Новости наибольшей наглядностью обладают формы записи алгоритмов

Наибольшей наглядностью обладают следующие формы записи алгоритмов. Наибольшей наглядностью обладает следующая форма записи алгоритмов. Наилучшей наглядностью обладают графические способы записи алгоритмов. У такого способа есть недостаток: отсутствие наглядности выполнения процесса и чёткой формализации объектов алгоритма.

Другие вопросы:

  • Топ вопросов за вчера в категории Информатика
  • Алгоритм может быть задан следующими способами словесным словесно графическим
  • Комментарии
  • Домашний очаг

Наибольшей наглядностью обладают … формы записи алгоритмов.

Циклическим называется алгоритм, в котором: Выполнение операций зависит от услов. Наибольшей наглядностью обладают 4. графические. Искать похожие ответы. Наилучшей наглядностью обладают графические способы за-писи алгоритмов; самый распространённый среди них — блок-схема. При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается определенный произвол при изображении команд. Наилучшей наглядностью обладают графические способы записи алгоритмов; самый распространённый среди них — блок-схема. Наибольшей наглядностью обладают следующие формы записи алгоритмов.

Тест Основы алгоритмизации 8 класс ФГОС

Наибольшей наглядностью обладают алгоритмы. На рисунке представлен фрагмент алгоритма имеющий структуру. Составьте и запишите программу рисования бабочки. Пример текстовой формы записи алгоритма — классический алгоритм Евклида для нахождения наибольшего общего делителя двух натуральных чисел. 6) Наибольшей наглядностью обладают формы записи алгоритмов. построчные рекурсивные графические словесные Ответ: графические. 6) Наибольшей наглядностью обладает следующая форма записи алгоритмов. При записи алгоритмов для краткости указываются лишь номера команд.

Формы представления алгоритмов

Перейти к п. Заменить У на У - X. Считать X искомым результатом. Вместе с тем использование построчной записи требует от человека большого внимания. Самый распространённый среди них — блок-схема. Блок-схема представляет собой графический документ, дающий представление о порядке работы алгоритма. Направления линий связи слева направо и сверху вниз считаются стандартными, и линии связи изображаются без стрелок, в противоположном случае — со стрелками.

Когда два человека вместе идут по мосту, то идут они со скоростью более медлительного из них. Ребята смогли разработать алгоритм перехода на другой берег за минимально возможное время. Какое время она затратили на его исполнение?

В данной ситуации каждый этап прохождения алгоритма представляется в виде геометрических фигур — так называемых «блоков», причём конкретная форма фигур зависит от выполняемой операции. Существует стандарт, регламентирующий размеры используемых графических блоков, а также их отображение, функции, формы и взаимное расположение. Направление работы алгоритма показывают линии соединения блоков. Другое название способа — визуальное представление. Графический способ представления имеет практическое значение и используется не только в случае программирования. Его применяют при составлении информационных и структурных схем, инфографики и в иных ситуациях, когда нужно обеспечить чёткую визуализацию данных и графически отобразить последовательность расположения объектов алгоритма. Создание блок-схемы алгоритма — важный и нужный этап решения поставленной задачи. Но при некоторых обстоятельствах этот этап можно считать промежуточным, так как в таком виде описанный алгоритм невозможно выполнить средствами ЭВМ. Зато графический способ представления значительно облегчает процесс дальнейшего создания компьютерной программы. О ней ниже.

