лент, которые представлены на рынке в 2024 году с фото, плюсами и минусами товаров и советами по выбору. |
Выберите город
- Подсветка ЖК-матрицы CCFL лампами
- Типы лед подсветки
- Какие бывают типы подсветки в телевизорах?
- OLED телевизоры: яркость и красочность на высоте
- Что это такое LED
Edge LED против Direct LED – какая светодиодная подсветка лучше для ЖК-экрана
А вот аппараты с OLED экранами экраны на светоизлучающих светодиодах относятся как раз к флагманским моделям, и их цена пока не позволяет перевести эти телевизоры в разряд массовых. Отличия LED от обычных LCD При использовании ламп для подсветки матриц было невозможно регулировать подсветку отдельно взятых участков экрана. Это приводило к тому, что контрастность LCD экранов была не достаточно высокой, что бы конкурировать с плазмой или даже еще живыми на то время кинескопами. Поэтому и пришли к решению использовать светодиоды для подсветки матрицы. При этом стало возможным регулировать подсветку на отдельных участках, регулируя яркость свечения отдельных светодиодов. Отсюда и получаются преимущества LED подсветки по сравнению с обычной люминесцентной лампой: улучшенные яркость экрана,.
Данная технология предусматривает равномерное размещение светодиодов сзади телевизора. В этом случае излучатель направлен на пользователя. Такой принцип способствует сокращению протечек света по краям телевизора. При этом в ТВ с прямой подсветкой есть множество больших зон затемнения. Из-за этой особенности телевизоры с прямой подсветкой не пользуются огромной популярностью. Технология Direct LED применяется исключительно в дешевых моделях. В телевизорах с подсветкой этого типа существенно увеличилось число светодиодов. Поэтому подобную подсветку уже нельзя назвать прямой. Она является полноматричной. Благодаря этому, FALD может использоваться и на флагманских телевизорах.
Отдавая предпочтение тыловой схеме с системой локального затемнения, инженеры бренда в топовой серии XS применяют модули RGB, а в бюджетной линейке LE — светодиоды белого спектра. В основе Sharp LC-40LE700RU лежит жидкокристаллическая панель последнего, 10-го, поколения, выпускаемая на заводе компании в Японии, хотя сам телевизор собран в Польше, что отчасти объясняет его щадящую цену. Одним словом, аппарат полностью готов к телевещанию завтрашнего дня. Кругозор встроенного мультимедийного плеера не отличается широтой — модель умеет лишь показывать фотографии JPEG и воспроизводить музыку в MP3. Из других особенностей, заслуживающих внимания, я бы отметил очень низкое энергопотребление — в рабочем режиме аппетит телевизора ограничивается величиной 72 Вт. При первоначальной настройке дисплей проявил типичную для жидкокристаллических аппаратов склонность к холодным тонам. Добиться референсной цветовой температуры нам так и не удалось, но проявлялось это лишь в виде легкого синеватого оттенка в плохо освещенных участках кадра. При этом тест «чернее черного» телевизор преодолел легко, а линейка оттенков серого была четко различима до самых ярких градаций. Насыщенные яркие цвета на экране Sharp LC-40LE700RU, делающие картинку нарядной, все же не переходили грань достаточности — красочная открытка не превращалась в цветастый балаган. Видеопроцессор неплохо вытягивал материал стандартного разрешения до параметров матрицы, но по эффективности борьбы с шумами и проработке движений уступал соответствующим блокам проигрывателей Pioneer LX-BDP52 и Dune HD Base 3. Тем не менее даже такое сложное испытание, как панорамирование камерой по карте Средиземья в самом начале «Братства кольца», аппарат преодолел с честью — стробирование хоть и наблюдалось, но в совсем легкой форме. Ситуация заметно изменилась при переходе к видео высокого разрешения с дисков Blu-ray и в мультимедийных файлах. Причем наилучшие результаты были получены при включенных 100-герцевой развертке и активной системе управления подсветкой.
После чего Вы сможете регулировать все доступные варианты подсветки через главное, либо дополнительное меню настроек. Для работы с программой нам также понадобиться драйвер для китайского Arduino именно на нём работает LED подсветка , а именно — CH340. После установки драйвера нужно зайти в программу, как указано на скриншоте выше, указав режим «Захват экрана» и устройство — «Adalight». После этих настроек Вам останется лишь установить зону захвата экрана кликнув на «Показать зоны захвата», по аналогии со способом для ОС Android. Программное обеспечение для работы с этим типом подсветки, с переменным успехом, допиливается разработчиками-любителями и адептами 4PDA здесь. Динамическая LED-подсветка через HDMI блок управления Одной из последних попыток достичь такой же функциональности и удобства использования, как при работе с нативным Ambilight стали так называемые блоки управления подсветкой. В отличии от предыдущего способа они не требуют никакой доустановки и отладки ПО. Достаточно соединить блок управления с устройством вывода и ввода, при помощи HDMI кабеля, подключить светодиодную ленту и вуаля, устройство готово к использованию. При этом работать блок управления может, как с любыми ТВ приставками, так и ПК или даже игровыми консолями. Примечательно, что данный способ уже прошел некий этап пользовательской апробации и эволюции. Например, первые варианты блоков управления работали с HDMI версии 1. Но разработчики быстро осознали свою ошибку и современные блоки управления получили HDMI версии 2.
