Реактор БРЕСТ-ОД-300 работает на быстрых нейтронах, в качестве теплоносителя выступает свинец. Целью сооружения МБИР является создание высокопоточного исследовательского реактора на быстрых нейтронах с уникальными потребительскими свойствами для реализации следующих задач: проведение реакторных и послереакторных исследований. На Белоярской АЭС после планово-предупредительного ремонта (ППР) включили в сеть энергоблок № 4 с реактором на быстрых нейтронах БН-800.
В России появился «вечный» ядерный реактор
Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. Внедрение замкнутого топливного цикла осуществляется прежде всего для реакторов на быстрых нейтронах, которые по своей физике изначально более «всеядны» с точки зрения топлива и делящихся материалов. Начался монтаж первой в мире реакторной установки на быстрых нейтронах со свинцовым теплоносителем — реактора четвёртого поколения БРЕСТ-ОД-300. В нем реакторы на быстрых и на тепловых нейтронах будут работать совместно, обмениваясь топливом.
"Росатом" надеется ввести реактор "БРЕСТ" в 2028-2029 гг
О строительстве уникального энергоблока с реактором на быстрых нейтронах, о неиссякаемом источнике безопасной атомной энергии и о том, почему небольшой сибирский город Северск становится одной из мировых атомных столиц, — в материале «». Испытания говорят о появлении принципиально новых ядерных реакторов, так называемых реакторов на быстрых нейтронах. Россия первой запустила реактор на быстрых нейтронах с полным циклом использования МОКС-топлива, которое позволяет использовать неисчерпаемые запасы природного урана. «Исследовать проблему вывода из эксплуатации быстрых реакторов можно на больших реакторах БН-600, БН-800. Целью сооружения МБИР является создание высокопоточного исследовательского реактора на быстрых нейтронах с уникальными потребительскими свойствами для реализации следующих задач: проведение реакторных и послереакторных исследований.
Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода
На 2018 год энергоблок работает на номинальном уровне мощности [19]. В разделе не хватает ссылок на источники см. Информация должна быть проверяема , иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок.
Экспериментальная демонстрация ключевых компонентов закрытого топливного цикла. Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введённых для повышения показателей экономичности, надёжности и безопасности. Разработка инновационных технологий для будущих реакторов на быстрых нейтронах с жидкометаллическим теплоносителем: испытания и аттестация перспективного топлива и конструкционных материалов, демонстрация технологии выжигания минорных актинидов и трансмутации долгоживущих продуктов деления, составляющих наиболее опасную часть радиоактивных отходов атомной энергетики.
Генерация электроэнергии В разделе не хватает ссылок на источники см. Пассивные средства воздействия на реактивность, системы аварийного расхолаживания через теплообменники, поддон для сбора расплавленного топлива. Минимальная вероятность аварии с расплавлением активной зоны.
Исключение выделения плутония в топливном цикле при переработке облучённого ядерного топлива [20].
И это первый шаг к замыканию топливного цикла. Когда этот плутоний отработает, часть его сгорит, отдав нам энергию, а другая часть будет переработана, и из нее сделают новое топливо, которое вновь загрузят в реактор, уже в третий раз! Мы привыкли и считаем в порядке вещей, что отходы, образующиеся в процессе производства или потребления, максимально перерабатывают, чтобы в том или ином виде вернуть их в нашу жизнь. Переработка позволяет сократить количество используемых природных ресурсов, а также снизить выбросы парниковых газов — и то и другое хорошо для экологии. В перспективе можно обеспечить им атомную энергетику на тысячелетия вперед, сделав ее безотходной, и тогда реакторы на быстрых нейтронах станут своеобразными вечными двигателями, которые будут снабжать потребителей копеечной электроэнергией. Подобные испытания уже велись, но ранее успеха никто не добился. Если взглянуть на мировой опыт, то впервые реактор на МОКС-топливе построили французы.
Французский реактор "Феникс". Сейчас МОКС-топливо используют во французских реакторах на тепловых нейтронах, но его доля не превышает трети активной зоны.