При этом машина может изменить своё состояние, записать другой символ в ячейку или передвинуть головку на одну ячейку вправо или влево. Этот тезис является аксиомой, постулатом, и не может быть доказан математическими методами, поскольку алгоритм не является точным математическим понятием. Основная статья: Рекурсивная функция теория вычислимости С каждым алгоритмом можно сопоставить функцию, которую он вычисляет. Однако возникает вопрос, можно ли произвольной функции сопоставить машину Тьюринга, а если нет, то для каких функций существует алгоритм? Исследования этих вопросов привели к созданию в 1930-х годах теории рекурсивных функций [9]. Класс вычислимых функций был записан в образ, напоминающий построение некоторой аксиоматической теории на базе системы аксиом. Сначала были выбраны простейшие функции, вычисление которых очевидно. Затем были сформулированы правила операторы построения новых функций на основе уже существующих. Необходимый класс функций состоит из всех функций, которые можно получить из простейших применением операторов. Подобно тезису Тьюринга в теории вычислимых функций была выдвинута гипотеза, которая называется тезис Чёрча : Числовая функция тогда и только тогда алгоритмически исчисляется, когда она частично рекурсивна. Доказательство того, что класс вычислимых функций совпадает с исчисляемыми по Тьюрингу, происходит в два шага: сначала доказывают вычисление простейших функций на машине Тьюринга, а затем — вычисление функций, полученных в результате применения операторов. Таким образом, неформально алгоритм можно определить как четкую систему инструкций, определяющих дискретный детерминированный процесс, который ведёт от начальных данных на входе к искомому результату на выходе , если он существует, за конечное число шагов; если искомого результата не существует, алгоритм или никогда не завершает работу, либо заходит в тупик. Основная статья: Нормальный алгоритм Нормальный алгоритм алгорифм в авторском написании Маркова — это система последовательных применений подстановок, которые реализуют определённые процедуры получения новых слов из базовых, построенных из символов некоторого алфавита. Как и машина Тьюринга, нормальные алгоритмы не выполняют самих вычислений: они лишь выполняют преобразование слов путём замены букв по заданным правилам [10]. Нормально вычислимой называют функцию, которую можно реализовать нормальным алгоритмом. То есть алгоритмом, который каждое слово из множества допустимых данных функции превращает в её начальные значения [11].. Создатель теории нормальных алгоритмов А. Марков выдвинул гипотезу, которая получила название принцип нормализации Маркова: Для нахождения значений функции, заданной в некотором алфавите, тогда и только тогда существует некоторый алгоритм, когда функция нормально исчисляемая. Подобно тезисам Тьюринга и Черча, принцип нормализации Маркова не может быть доказан математическими средствами. Стохастические алгоритмы[ править править код ] Однако приведённое выше формальное определение алгоритма в некоторых случаях может быть слишком строгим. Иногда возникает потребность в использовании случайных величин [12]. Алгоритм, работа которого определяется не только исходными данными, но и значениями, полученными из генератора случайных чисел , называют стохастическим или рандомизированным, от англ. Стохастические алгоритмы часто бывают эффективнее детерминированных, а в отдельных случаях — единственным способом решить задачу [12]. На практике вместо генератора случайных чисел используют генератор псевдослучайных чисел. Однако следует отличать стохастические алгоритмы и методы, которые дают с высокой вероятностью правильный результат. В отличие от метода , алгоритм даёт корректные результаты даже после продолжительной работы. Некоторые исследователи допускают возможность того, что стохастический алгоритм даст с некоторой заранее известной вероятностью неправильный результат. Тогда стохастические алгоритмы можно разделить на два типа [14] : алгоритмы типа Лас-Вегас всегда дают корректный результат, но время их работы не определено. Для некоторых задач названные выше формализации могут затруднять поиск решений и осуществление исследований. Для преодоления препятствий были разработаны как модификации «классических» схем, так и созданы новые модели алгоритма. В частности, можно назвать: многоленточная и недетерминированная машины Тьюринга; регистровая и РАМ-машина — прототип современных компьютеров и виртуальных машин; Виды алгоритмов[ править править код ] Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей её решения. Следует подчеркнуть принципиальную разницу между алгоритмами вычислительного характера, преобразующими некоторые входные данные в выходные именно их формализацией являются упомянутые выше машины Тьюринга, Поста, РАМ, нормальные алгорифмы Маркова и рекурсивные функции , и интерактивными алгоритмами уже у Тьюринга встречается C-машина, от англ. Последние предназначены для взаимодействия с некоторым объектом управления и призваны обеспечить корректную выдачу управляющих воздействий в зависимости от складывающейся ситуации, отражаемой поступающими от объекта управления сигналами [15] [16]. В некоторых случаях алгоритм управления вообще не предусматривает окончания работы например, поддерживает бесконечный цикл ожидания событий, на которые выдается соответствующая реакция , несмотря на это, являясь полностью правильным. Можно также выделить алгоритмы: Механические алгоритмы, или иначе детерминированные, жесткие например, алгоритм работы машины, двигателя и т. Гибкие алгоритмы, например, стохастические, то есть вероятностные и эвристические. Вероятностный стохастический алгоритм даёт программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата. Эвристический алгоритм от греческого слова « эврика » — алгоритм, использующий различные разумные соображения без строгих обоснований [17]. Линейный алгоритм — набор команд указаний , выполняемых последовательно во времени друг за другом. Разветвляющийся алгоритм — алгоритм, содержащий хотя бы одно условие, в результате проверки которого может осуществляться разделение на несколько альтернативных ветвей алгоритма. Циклический алгоритм — алгоритм, предусматривающий многократное повторение одного и того же действия одних и тех же операций. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы — последовательность команд серия, тело цикла , которая может выполняться многократно.