Какие бывают типы подсветки в телевизорах?
White LED — самый простой и бюджетный вариант. Для подсветки используются только белые светодиоды. Достоинства — низкая цена и минимальное потребление электроэнергии. Недостатки — не очень высокая яркость и контрастность. Энергопотребление при этом увеличивается, но незначительно, а цветопередача и яркость существенно улучшаются. Такие модели дороже телевизоров с White LED, но качество изображения у них выше. QLED — так называемые экраны на квантовых точках. Но принцип работы у них один и тот же: между ЖК-экраном и светодиодной подсветкой располагается слой с квантовыми точками красного, зеленого и синего цветов. За счет этого цветопередача дополнительно улучшается, изображение становится особенно ярким и насыщенным.
Эта технология обычно реализуется в моделях премиум-класса, а также встречается в телевизорах, которые относятся к среднему ценовому сегменту. Основные характеристики LED телевизоров: на что обратить внимание при выборе Многие люди при покупке телевизора LED ориентируются только на стоимость и размеры экрана. Но есть немало других параметров, на которые следует обратить внимание. Подсветка LED телевизоров Она может быть организована двумя способами. Edge LED — светодиоды располагаются только по краям или по периметру панели, что позволяет сделать корпус телевизора более тонким. Также этот вариант получается более дешевым. Но у него есть ряд минусов: картинка может быть недостаточно яркой, подсветка — неравномерной, а по краям возникнут засветы. Direct LED — матричное распределение светодиодов по всей площади экрана.
Такое решение ведет к тому, что телевизор становится и несколько дороже, и немного толще. Зато изображение подсвечивается равномерно, лучше отображается черный цвет, повышаются яркость и контрастность картинки.
В ней светодиоды располагаются по бокам, сверху и снизу или по периметру, а свет распределяется по всему экрану с помощью специальных рассеивателей; матричная или прямая по всей площади экрана — Direct LED. Обеспечивает равномерный засвет всей LCD-панели.
В торцевой подсветке устанавливают только светодиоды белого свечения [1]. В большинстве LED-телевизоров для белой подсветки используют синие диоды и желтое люминофорное покрытие, что позволяет создавать достаточно качественный спектр белого света. С потребительской точки зрения ЖК-телевизоры и мониторы со светодиодной LED подсветкой отличают пять улучшений относительно ЖК c подсветкой люминесцентными лампами : Улучшенная контрастность не реализовано на Edge-LED ; Улучшенная цветопередача , больший цветовой охват только с RGB -матрицей ; Пониженное энергопотребление. Недостатки[ править править код ] Множество пользователей мониторов с подсветкой на белых светодиодах жалуется на то, что при высокой яркости «выгорают глаза» возможно, это связано с воздействием интенсивного коротковолнового сине-фиолетового света на сетчатку глаза.
Из недостатков телевизоров с WLED отмечается некоторая « синеватость » изображения в сравнении с подсветкой на основе люминесцентных ламп. Для решения данной проблемы LG Electronics в 2010 году представила технологию «Nano full LED», позволяющую получить более глубокий уровень черного цвета, равномерное изображение и экономию электроэнергии [4]. Мерцание экрана Если управление яркостью подсветки осуществляется широтно-импульсной модуляцией , экран едва заметно мерцает частота мерцания составляет обычно до 200 герц, максимум до 400. Это можно проверить, быстро покачав ручкой или карандашом на фоне экрана.
Если частота слишком маленькая, силуэт ручки распадётся на несколько стробоскопический эффект.
Вот пример фотографии одной из таких систем. Микросхемы такого технологического стандарта используются для хранения прошивки майнплаты материнская плата телевизора. По сути являются аналогом жесткого диска в компьютере. При использовании функций SmartTV в телевизионной технике увеличивается количество обращений центрального процессора к микросхеме, что сокращает срок ее жизни.
Ниже мы приводим фотографию микросхемы Какие производители телевизоров самые лучшие? Мы постараемся ответить на этот вопрос с точки легкости проведения ремонтов и доступности запчастей. Благодаря простыми инженерными решениями и большим количество запчастей на специализированном рынке. В нашем сервисном центре в 95 случаях из 100 получается отремонтировать технику вышеназванных брендов. Что касается такого известного производителя как Philips — ремонтопригодность производимой им техники не высока, так как имеет закрытую архитектуру.