При вводе МБИР в активную эксплуатацию старый реактор остановят. Целью сооружения МБИР является создание высокопоточного исследовательского реактора на быстрых нейтронах с уникальными потребительскими свойствами для реализации следующих задач: проведение реакторных и послереакторных исследований, производство электроэнергии и тепла, отработка новых технологий производства радиоизотопов и модифицированных материалов. Основным предназначением МБИР является проведение массовых реакторных испытаний инновационных материалов и макетов элементов активных зон для ядерно-энергетических систем четвертого поколения, включая реакторы на быстрых нейтронах с замыканием топливного цикла, а также и тепловые реакторы малой и средней мощности. На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc.
Какое достижение науки в 2021 году вы считаете самым важным?
В январе 2021 года после очередной перегрузки доля МОКС-топлива выросла до трети. В конце июня 2022-го во время планового ремонта в реактор загрузили последнюю треть, а в начале сентября блок включили в сеть. Это важный шаг в выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла. Применение МОКС-топлива позволит в десятки раз увеличить топливную базу атомной энергетики.
Остальное идет в отход, и в итоге образуется плутоний — искусственный топливный элемент, который является делящимся веществом. Раньше его отправляли либо на склад, либо военным. А теперь этот плутоний вернули в реактор, впервые выведя его на номинальную мощность. Такой вид ядерного топлива называется МОКС-топливом. И это первый шаг к замыканию топливного цикла.
Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом
Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода | И реактор на быстрых нейтронах немного уменьшает их количество. |
В России завершается сборка мощнейшего «суперреактора» на быстрых нейтронах | Так, без обновления парка высокопоточных реакторов с достаточным потоком быстрых нейтронов в течение пары десятилетий ядерная наука может начать ощущать серьезную нехватку инструментария. |
Реактор БН-800 проработал год на топливе из отработавшего ядерного топлива | Заметим, что и быстрые нейтроны появились в Поднебесной не без участия России. |
Атомный феникс для вечного двигателя | В перспективе можно обеспечить им атомную энергетику на тысячелетия вперед, сделав ее безотходной, и тогда реакторы на быстрых нейтронах станут своеобразными вечными двигателями, которые будут снабжать потребителей копеечной электроэнергией. |
Уникальный реактор обеспечит энергетическое будущее России | Кроме того, реакторы на быстрых нейтронах, работая на МОКС‑топливе, способны нарабатывать плутоний, которого хватит, чтобы обеспечить себя и при необходимости другие реакторы новым топливом. |
Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода
Фактически реактор на быстрых нейтронах превратится в «перпетуум мобиле». Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл, поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. Кроме того, реакторы на быстрых нейтронах, работая на МОКС‑топливе, способны нарабатывать плутоний, которого хватит, чтобы обеспечить себя и при необходимости другие реакторы новым топливом. Блок № 4 Белоярской АЭС оснащен реактором на быстрых нейтронах БН-800 установленной электрической мощностью более 800 МВт.
В России завершается сборка мощнейшего «суперреактора» на быстрых нейтронах
Ведь что бы ни говорили представители атомного лобби о мнимой дешевизне атомного киловатта, капитальные затраты на реализацию этой программы существенны - к примеру, стоимость строительства одной только Курской АЭС-2 это четыре двухблочных АЭС с водо-водяным энергетическим реактором ВВЭР-1300, см. Что дадут "быстрые нейтроны" в ближайшей перспективе? Привычный нам мир держится на углеводородной энергетике — львиная доля электричества, которую мы потребляем, получена путем сжигания нефти и газа. Однако запасы углеводородов на планете ограничены, их, по разным оценкам, хватит еще на 40—60 лет, а спад в добыче нефти и газа по некоторым оценкам может начаться уже с 2020 года. Так что вопрос о том, как жить дальше, с каждым годом становится все острее, а работы по поиску энергетической альтернативы — все масштабней.