Тест с ответами на тему: “Основы алгоритмизации”

2. Наибольшее распространение благодаря своей наглядности получил графический способ записи алгоритмов. Схемы алгоритмов обладают большей наглядностью, чем словесная запись алгоритма. Тест с ответами: «Алгоритмизация и программирование»: бесплатные материалы для тестирования от преподавателя. Лесное озеро имеет форму круга. В качестве примера словесного способа записи алгоритма рассмотрим алгоритм нахождения площади прямоугольника. Схемы алгоритмов обладают большей наглядностью, чем словесная запись алгоритма.

Как называется свойство алгоритма. Основные свойства алгоритма

Циклическим называется алгоритм, в котором: Выполнение операций зависит от услов. Формы записи алгоритмов. 15. Специальное средство, предназначенное для записи алгоритмов в аналитическом виде: получило название: а) алгоритмические языки + б) алгоритмические навыки в) алгоритмические эксперименты.

Тест с ответами: «Алгоритмизация и программирование»

Какая последовательность символов не может служить именем в языке Паскаль? Какая клавиша нажимается после набора последнего данного в операторе read: 20.

Алгоритм в словесной форме может оказаться очень объёмным и трудным для восприятия. Пример 1. Словесное описание алгоритма нахождения наибольшего общего делителя НОД пары натуральных чисел алгоритм Евклида. Запишите первое из заданных чисел в столбец X, а второе — в столбец У. Если данные числа не равны, замените большее из них на результат вычитания из большего числа меньшего. Повторяйте такие замены до тех пор, пока числа не окажутся равными, после чего число из столбца X считайте искомым результатом.

Построчная запись. Кроме слов естественного языка предписания могут содержать математические выражения и формулы. Пример 2. Построчная запись алгоритма Евклида. Обозначить первое из заданных чисел X, второе обозначить Y.

Это связано с тем, что каждый исполнитель алгоритмов "понимает" лишь такой алгоритм, который записан на его "языке" и по его правилам. Условно выделяют 4 формы записи алгоритмов: Словесно-пошаговая текстовая. Псевдокоды - запись на специальном алгоритмическом языке. Графическая форма записи блок-схема. Текстовая форма записи алгоритма Текстовая словесно-пошаговая форма обычно используется для алгоритмов, ориентированных на исполнителя - человека. Команды алгоритма нумеруют, чтобы иметь возможность на них ссылаться. Пример текстовой формы записи алгоритма — классический алгоритм Евклида для нахождения наибольшего общего делителя двух натуральных чисел: Если числа равны, то взять первое число в качестве ответа и закончить исполнение алгоритма, иначе перейти к п. Определить большее из двух чисел. Заменить большее число на разность большего и меньшего чисел.