Прошивка материнских плат этого вендора в большинстве случаев невозможна. Еще хуже обстоят дела с этим у Sony — телеприемники компании практически не пригодны ремонту. Отдельно хочется отметить буквально двумя словами телевизоры китайских брендов TCL, Mystery, Haier и тд — «тихий ужас». Если вам придется столкнуться с проблемой ремонта этих ТВ, то вы будете сильно расстроены. Какие модели телевизоров самые надежные?
Один из самых частых вопросов которым задаются наши клиенты. Рассмотрим вопрос с точки зрения мастеров по ремонту ТВ. По статистике все радиоэлектронные приборы ломаются примерно одинаково. Бывают конечно удачные и неудачные модели. Но модельный ряд у заводов — изготовителей меняется каждый год и по окончанию производства вся не проданная техника отзывается производителем обратно на завод, а место на витринах магазинов занимают новое образцы.
Типовые проблемы проявляются не сразу, а спустя год или два эксплуатации прибора. Так что, если мы и напишем пример удачной модели, скорей всего вы уже не сможете ее уже приобрести по причине снятия с производства. Как продлить срок службы телевизора? Один из самых интересных вопросов и самое печальное — то, что мы не сможем вам дать действительно полезную информацию. Многие наши клиенты вспоминают прошлые славные времена, когда у всех были кинескопные «голубые экраны» которые служили верой и правдой без всяких ремонтов по 20 и более лет.
Но славные времена давно прошли, многое поменялось в мире. Современные производители не заинтересованы производить надежную микроэлектронику которая будет работать десятилетиями. Прогресс не стоит на месте и техника быстро устаревает. Приведем несколько советов, заодно их и оспорив.
В итоге замене подлежит вся линейка. О недостатках для здоровья Сама по себе LED-подсветка независимо от способа реализации имеет несколько весомых недостатков, которые оказывают влияние не на качество изображения, а на зрение. В первую очередь — это функция широтно-импульсного модулирования. С её помощью пользователь регулирует яркость и, тем самым, ухудшает своё здоровье. Суть проблемы заключается в мерцании светодиодов с частотой выше 80 Гц, что проявляется во время снижения яркости. Зрительно такое мерцание человеческим глазом не фиксируется, но оно непрерывно раздражает нервные окончания, вызывая головную боль и усталость в глазах. Во время просмотра телевизионных передач данный недостаток не доставляет особого дискомфорта из-за большого расстояния между зрителем и экраном, а также низкой концентрации внимания. С другой стороны, длительная работа с документами на пониженной яркости комфортнее воспринимается глазами, но теперь негатива добавляет ШИМ. Кроме этого существуют и другие недостатки, ухудшающие зрение, проявление которых в той или иной степени зависит от технологии производства дисплеев. Например, завышенное излучение светодиодов в области близкой к ультрафиолетовому спектру. Тем, кому дорого зрение, следует остановить свой выбор на профессиональной серии мониторов с CCFL лампами, которые по-прежнему выпускают для работы с изображениями. Несмотря на наличие недостатков, производители электронной техники не перестанут использовать led подсветку в своих устройствах, а крупные компании по-прежнему будут рекламировать так называемые LED TV. Потому что маркетинговые цели по-прежнему имеют высокий приоритет.
Чем заменить светодиоды в подсветке телевизора?
Подсветка экрана телевизора и монитора: как работает | В светодиодных телевизорах со светодиодной подсветкой RGB разные области экрана подсвечиваются в зависимости от цвета картинки. |
Динамическая подсветка экрана Ambient Light | Купить светодиодные ленты для телевизора по цене от 131 рубль со скидкой за бонусы от СберСпасибо на Мегамаркет. Реальные отзывы покупателей. |
Светодиодные подстветки Direct LED и Edge LED: что это такое и что лучше | Встроенная в рамку телевизора со всех сторон экрана светодиодная подсветка (Edge LED) дополняется так называемыми квантовыми точками — фрагментами полупроводника размером в несколько сотен атомов, излучающими свет в строго заданном диапазоне. |
Светодиодные подстветки Direct LED и Edge LED: что это такое и что лучше | Люди, у которых домашний ТВ не оснащен технологией Ambilight, могут самостоятельно сделать подсветку для телевизора светодиодной лентой. |
Технологии подсветки в телевизоре
Характеристики светодиодов Светоизлучающий диод по цвету свечения может быть: зелёный, жёлтый, белый, красный или синий. Такое разнообразие цветовой гаммы нам доступно с середины 90-годов, это привлекает всё большее внимание к LED как в быту, так и в отраслях бизнеса. Цвет светодиода зависит от типа полупроводникового материала, а длину волны можно настроить. Светодиоды могут различаться по: Цвету Яркости Типов светодиодов два: выводной ламповый и поверхностный монтаж чиповый. Каждый тип LED излучает различный уровень энергии электроном , что приводит к излучению света с разными длинами волн. Выбрав тип полупроводникового материала, можно изготовить светодиод с определённым цветом излучаемого света. Принцип работы LED Без нити накала в обычных источниках света никакого света не будет, лишь под действием высоких температур она загорается и светится.