Если не считать возможности использования энергии ветра и Солнца, до последнего времени науке было известно всего две такие возможности: извлечение энергии за счет деления ядер тяжелых элементов, или при слиянии ядер самых легкого — водорода — с образованием ядра атома гелия. К сожалению, обе эти возможности весьма опасны — ведь в первой, по существу, приходится приручать атомный взрыв, во второй — термоядерную реакцию, которая питает звезды и пугает нас водородной бомбой. В мире существует два класса ядерных реакторов: на медленных нейтронах водо-водяные, сокращенно ВВЭР, большой мощности канальные, или РБМК, на тяжелой воде и с шаровой засыпкой и газовым контуром и на быстрых нейтронах. Реакторы на быстрых нейтронах кардинально отличаются от всех остальных: плотность тепловыделения в них в несколько раз больше, поэтому в качестве теплоносителя там приходится использовать жидкий натрий или свинец вместо воды.
При работе такого реактора происходит очень интенсивное выделение нейтронов, которые поглощаются слоем урана-238, расположенного вокруг активной зоны. Этот уран превращается в плутоний-239, который затем тоже может использоваться в реакторе как делящийся элемент. Именно этот факт стал основным аргументом в пользу новой программы "Росатома", которая предполагает использовать блоки с "быстрыми" реакторами в сочетании с реакторами на тепловых нейтронах.
Наконец, именно ядерная энергетика позволит высвободить значительную часть газа, ныне сжигаемого в топках ТЭС, и направить его на экспорт. Понятно, что средства, вырученные от реализации в Европе нефти и газа, необходимо использовать с максимальной отдачей для промышленного развития России и повышения жизненного уровня ее населения. С учетом этих и других причин с 2007 г. Росатом приступил к строительству новых атомных станций, начав таким образом реализацию принятой накануне Федеральной целевой программой «Развитие атомного энергопромышленного комплекса России на 2007-2010 годы и на перспективу до 2015 года». Россия уже почти три года, сразу же после смены руководства Росатома, взяла курс на значительное наращивание мощностей ядерной энергетики. Задача, поставленная руководством страны в июне 2006 г. А в марте 2007 г. Он сообщил о планах развития АЭС в стране: «В условиях ухода от газовой зависимости ядерная энергетика должна стать каркасом, на котором будет держаться вся российская экономика». Ученые и специалисты, планируя развитие новых ядерных генерирующих мощностей, ставку делают на водо-водяные реакторы типа ВВЭР-1000. В различных странах было построено более 50 энергоблоков этого типа, 14 из них - в России. Уже в ближайшем будущем на смену реакторам ВВЭР-1000 придут новые серийные реакторы ВВЭР-1200, что позволит сделать энергетику страны менее зависимой от газа. Именно поэтому уже с 2009 г. Заявленные темпы строительства новых ядерных энергоблоков превосходят самые смелые прогнозы. Руководство Росатома во главе с Сергеем Кириенко начиная с 2007 г. Руководитель отрасли полагает, что до 2030 г. Такие планы можно только приветствовать, ибо севшей на «газовую иглу» России нельзя отставать от Китая, Индии, других стран в области мирного атома. Но для нормальной работы АЭС также необходимо топливо, только ядерное. Поэтому с самого начала своей деятельности в Росатоме С. Кириенко активно работает еще в одном направлении - в обеспечении ядерной энергетики природным ураном. Прошедшие годы свидетельствуют, что и здесь имеются значительные результаты. Во-первых, серьезно увеличены масштабы будущего пополнения ураном страны из-за рубежа. Это и масштабные совместные работы с Казахстаном, с которым имеется договоренность на 135 тыс. Это разведка и добыча урана в Армении, где объем залежей оценивается до 40 тыс. Имеются планы и договоренности о совместных работах по добыче урана в Африке и Канаде. Это, наконец, поставки урана из Австралии, занимающей первое место в мире по объему запасов урана - 990 тыс. Последняя договоренность вызвала недовольство в некоторых кругах США. Объясняется все просто: это свидетельствует о разработке планов по значительному увеличению добычи урана в нашей стране. Не останавливаясь подробно на этом вопросе, отметим некоторые моменты. Во-первых, это произошедшее за последние годы многократное повышение цен на природный уран - с 6,4 долл. Как результат - пересмотрены оценочные запасы урана в России в сторону увеличения, по меньшей мере, до 600800 тыс. А