Но уже в начале 70-х гг. Это чутко фиксируют энциклопедические издания. В « Энциклопедии кибернетики » 1974 год в статье «Алгоритм» он уже связывается с реализацией на вычислительных машинах, а в «Советской военной энциклопедии» 1976 г. За последние полтора-два десятилетия компьютер стал неотъемлемым атрибутом нашей жизни, компьютерная лексика становится всё более привычной. Слово «алгоритм» в наши дни известно, вероятно, каждому. Оно уверенно шагнуло даже в разговорную речь, и сегодня мы нередко встречаем в газетах и слышим в выступлениях политиков выражения вроде «алгоритм поведения», «алгоритм успеха» или даже «алгоритм предательства». Академик Н. Моисеев назвал свою книгу «Алгоритмы развития», а известный врач Н. Амосов — «Алгоритм здоровья» и «Алгоритмы разума». А это означает, что слово живёт, обогащаясь всё новыми значениями и смысловыми оттенками. Свойства алгоритмов[ править править код ] Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований: Дискретность — алгоритм должен представлять процесс решения задачи как упорядоченное выполнение некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, то есть преобразование исходных данных в результат осуществляется во времени дискретно. Детерминированность определённость. В каждый момент времени следующий шаг работы однозначно определяется состоянием системы. Таким образом, алгоритм выдаёт один и тот же результат ответ для одних и тех же исходных данных. В современной трактовке у разных реализаций одного и того же алгоритма должен быть изоморфный граф. С другой стороны, существуют вероятностные алгоритмы, в которых следующий шаг работы зависит от текущего состояния системы и генерируемого случайного числа. Однако при включении метода генерации случайных чисел в список «исходных данных» вероятностный алгоритм становится подвидом обычного. Понятность — алгоритм должен включать только те команды, которые доступны исполнителю и входят в его систему команд. Завершаемость конечность — в более узком понимании алгоритма как математической функции, при правильно заданных начальных данных алгоритм должен завершать работу и выдавать результат за определённое число шагов. Дональд Кнут называет процедуру, которая удовлетворяет всем свойствам алгоритма, кроме, возможно, конечности, методом вычисления англ. Однако довольно часто определение алгоритма не включает завершаемость за конечное время [5]. В этом случае алгоритм метод вычисления определяет частичную функцию [en]. Для вероятностных алгоритмов завершаемость как правило означает, что алгоритм выдаёт результат с вероятностью 1 для любых правильно заданных начальных данных то есть может в некоторых случаях не завершиться, но вероятность этого должна быть равна 0. Массовость универсальность. Алгоритм должен быть применим к разным наборам начальных данных. Результативность — завершение алгоритма определёнными результатами. Формальное определение[ править править код ] Разнообразные теоретические проблемы математики и ускорение развития физики и техники поставили на повестку дня точное определение понятия алгоритма. Марков , Алонзо Чёрч. Было разработано несколько определений понятия алгоритма, но впоследствии было выяснено, что все они определяют одно и то же понятие см. Успенский считал, что понятие алгоритма впервые появилось у Эмиля Бореля в 1912 году, в статье об определённом интеграле. Там он написал о «вычислениях, которые можно реально осуществить», подчеркивая при этом: «Я намеренно оставляю в стороне большую или меньшую практическую деятельность; суть здесь та, что каждая из этих операций осуществима в конечное время при помощи достоверного и недвусмысленного метода» [7]. Основная статья: Машина Тьюринга Схематическая иллюстрация работы машины Тьюринга. Основная идея, лежащая в основе машины Тьюринга, очень проста. Машина Тьюринга — это абстрактная машина автомат , работающая с лентой отдельных ячеек, в которых записаны символы. Машина также имеет головку для записи и чтения символов из ячеек, которая может двигаться вдоль ленты. На каждом шаге машина считывает символ из ячейки, на которую указывает головка, и, на основе считанного символа и внутреннего состояния, делает следующий шаг. При этом машина может изменить своё состояние, записать другой символ в ячейку или передвинуть головку на одну ячейку вправо или влево. Этот тезис является аксиомой, постулатом, и не может быть доказан математическими методами, поскольку алгоритм не является точным математическим понятием. Основная статья: Рекурсивная функция теория вычислимости С каждым алгоритмом можно сопоставить функцию, которую он вычисляет. Однако возникает вопрос, можно ли произвольной функции сопоставить машину Тьюринга, а если нет, то для каких функций существует алгоритм? Исследования этих вопросов привели к созданию в 1930-х годах теории рекурсивных функций [9]. Класс вычислимых функций был записан в образ, напоминающий построение некоторой аксиоматической теории на базе системы аксиом.