Принцип работы светодиода иной, так как нет нити накала, электрический ток как бы, пропускает первую стадию превращается в свет, причём разного цвета. Свет от диода возникает тогда, когда частницы с током собираются вместе в полупроводниковом материале. Поэтому основной состав светодиодов — это полупроводниковые материалы, которые обычно состоят из фосфида галлия или арсенида галлия, но бывают и другие вариации. В LED ток без потерь преобразуется в излучение. Светоизлучающие диоды, в отличие от простых источников света, преобразуют электроэнергию в свет без дополнительных этапов. Не нужно вначале превращать энергию в тепло, а потом в свет.
Первым LED-телевизором был Samsung LN-t4681f с подсветкой массивом светодиодов и коэффициентом контрастности до 500 000:1. В дальнейшем разработчики перешли на подсветку линейкой светодиодов сбоку от LCD панели, чтобы уменьшить толщину экрана [12]. В 2009 году в Калужской области была запущена производственная линия по выпуску плоскопанельных телевизоров Samsung со светодиодной подсветкой. Для повышения эффективности подсветки ЖК-телевизионных панелей через световодные светонаправляющие , а также светоотражающие слои можно дополнительно использовать в них оптоэлектронный модуль, выполняющий функции устройства управления световыми потоками, в виде узла, обрабатывающего оптическую информацию, пирамидальной, конической, эллипсоидной, тороидальной, спиралевидной, клиновидной, крестообразной, выпуклой, вогнутой, волнообразной формы или в виде U-образного световодного «отражателя-возвращателя». Основные направления работы — повышения яркости при солнечном свете и повышение контрастности, увеличение диагонали монитора при уменьшении его толщины. При этом основные технические решения и способы изготовления LED TV, как правило, защищались патентами, которые обеспечивают надёжную защиту товарных рынков. Хотя технология СД-подсветки не решает всех проблем, связанных с отображением информации, сейчас именно такие экраны занимают лидирующее положение на рынке, конкурируя с новыми поколениями плазменных и OLED -телевизоров. О телевизорах с настоящим LED-дисплеем см. OLED-телевизор , также Светодиодный графический экран. ЖК- телевизоры со светодиодной подсветкой экрана в быту, а также в рекламных и маркетинговых материалах, именуются LED TV, хотя по факту «светодиодными» свечение каждого пикселя осуществляется непосредственно светодиодом не являются.
В них лишь используется светодиодная подсветка жидкокристаллической матрицы.
История[ править править код ] Lay repair of diodes used to illuminate the display at the television. It may look barbaric, but 4 times the TV was fixed so much that the backlight was almost like new. Современные сверхъяркие светодиоды позволяют достичь той же светимости при меньших энергетических затратах. Однако внедрению светодиодной подсветки мешали технологические и экономические трудности. К началу 90-x годов была известна простейшая боковая светодиодная подсветка СД-подсветка ЖК-дисплеев и ЖК-индикаторов малых размеров, которую невозможно было использовать в экранах больших размеров. Начиная с 2007 года на рынке появились модели планшетов, мониторов, телевизоров и ноутбуков [11] со светодиодной подсветкой. Первым LED-телевизором был Samsung LN-t4681f с подсветкой массивом светодиодов и коэффициентом контрастности до 500 000:1. В дальнейшем разработчики перешли на подсветку линейкой светодиодов сбоку от LCD панели, чтобы уменьшить толщину экрана [12].
В 2009 году в Калужской области была запущена производственная линия по выпуску плоскопанельных телевизоров Samsung со светодиодной подсветкой. Для повышения эффективности подсветки ЖК-телевизионных панелей через световодные светонаправляющие , а также светоотражающие слои можно дополнительно использовать в них оптоэлектронный модуль, выполняющий функции устройства управления световыми потоками, в виде узла, обрабатывающего оптическую информацию, пирамидальной, конической, эллипсоидной, тороидальной, спиралевидной, клиновидной, крестообразной, выпуклой, вогнутой, волнообразной формы или в виде U-образного световодного «отражателя-возвращателя». Основные направления работы — повышения яркости при солнечном свете и повышение контрастности, увеличение диагонали монитора при уменьшении его толщины.
Такой дисплей был бы восхитительным — не ЖК, не светодиоды, а новый способ эмиссии света.
Но пока так не умеют. Комбинация светофильтров и квантовых точек Этот способ получения цвета встречается в некоторых ЖК-телевизорах. Смысл тут такой: у ЖК телевизора стоит синяя подсветка, на неё сверху ставят слой из смеси квантовых точек — красных, зелёных и синих. Получается белая подсветка, но с очень хорошим спектром, идеально подходящим для фильтрации светофильтрами.