согласно информации руководителя Федерального агентства по недропользованию Анатолия Ледовских, ресурсы урана «по категории Р-1 должны быть увеличены до 2020 г. И, во-вторых, увеличены планы добычи урана в республиках Бурятия и Саха Якутия , Забайкальском крае и в Курганской области. Это значительная по объемам и очень серьезная работа всей отрасли - строителей, геологов, других специалистов. В этой связи возникает вопрос, все ли есть сегодня в России для широкого развития ядерной энергетики, для достижения объемов, намечаемых многими странами мира? Представляется, что пока еще не все! Нет достаточной четкости у авторов проекта расширения числа АЭС в России, что видно из плана создания атомных станций до 2020 г. И тем не менее из них не ясно, где намечается строительство станции «Центр» два блока по 1200 МВт или «Кола» четыре блока по 1200 МВт. Вот, например, руководитель отрасли считает, что «до 2030 г. Россия может претендовать на строительство у себя мощностей до 40 ГВт». В то же время, если строительство будет идти в соответствии с намеченной «дорожной картой», то к 2030 г. Но это, по-видимому, мелочи по сравнению с другими более серьезными недостатками плана. Главное для реализации столь грандиозных планов - необходимое количество квалифицированных строителей и монтажников, притом значительное, а также надежно обеспеченные поставки оборудования. К сожалению, Минатом России в чрезвычайно сложные девяностые годы не досчитался в своем составе трех главных управлений строителей и монтажников. Ряд предприятий, поставлявших в отрасль механическое оборудование, были переориентированы на иные задачи, другие оказались за рубежом, например на Украине.
В этом названии нет никакого неуместного пафоса — нам больше не нужно будет добывать уран для нужд земной энергетики. Только добытых запасов урана России хватит на тысячи лет. Лишний уран мы сможем пустить на топливо для ядерных ракетных двигателей ЯРД , которые уже у нас есть. ЯРДы позволят прорваться в дальний космос, освоить пояс астероидов и другие планеты. У человечества осталось совсем немного времени и свободного урана, его дефицит нарастает с каждым годом. Если его сжечь на Земле в ближайшее столетие, у нас не останется энергии, чтобы вырваться из «колыбели». В этом и заключается глубинный смысл «Прорыва». Пока наши солдаты и офицеры сражаются за независимость нашей Родины, за ее границы и саму человечность, попранную западным миром, наши ядерщики сражаются за будущее не только России, но и всего человечества. Единственная держава, которая способна справиться с этой умопомрачительной задачей — Россия. Важно понимать, что это давно уже не вопрос теоретической науки, он перешел в сугубо практическую — инженерную — плоскость. Наши инженеры знают, как замкнуть топливный цикл. Эта победа особенно важна в эти дни, поскольку наши ядерщики заложили еще один камень в фундамент нашего энергетического могущества.
Еще один важный аспект — оптимизация реакторных установок для выжигания максимального количества минорных актинидов. Сбалансированный ядерный топливный цикл ЯТЦ — это продукт Госкорпорации «Росатом», основанный на инновационных практических решениях в области замыкания ядерного топливного цикла, позволяющих эффективно переработать облученное ядерное топливо и обеспечить рациональное обращение с продуктами переработки, как полезными уран, плутоний , так и направляемыми на захоронение продукты деления. Сбалансированный ЯТЦ ставит своей основной задачей принципиальное снижение объема и активности радиоактивных отходов, направляемых на захоронение. Сбалансированный ЯТЦ позволяет: повысить безопасность обращения с отходами ядерной энергетики и снизить экологические риски; решить проблему будущих поколений и обеспечить устойчивую модель потребления и производства; минимизировать объемы и степени опасности подлежащих захоронению отходов; повторно вовлечь ценное сырье в ЯТЦ — рециклировать ядерные материалы. Инновационные технологии Росатома основаны на передовых достижениях российской атомной науки и в полной мере отвечают актуальной ESG-повестке. Достигнутые результаты — это труд тысяч высококвалифицированных профессионалов, которые работают в интересах экономической стабильности России. Четкое взаимодействие промышленных предприятий с научно-исследовательскими институтами помогает укреплять технологический суверенитет страны, повышать конкурентоспособность отечественной атомной отрасли.