Тест по информатике Основы алгоритмизации 8 класс

Пользовался словом алгоритм и Леонард Эйлер , одна из работ которого так и называется — «Использование нового алгоритма для решения проблемы Пелля» De usu novi algorithmi in problemate Pelliano solvendo. Мы видим, что понимание Эйлером алгоритма как синонима способа решения задачи уже очень близко к современному. Однако потребовалось ещё почти два столетия, чтобы все старинные значения слова вышли из употребления. Этот процесс можно проследить на примере проникновения слова «алгоритм» в русский язык. Историки датируют 1691 годом один из списков древнерусского учебника арифметики, известного как «Счётная мудрость». Это сочинение известно во многих вариантах самые ранние из них почти на сто лет старше и восходит к ещё более древним рукописям XVI веке По ним можно проследить, как знание арабских цифр и правил действий с ними постепенно распространялось на Руси. Полное название этого учебника — «Сия книга, глаголемая по-еллински и по-гречески арифметика, а по-немецки алгоризма, а по-русски цифирная счётная мудрость». Таким образом, слово «алгоритм» понималось первыми русскими математиками так же, как и в Западной Европе. Однако его не было ни в знаменитом словаре В. Даля , ни спустя сто лет в «Толковом словаре русского языка» под редакцией Д. Ушакова 1935 г.

Зато слово «алгорифм» можно найти и в популярном дореволюционном Энциклопедическом словаре братьев Гранат , и в первом издании Большой советской энциклопедии БСЭ , изданном в 1926 г. И там, и там оно трактуется одинаково: как правило, по которому выполняется то или иное из четырёх арифметических действий в десятичной системе счисления. Однако к началу XX в. Алгоритмы становились предметом всё более пристального внимания учёных, и постепенно это понятие заняло одно из центральных мест в современной математике. Что же касается людей, от математики далёких, то к началу сороковых годов это слово они могли услышать разве что во время учёбы в школе, в сочетании «алгоритм Евклида». Несмотря на это, алгоритм всё ещё воспринимался как термин сугубо специальный, что подтверждается отсутствием соответствующих статей в менее объёмных изданиях. В частности, его нет даже в десятитомной Малой советской энциклопедии 1957 г. Но зато спустя десять лет, в третьем издании Большой советской энциклопедии 1969 год алгоритм уже характеризуется как одна из основных категорий математики, «не обладающих формальным определением в терминах более простых понятий, и абстрагируемых непосредственно из опыта». Как мы видим, отличие даже от трактовки первым изданием БСЭ разительное! За сорок лет алгоритм превратился в одно из ключевых понятий математики, и признанием этого стало включение слова уже не в энциклопедии, а в словари.

Например, оно присутствует в академическом «Словаре русского языка» 1981 г. Одновременно с развитием понятия алгоритма постепенно происходила и его экспансия из чистой математики в другие сферы. И начало ей положило появление компьютеров, благодаря которому слово «алгоритм» вошло в 1985 году во все школьные учебники информатики и обрело новую жизнь. Вообще можно сказать, что его сегодняшняя известность напрямую связана со степенью распространения компьютеров. Например, в третьем томе «Детской энциклопедии» 1959 г. Соответственно и алгоритмы ни разу не упоминаются на её страницах. Но уже в начале 70-х гг. Это чутко фиксируют энциклопедические издания. В « Энциклопедии кибернетики » 1974 год в статье «Алгоритм» он уже связывается с реализацией на вычислительных машинах, а в «Советской военной энциклопедии» 1976 г. За последние полтора-два десятилетия компьютер стал неотъемлемым атрибутом нашей жизни, компьютерная лексика становится всё более привычной.