То есть квантовые точки тут не в роли красящего слоя, а как дополнительный обвес подсветки, чтобы её свет лучше переваривался светофильтрами. А дальше всё по накатанной — жидкие кристаллы фильтруют свет, светофильтры красят. Но, поскольку белый свет тут у нас с чётко выверенным спектром, у светофильтров получается делать свою работу гораздо лучше. А зачем вообще красить?
Светодиоды, вообще-то, могут быть цветными, безо всяких светофильтров и квантовых точек. В OLED дисплеях изначально так и было, но технология не прижилась. На данный момент прерогатива без окрашивания есть только у MicroLED дисплеев. Тут у нас сами микросветодиоды генерируют нужную длину волны, ничего не надо красить, всё хорошо.
Зрение В плане здоровья телевизор может нагадить следующими способами: Использовать ШИМ для регулировки яркости и просто потому что может — ищите телевизоры без ШИМ Быть настроенными на слишком большую яркость, и, как любой яркий объект, сильно перегружать глаза Иметь большой контраст между яркостью экрана и яркостью окружения. Смотреть экран в абсолютной темноте — не круто Быть слишком близко — глаза устают от постоянного просмотра объектов вблизи Не напоминать о том, что надо моргать Съесть деньги и не оставить их на доктора Иметь плохой спектр Как от плохого спектра устают глаза На всякий случай, повторю дисклеймер: я не претендую на экспертизу в данной области, а лишь изложу свою поверхностную гипотезу по этому вопросу простыми словами, и буду рад дополнениям, уточнениям и критике со стороны людей, разбирающихся в теме. На данный момент у меня нет возможностями подтвердить или опровергнуть её, и всё это — лишь мои домыслы, которыми я посчитал нужным поделиться. Одним словом, предлагаю эту тему к обсуждению.
Организм, руководствуясь сугубо показаниями нервной системы может неадекватно регулировать физиологические процессы глаза, если светить в него нестандартным спектром — отсюда дискомфорт. Видимый свет — это электромагнитные волны. Амплитуда, частота, фаза и длина волны — вот это всё. Фазу трогать не будем, у нас тут пока не голографические дисплеи.
Частота у света очень высокая. В остальном всё так же, как и у других электромагнитных волн. Теперь важное: в реальности цвета радуги не являются смесью каких-то готовых, как мы привыкли. Не состоят они из трёх каких-то там базовых цветов.
Все цвета радуги вполне себе самостоятельные. Каждому цвету соответствует своя длина волны. Жёлтый, фиолетовый, бирюзовый, оранжевый — это не смеси цветов, а самостоятельные цвета со своей длиной волны. Представление о цвете, как о смеси трёх цветов — это именно представление, модель, которую придумали люди, чтобы было проще.
А вот белый свет — коктейль всех возможных длин волн, всех-всех цветов. Не только красного, зелёного и синего, а вообще всей радуги целиком. Смесь эта неравномерная — амплитуда волн одной длины в нем больше, а другой — слабее. У волн каждой частоты своя концентрация, так сказать.
Если каждой длине волны померить её амплитуду, то можно нарисовать график — как высока концентрация волн с разными длинами волн в нашем коктейле. Это называется спектром. Спектр — ключевая штука в вопросах естественности картинки Как же мы видим всё это? У нас в «пикселях» глаз не супернаучные измерительные спектрографы, видящие весь спектр, а кое-что попроще.
В глазах стоят четыре вида «сенсоров» для четырёх определённых частот электромагнитных волн. Первый вид — это палочки, наше сознание интерпретирует сигналы от них, как яркость. Три других — колбочки. Наше сознание интерпретирует сигналы с них как цвета: красный, зелёный и синий — именно из-за этого мы воспринимаем цвет как смесь трёх цветов.
Вот только ловят эти сенсоры не строго определённые длины волн, а целые диапазоны, причем каждый сенсор в своем диапазоне по-разному чувствителен к разным длинам волн. К примеру, зелёный сенсор ловит хорошо 534 нм. Но и 500 нм он тоже обнаружит, только хуже. Обнаруженная яркость будет меньше.
Сенсор яркости палочка лучше всего ловит 498 нм — это очень близко к зелёному, и поэтому зелёный цвет кажется нам самым ярким. Как мы видим разные цвета? Например, жёлтый? Жёлтый — это 570 нм.
Значит, думай, что это жёлтый». Хотя, в реальности, это может быть и не жёлтый, а обманка в виде того самого зелёного и красного, которую излучил дисплей. Да, ваш дисплей если это не Sharp особой серии настоящий жёлтый цвет показать не сможет, всё это обман. Некоторые живые существа, кстати, вполне могут это заметить.
Здесь должна быть маленькая формула с интегралом, но, к несчастью для интегралов, они очень пугают большинство людей. Объясню словами. Сенсор не детектирует какую-то одну длину волны, а суммирует амплитуды яркость всех обнаруженных длинн волн. Но не просто суммирует.
