Новости нильс бор открытия

2 Вклад и открытия Нильс Бор. Прежде чем перейти непосредственно к биографии Нильса Бора, хотелось бы описать вкратце его научные открытия и достижения. Нильс Бор действительно был философом, который искал ответы на вечные вопросы бытия, изучая явления окружающего нас физического мира. История Нильса Бора и Института Нильса Бора — это история научной деятельности о том, чтобы сделать неизвестное известным.

Журнал «ПАРТНЕР»

В период войны Нильс Бор из-за еврейского происхождения был вынужден эмигрировать в США. 26 января 1939 года на конференции по теоретической физике в Вашингтоне Нильс Бор сообщил об открытии деления урана. Нильс Бор сообщил об открытии деления урана 85 лет назад. В Копенгагене Нильс Бор, постулировавший квантовые скачки электронов, для обсуждения проблем новой физики собирал молодых физиков, среди которых был тогда еще советский физик-теоретик Георгий Гамов.

Алексей Чуличков

  • Бор, Нильс — Википедия
  • Новость детально
  • Откройте свой Мир!
  • #Нильс Бор
  • Нильс Бор: деятельность физика – лауреата нобелевской премии
  • Нильс Бор — биография

История Бора

Во время плавания на яхте в проливе Каттегат штормовой волной был смыт за борт его старший сын — 19-летний Христиан; обнаружить его так и не удалось [51]. Всего у Нильса и Маргарет было шестеро детей. Один из них, Оге Бор, также стал выдающимся физиком, лауреатом Нобелевской премии 1975. В 1930-е годы Бор увлёкся ядерной тематикой , переориентировав на неё свой институт: благодаря своей известности и влиянию он сумел добиться выделения финансирования на строительство у себя в Институте новых установок — циклотрона , ускорителя по модели Кокрофта — Уолтона, ускорителя ван-де-Граафа [52]. Сам он внёс в это время существенный вклад в теорию строения ядра и ядерных реакций. В 1936 Бор, исходя из существования недавно наблюдавшихся нейтронных резонансов, сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций : он предположил существование так называемого составного ядра «компаунд-ядра» , то есть возбуждённого состояния ядра с временем жизни порядка времени движения нейтрона через него. Тогда механизм реакций, не ограничивающийся лишь нейтронными реакциями, включает два этапа: 1 образование составного ядра, 2 его распад.

При этом две эти стадии протекают независимо друг от друга, что обусловлено равновесным перераспределением энергии между степенями свободы компаунд-ядра. Это позволило применить статистический подход к описанию поведения ядер, что позволило вычислить сечения ряда реакций, а также интерпретировать распад составного ядра в терминах испарения частиц [53]. Однако такая простая картина имеет место лишь при больших расстояниях между резонансами уровнями ядра , то есть при малых энергиях возбуждения. Как было показано в 1939 в совместной работе Бора с Рудольфом Пайерлсом и Георгом Плачеком, при перекрытии резонансов компаунд-ядра равновесие в системе не успевает установится и две стадии реакции перестают быть независимыми, то есть характер распада промежуточного ядра определяется процессом его формирования. Развитие теории в этом направлении привело к созданию в 1953 Виктором Вайскопфом, Германом Фешбахом и К. Портером так называемой «оптической модели ядра», описывающей ядерные реакции в широком диапазоне энергий [54].

Одновременно с представлением о составном ядре Бор совместно с Ф. Калькаром предложил рассматривать коллективные движения частиц в ядрах, противопоставив их картине независимых нуклонов. Такие колебательные моды жидкокапельного типа находят отражение в спектроскопических данных в частности, в мультипольной структуре ядерного излучения. Идеи о поляризуемости и деформациях ядер были положены в основу обобщённой коллективной модели ядра, развитой в начале 1950 -х годов Оге Бором, Беном Моттельсоном и Джеймсом Рейнуотером [55]. Велик вклад Бора в объяснение механизма деления ядер, при котором происходит освобождение огромных количеств энергии. Деление было экспериментально обнаружено в конце 1938 Отто Ганом и Фрицем Штрассманом и верно истолковано Лизе Мейтнер и Отто Фришем во время рождественских каникул.

Бор узнал об их идеях от Фриша, работавшего тогда в Копенгагене , перед самым отъездом в США в январе 1939 [56]. В Принстоне совместно с Джоном Уилером он развил количественную теорию деления ядер, основываясь на модели составного ядра и представлениях о критической деформации ядра, ведущей к его неустойчивости и распаду. Для некоторых ядер эта критическая величина может быть равна нулю, что выражается в распаде ядра при сколь угодно малых деформациях [57]. Теория позволила получить зависимость сечения деления от энергии, совпадающую с экспериментальной. Кроме того, Бору удалось показать, что деление ядер урана-235 вызывается «медленными» низкоэнергетичными нейтронами, а урана-238 — быстрыми [58]. Противостояние нацизму.