Слово «алгоритм» в наши дни известно, вероятно, каждому. Оно уверенно шагнуло даже в разговорную речь, и сегодня мы нередко встречаем в газетах и слышим в выступлениях политиков выражения вроде «алгоритм поведения», «алгоритм успеха» или даже «алгоритм предательства». Академик Н. Моисеев назвал свою книгу «Алгоритмы развития», а известный врач Н. Амосов — «Алгоритм здоровья» и «Алгоритмы разума». А это означает, что слово живёт, обогащаясь всё новыми значениями и смысловыми оттенками. Свойства алгоритмов[ править править код ] Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований: Дискретность — алгоритм должен представлять процесс решения задачи как упорядоченное выполнение некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, то есть преобразование исходных данных в результат осуществляется во времени дискретно. Детерминированность определённость. В каждый момент времени следующий шаг работы однозначно определяется состоянием системы.

Таким образом, алгоритм выдаёт один и тот же результат ответ для одних и тех же исходных данных. В современной трактовке у разных реализаций одного и того же алгоритма должен быть изоморфный граф.

Перейти к п. Заменить Y на Y - X. Считать X искомым результатом. Построчная запись алгоритма позволяет избежать ряда неопределённостей; её восприятие не требует дополнительных знаний. Вместе с тем использование построчной записи требует от человека большого внимания.

Блок-схемы Наилучшей наглядностью обладают графические способы записи алгоритмов; самый распространённый среди них — блок-схема. Блок-схема представляет собой графический документ, дающий представление о порядке работы алгоритма. Здесь предписания изображаются с помощью различных геометрических фигур, а последовательность выполнения шагов указывается с помощью линий, соединяющих эти фигуры. Направления линий связи слева направо и сверху вниз считаются стандартными, соответствующие им линии связи можно изображать без стрелок. Линии связи справа налево и снизу вверх изображаются со стрелками. Рассмотрим некоторые условные обозначения, применяемые в блок-схемах.

Самой простой является запись алгоритма в виде набора высказываний на обычном разговорном языке. Словесное описание имеет минимум ограничений и является наименее формализованным. Однако все разговорные языки обладают неоднозначностью, поэтому могут возникнуть различные толкования текста алгоритма, заданного таким образом. Алгоритм в словесной форме может оказаться очень объёмным и трудным для восприятия. Пример 1. Словесное описание алгоритма нахождения наибольшего общего делителя НОД пары натуральных чисел алгоритм Евклида. Запишите первое из заданных чисел в столбец X, а второе — в столбец У. Если данные числа не равны, замените большее из них на результат вычитания из большего числа меньшего. Повторяйте такие замены до тех пор, пока числа не окажутся равными, после чего число из столбца X считайте искомым результатом. Построчная запись. Кроме слов естественного языка предписания могут содержать математические выражения и формулы.

Самой простой является запись алгоритма в виде набора высказываний на обычном разговорном языке. Алгоритм в словесной форме может оказаться очень объёмным и трудным для восприятия. Пример 1. Если данные числа не равны, замените большее из них на результат вычитания из большего числа меньшего. Построчная запись. Пример 2. Построчная запись алгоритма Евклида.

Как называется свойство алгоритма. Основные свойства алгоритма

Если данные числа не равны, замените большее из них на результат вычитания из большего числа меньшего. Построчная запись. Пример 2. Построчная запись алгоритма Евклида. Обозначить первое из заданных чисел X, второе — У. Заменить X на X - У. Перейти к п.