Перед этим суммированием всего-всего, он домножает яркость каждой длины волны на свою сенсора способность видеть эту длину волны, то есть свою чувствительность к этой длине волны. Пример с зелёным сенсором. Посветим на него одновременно несколькими длинами волн: 450 нм, 500 нм, 550 нм и 600 нм. Каждая волна будет иметь условную яркость в 1 единицу.
Посмотрите на график, и увидите, какая у него чувствительность к этим длинам волн. Как он будет действовать? Яркость волны длиной 450 нм, равную 1 он умножит на 0,1 Яркость волны длиной 500 нм, равную 1, он умножит на 0,4 Яркость волны длиной 550 нм, равную 1, он умножит на 1,2 Яркость волны длиной 600 нм, равную 1, он умножит на 0,4 А потом всё это сложит. Получится 2,1.
И он отправит значение 2,1 в зрительный нерв на самом деле не сразу, в сетчатке есть своя мини-нервная система, выполняющая предварительную обработку информации, но это не важно. Пример двух спектров, которые на химическом и физическом уровне абсолютно разные, но для сенсора — то же самое Теперь убираем все эти четыре длины волны, и, вместо этого, светим одной в 525 нм и яркостью 2,1. Сенсор снова сделает это умножение-сложение, и у него снова получится 2,1. То же самое.
Поэтому, с информационной точки зрения, для сенсора два этих воздействия — абсолютно одно и то же. Сенсор выдаёт только интенсивность, просто циферку — и мозг, как-бы, будет видеть одно и то же. Только вот сенсор живой и электрохимический. Он требует обслуживания, заботы и управления, надо подкачивать разные нужные вещества и калибровать всякие биологические штуки.
Кислород с витаминками, и всё такое. Не одно и то же всё время, а по ситуации: от воздействия света разной интенсивности и длины волны в палочках и колбочках возникают разные фотохимические реакции, и баланс веществ в них постоянно меняется. Чтобы грамотно рассчитать калибровку нервных окончаний и дозу веществ и витаминок в нужный момент времени, организм должен понять, какое на этот сенсор идет воздействие со стороны внешней среды, и на основе этого сделать нужные организменные штуки с этим сенсором. Адаптировать его к ситуации.
А какое воздействие на глаз может быть со стороны внешней среды? Если не брать во внимание нештатные сценарии шлицевая отвёртка , то это могут быть только электромагнитные волны разной частоты длины волны. Очень условный гипотетический! Организм начеку — как только эта длина волны появилась, надо усилить подкачку новых молекул этого витамина, чтобы концентрация не снижалась.
Но сенсор даёт очень скудную информацию — лишь одно число, и по нему непонятно, что там происходит. Вдруг там 458 нм, или 461 нм? Сенсор всё равно выдавал бы одно и то же. А может там вообще только 500 нм?
Тогда, если мы ложно испугаемся и ошибочно начнем пихать туда новые дополнительные витаминки, их там будет, наоборот, переизбыток — а это тоже нехорошо. То есть, на информационном уровне, сенсор детектирует зелёный цвет и всё, а на физиологическом уровне на него разные длины волн в спектре действуют по разному, просто он об этом доложить организму не может. Как же узнать, что витаминки действительно уничтожаются и их пора подкачивать? Поставить спектрограф?
Природа их делать не умеет. Датчик на каждое вещество и каждый чих в каждый сенсор — глаза будут размером с арбузы и очень мясные, придётся уменьшить мозг и качать шею. Но можно сделать проще — ориентироваться на среднюю температуру по больнице. Природа любит так делать.
Для того, чтобы полностью оценить это воздействие, и, в частности, узнать, как сильно светит волна 459 нм, нужно знать весь спектр, а не одну циферку с сенсора. За неимением спектрографа, организм, руководствуясь генетическим опытом, выработанным в ходе эволюции нашего вида, выдумывает наиболее вероятный спектр, который бы воздействовал на сенсор так, чтобы получился как раз тот сигнал-циферка, которая с этого сенсора и поступает в данный момент. То есть он пытается выдумать такой спектр, при котором бы сенсоры выдавали то, что они выдают в данный момент. Поскольку он знает только естественный спектр и его формы, то выдумывает именно естественный спектр.
И, поскольку сенсор не один, а четыре, очень грубую картину спектра организм таки восстанавливает. Естественный для нашего организма спектр — это довольно плавная штука: Естественный спектр Плавный он по простой причине. Что видел глаз всю эволюцию? Листики с травинками, камешки, небо с речками, волосня товарища по пальме, вот это всё.
Большое разнообразие химических элементов, одним словом. И почти для каждой длины волны найдется какая-нибудь молекула, хорошо отражающая именно её. И получается, что когда веществ много разных, то отражаются почти все волны, и спектр этих отражённых волн плавный. А что значит «плавный спектр»?
График плавный. Например, яркости 480 нм много — значит, скорее всего, и 479 нм, и 475 нм, и 485 нм тоже довольно много. Физиология глаза заточилась под эту вездесущую плавность — потому что это всегда срабатывало. Работает — не трогай.
Все, у кого глаз подстраивался неправильно, плохо видели и были заклёваны саблезубыми мамонтами, не дав потомства. Но потом появились искусственные источники света. Их спектр бывает очень разный. В большинстве случаев, он очень сильно отличается от естественного спектра, под который эволюционно заточена автонастройка наших глаз.
Спектры разных искусственных источников света Например, производители отчаянно воюют со светодиодами, которые очень любят длину волны в районе 430 нм и шпарят ей, как прожекторы, а в природе такого не бывает, там если 430 нм шпарит — то 420 нм и 440 нм тоже будут шпарить. И вот светодиод, у которого 430 нм светит ярко, а в окрестности нет, светит в глаз. Организм думает, что раз синий датчик выдаёт что-то интенсивное, значит 420 нм, и 430 нм, и 440 нм много, и начинает на физиологическом уровне подстраиваться под этот спектр. Подкачивает не те вещества, не в той концентрации и невпопад, генерирует неверные стимулы всяких нейронов, неправильно калибрует чувствительность.
В глазах нарушается баланс нужных веществ и электрохимических регулировок, и глаза начинают вполне справедливо докладывать о сбоях. Эти сбои наше сознание интерпретирует как неестественность картинки и усталость глаз. Словом, не для того у нас эти две штуки в голове выросли. Неестественный спектр создаёт ощущение неестественности цвета.
Сенсоры передают в мозг нужную информацию, на информационном уровне всё нормально — картинка как картинка, но авторегулировка физиологии глаза отрабатывает неадекватно ситуации, потому что неправильно рассчитывает предположение о том спектре, который светит в глаз. Если же спектр естественный — то представление организма о спектре и его реакции адекватны реальному воздействию на сетчатку — и цвета кажутся мягкими. Потому что с физиологией всё хорошо. Спектр решает, будут цвета ощущаться мягкими и естественными, или нет.
Давайте делать дисплей. Светоизлучающих элементов, способных выдавать любую видимую длину волны, пока не сделали. А жаль. Поэтому делаем просто — под каждый сенсор в нашем глазу свой элемент на дисплее.
Красному — 700 нм, зелёному — 550 нм, синему — 450 нм. Будем этими элементами дисплея стимулировать сенсоры глаз так же, как это делают цвета, и обманем глаз, чтобы он думал, что видит цвет. В длинах волн и частотах видимого спектра стоит коварный капкан для мозга. Случайно или нет?
Длины волн видимого спектра - от 380 до 780 нм, а частоты - от 380 ТГц до 790 ТГц. Например, у оранжевого частота 500 ТГц, а у бирюзового - длина волны 500 нм. Частота и длина волны - это, как-бы, взаимно обратные величины, и вот такой вот нюанс с почти одинаковыми цифрами может сильно путать мозг Резюмируем. У нас в дисплее три источника света: красный, зелёный и синий.
Когда они будут светить одновременно — мы будем стимулировать сразу три сенсора в глазу — и будет белый. Вот только этот белый — какой у него будет спектр? Если этот спектр будет неестественным, то от такого дисплея устанут глаза.
Содержание:
- Содержание:
- Интернет-магазин LED подсветок «LED TV STORE»
- Принципы работы LED-телевизора и светодиодной подсветки
- Содержание:
- Сравнительный тест 6 жидкокристаллических телевизоров со светодиодной подсветкой.
- Форум РадиоКот • Просмотр темы - Переделка ЖК подсветки ТВ
Edge LED против Direct LED – какая светодиодная подсветка лучше для ЖК-экрана
Если классифицировать по типу светодиодов, то они отличаются световым потоком — проще говоря, по яркости, а также потребляемой мощностью. На упаковка можно встретитть занения ватт на метр: 3. Чем выше цифра, тем ярче. Что нужно для подключения Не всегда светодиодные ленты продают сразу с адаптером питания и контроллером. Иногда в продаже встречаются сам шнур с диодами, к которому необходимо докупить оборудование. Не все ленты имеют самоклеющуюся сторону, поэтому иногда и ее нужно приобрести отдельно. Важным моментом является наличие вывода для подключения питания и рассеиватели. Последние это пластиковые заглушки, которые напоминают тонкий плинтус.
Пиксели на экране относятся к тому типу, который пропускает только одну длину волны. Поэтому материалы, из которых изготовлены пиксели, имеют избирательную полосу пропускания света. Существует только три типа — красный, синий и зеленый. Холодный цвет — преобладает синий цвет, нам кажется, что этот цвет очень белый, белоснежный.
Теплый цвет — уменьшение синего цвета, свет становится более желтым.