Блок-схема алгоритма Рис. Однако, эта наглядность быстро теряется при изображении очень большого алгоритма, т. Псевдокод — это язык записи структурированных алгоритмов, состоит из смеси языка высокого уровня и фраз родного языка исполнителя.

Блок-схема алгоритма Рис. Однако, эта наглядность быстро теряется при изображении очень большого алгоритма, т. Псевдокод — это язык записи структурированных алгоритмов, состоит из смеси языка высокого уровня и фраз родного языка исполнителя.

Получившаяся таким образом цепочка является результатом работы алгоритма. Дана цепочка символов СЛОТ. Какая цепочка символов получится, если к данной цепочке применить описанный алгоритм дважды т. Контрольная работа по теме « Основы алгоритмизации» Величины, значения которых меняются в процессе исполнения алгоритма, называются: a Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта.

Как называется свойство алгоритма. Основные свойства алгоритма

Какая клавиша нажимается после набора последнего данного в операторе read: 20. Для ввода значений переменных в Паскале используется оператор Итоговая тестовая работа по информатике 8 класс 2 вариант на выполнение работы отводится 45 минут 1.

Средства, используемые для записи алгоритмов, в значительной степени определяются тем, для какого исполнителя предназначается алгоритм. Если алгоритм предназначен для исполнителя — человека, то его запись может быть не полностью формализована, на первое место здесь выдвигаются понятность и наглядность, поэтому для записи таких алгоритмов может использоваться естественный или графический язык, лишь бы запись отражала все основные особенности алгоритма. Для записи алгоритмов, предназначенных для исполнителей — автоматов, необходима формализация, поэтому в таких случаях применяют специальные формальные языки. Существуют множество различных форм записи алгоритмов. Это связано с тем, что каждый исполнитель алгоритмов "понимает" лишь такой алгоритм, который записан на его "языке" и по его правилам. Условно выделяют 4 формы записи алгоритмов: Словесно-пошаговая текстовая.

Псевдокоды - запись на специальном алгоритмическом языке. Графическая форма записи блок-схема. Текстовая форма записи алгоритма Текстовая словесно-пошаговая форма обычно используется для алгоритмов, ориентированных на исполнителя - человека.

Построчная форма записи алгоритма представляет собой набор команд, выполняемых построчно.

Рекурсивная форма записи алгоритма означает, что алгоритм вызывает сам себя внутри своего тела для решения подзадач.

По типу величины могут быть разными, в зависимости от условий задачи число, логическое выражение, текстовое значение. Если у переменной не одно значение, а много, его выражают в виде таблицы или массива. Таблица таких значений может быть линейной строчной или содержать в себе несколько строк и столбцов многоуровневой. Как и с другими типами переменных, над массивами можно выполнять различные операции сливать, сравнивать, сортировать. Чтобы указать, какое значение присвоено в конкретный момент, указывается имя переменной и рядом в скобках индексы: Источник Исполнители алгоритмов Каждая последовательность команд разрабатывает с учетом характеристик того, кто их будет выполнять. Это может быть конкретный человек, со знаниями и умениями, которые известны. Или же абстрактный объект, способности которого неизвестны.

Это может быть живое существо или машина, робот, компьютер. Поэтому слова, язык написания и даже формулировка заданий в каждом случае будут отличаться. Если инструкцию по переводу чисел из одной системы пишут для того, кому известно понятие системы счисления и основной принцип перевода величин, алгоритм будет написан кратко, только подсказки и важные моменты. Если же школьник будет выполнять перевод чисел впервые, то перечень команд для него будет максимально полным, с описанием каждого действия и подсказками на каждом этапе. То есть для разных типов исполнителей будет разная система команд СКИ.

Остались вопросы?

Запишите значение переменной s, полученное в результате работыследующей программы. Написать программу для решения задачи: даны 2 числа а и b. Увеличить а в 2 раза, если оно больше b, иначе b увеличить на 2. Составить блок-схему. Наибольшей наглядностью обладают следующие формы записи алгоритмов: графические и словесные.

Похожие новости:

Оцените статью
Добавить комментарий