Каждый из компонентов отвечает за подсветку определенной части экрана. Типы подсветок Чтобы понимать особенности вариантов, надо разобраться в устройстве каждого. В этом нет ничего сложного, так как система проста и имеет аналогичную конструкцию независимо от производителя телевизора или монитора и даты выпуска. Конечно, устройство постоянно совершенствуется для улучшения эффекта, поэтому в новых телевизорах подсветка может быть на порядок лучше при аналогичных характеристиках. Direct LED Эта разновидность используется как в дорогих, так и в дешевых моделях и имеет такие особенности: Светодиоды расположены за матрицей и равномерно распределены по всей поверхности экрана. Это обеспечивает качественную подсветку, но ее характеристики зависят от количества диодов.
Если в недорогих телевизорах может быть установлено 100 диодов, то в топовых моделях 1000 или даже больше. Чтобы сделать подсветку равномернее и исключить засветы в местах расположения светодиодов, между ними и матрицей ставят рассеиватель. Чаще всего это матовый лист небольшой толщины, способный распределять свет от диодов равномерно на всей поверхности. Модуль с диодами ставится за экраном, поэтому подобные модели всегда имеют большую толщину, чем второй вариант. Это никак не влияет на характеристики и срок службы, но может создавать неудобство при установке на стену. Так выглядит система подсветки прямого действия. Edge LED Этот вариант отличается от предыдущего по расположению светодиодного блока и конструктивным особенностям: Чаще всего используют светодиодную ленту, размещенную на левой и правой стороне экрана или на верхней и нижней части.
Для качественного освещения используют рассеиватели, которые обеспечивают равномерное распределение света по всей матрице, от них во многом зависят характеристики системы. В дорогих моделях боковая подсветка может располагаться с четырех сторон, что увеличивает качество и позволяет добиться улучшения яркости.
Для этого необходимо изучить технические тонкости каждой технологии. Edge LED Cветодиодные блоки должны быть технически правильно и точно размещены «Edge» с английского переводится как «угол». Отсюда и вытекает особенность этого типа подсветки — светодиоды располагаются по краям внутренней части экрана с правого или левого бока. Технология доступная, что сделало ее популярной.
Планка, на которой размещены светодиоды, крепится к боковым поверхностям матового рассеивателя, поэтому световой фон получается более равномерным. Благодаря торцевому расположению диодов получилось снизить толщину корпуса телевизора. Вместе с этим дополнительно снижается нагрузка на глаза. Но, светодиодные блоки должны быть технически правильно и точно размещены. Если допустить ошибку, на экране появятся засветы — световые пятна, появляющиеся в результате неравномерности свечения.
Похожие записи
- Рейтинг топ-10 по версии КП
- LED TV STORE - купить LED подсветку для телевизора с доставкой
- Типы подсветки LED телевизоров — какая лучше Edge или Direct
- webOS Forums - форум пользователей телевизоров LG на webOS
- Как сделать подсветку Ambilight для проекционного экрана?
Лучшие светодиодные ленты 2024
Если вдруг на ТВ пропало изображение, а звук остался – то скорее всего сгорела светодиодная подсветка. Теперь начинается непосредственный ремонт Led подсветки телевизора: для этого вам нужно по контуру отщелкнуть аккуратно все защелки, снять рамку из пластика и убрать рассеивающие пленки, чтобы открыть светодиоды. Большинство телевизоров, представленных в продаже, оснащены экранами со светодиодной подсветкой. Почти двадцать лет назад компания Philips разработала и запатентовала технологию фоновой подсветки Ambilight для телевизоров.
Технология подсветки LED в современных телевизорах
У такого телевизора продвинутая локальная подсветка в том или ином виде, благодаря чему ТВ лучше работает с чёрным. В наличии более 300 моделей светодиодных подсветок для телевизоров всех известных производителей, таких как lg, самсунг, филипс и т.д. хочется хотя бы небольшую подсветку по краям - глаза уже привыкли к этому и меньше. фоновая адаптивная подсветка для любого HDMI телевизора. купить с доставкой по выгодным ценам в интернет-магазине OZON (1252672236). Теперь не обязательно покупать дорогую модель телевизора со встроенной фоновой подсветкой, достаточно приобрести устройство DreamScreen и быть обладателем ТВ-панели с портом HDMI.
Принципы работы LED-телевизора и светодиодной подсветки
Почти двадцать лет назад компания Philips разработала и запатентовала технологию фоновой подсветки Ambilight для телевизоров. Фоновая подсветка телевизора на основе компаратора LM393. Подсветка с прямым освещением: в светодиодном экране с прямым освещением светодиоды находятся прямо за экраном и светят через ряд отверстий или отверстий в экране. Первое наименование подсветки это Direct LED и она устанавливалась на телевизоры с 2012 года. В поисках ответа появилось несколько типов светодиодной подсветки, среди которых выделяют два основных.