Борьба против атомной угрозы 1940—1950 [ ] После прихода к власти в Германии нацистов Бор принял активное участие в устройстве судьбы многих учёных-эмигрантов, которые переехали в Копенгаген. В 1933 усилиями Нильса Бора, его брата Харальда, директора Института вакцин Торвальда Мадсена и адвоката Альберта Йоргенсена был учреждён специальный Комитет помощи учёным-беженцам [59]. После оккупации Дании в апреле 1940 года возникла реальная опасность ареста Бора в связи с его полуеврейским происхождением. Тем не менее, он решил оставаться в Копенгагене, пока это будет возможно, чтобы гарантировать защиту института и своих сотрудников от посягательств оккупационных властей. В октябре 1941 Бора посетил Гейзенберг , в то время руководитель нацистского атомного проекта. Между ними состоялся разговор о возможности реализации ядерного оружия, о котором немецкий учёный писал следующим образом: Копенгаген я посетил осенью 1941 г.

К этому времени мы в «Урановом обществе» в результате экспериментов с ураном и тяжёлой водой пришли к выводу, что возможно построить реактор с использованием урана и тяжёлой воды для получения энергии. Такой разговор состоялся во время вечерней прогулки в районе Ни-Карлсберга. Зная, что Бор находится под надзором германских политических властей и что его отзывы обо мне будут, вероятно, переданы в Германию, я пытался провести этот разговор так, чтобы не подвергать свою жизнь опасности. Беседа, насколько я помню, началась с моего вопроса, должны ли физики в военное время заниматься урановой проблемой, поскольку прогресс в этой области сможет привести к серьёзным последствиям в технике ведения войны. Бор сразу же понял значение этого вопроса, поскольку мне удалось уловить его реакцию лёгкого испуга. Он ответил контрвопросом: «Вы действительно думаете, что деление урана можно использовать для создания оружия?

Бор был потрясён моим ответом, предполагая, очевидно, что я намереваюсь сообщить ему о том, что Германия сделала огромный прогресс в производстве атомного оружия. Хотя я и пытался после исправить это ошибочное впечатление, мне все же не удалось завоевать доверие Бора… [60] Таким образом, Гейзенберг намекает, что Бор не понял, что он имел в виду. Однако сам Бор был не согласен с такой трактовкой своей беседы с Гейзенбергом. В 1961 в разговоре с Аркадием Мигдалом он заявил: Я понял его отлично. Он предлагал мне сотрудничать с нацистами… [61] К осени 1943 оставаться в Дании стало невозможно, поэтому Бор вместе с сыном Оге был переправлен силами Сопротивления сначала на лодке в Швецию , а оттуда на бомбардировщике в Англию , при этом они едва не погибли [62]. Тётя Бора старшая сестра его матери — известный датский педагог Ханна Адлер 1859 — 1947 — была депортирована в концлагерь несмотря на 84-летний возраст и правительственную защиту.

Вместе с тем, уже начиная с 1944 , Бор осознавал всю опасность атомной угрозы. В своём меморандуме на имя президента Рузвельта 3 июля 1944 он призвал к полному запрещению использования ядерного оружия , к обеспечению строгого международного контроля за этим и, в то же время, к уничтожению всякой монополии на мирное применение атомной энергии [62]. Впоследствии он направил в адрес руководителей США ещё два меморандума — от 24 марта 1945 и от 17 мая 1948 [64]. Бор пытался донести свои мысли до Черчилля и Рузвельта и при личных встречах с ними, однако безрезультатно.

Чёрные дыры промежуточной массы — самый редкий тип экстремальных объектов, который очень сложно обнаружить. Эти черные дыры намного тяжелее обычных, но не такие массивные, как в центрах галактик, хотя всё равно смертоносные из-за того, что поглощают всё вокруг. И одна такая чёрная дыра промежуточной массы была обнаружена в момент ужасающего разрыва звезды в далёкой галактике.

Учёные из института Нильса Бора Дания смоделировали обнаруженное ими разрушение звезды, и эта модель показала, что масса чёрной дыры составляет от 50 000 до 800 000 масс Солнца, что является колоссальным масштабом по сравнению с обычными чёрными дырами.

Фото Physorg Родившаяся в начале ХХ века квантовая физика подмечала детали, которые не попадали в поле зрения физиков-«классиков». В то же время успехи последних подготовили открытие той же радиоактивности, осмыслением которой были заняты умы ученых разных стран. В Копенгагене Нильс Бор, постулировавший квантовые скачки электронов, для обсуждения проблем новой физики собирал молодых физиков, среди которых был тогда еще советский физик-теоретик Георгий Гамов. Он предложил элегантное объяснение «выхода» из атомного ядра альфа-частицы представляющей собой ядро гелия. Гамов считал, что частица выходит по «тоннелю», образующемуся под энергетическим барьером. И это предположение оказалось совершенно верным. А при бета-распаде происходит еще более интересный процесс, приводящий к рождению другого элемента. В 1945 году Нобелевскую премию получил швейцарец Вольфганг Паули, один из отцов-основателей современной физики. Он обратил внимание на высвобождение при бета-распаде не только электрона, но и чрезвычайно легкой частицы, почти не имеющей массы.

Уход электрона сопровождается превращением нейтрона в протон и сдвигом атома на одну клетку таблицы Менделеева вправо. Много позже американец Мари Гелл-Ман объяснит суть происходящего: распад сопровождается изменением тройки кварков, в результате появляется свободный электрон и та самая частица. За «открытие» кварков на кончике пера Гелл-Ману присудят Нобелевскую премию, но это случится уже после Паули. История гласит, что Паули как-то пожаловался выдающемуся физику, итальянцу Энрико Ферми, что никак не может подыскать имя нейтральной частице, возникающей при бета-распаде.

Даже если их после этого взаимодействия разнести на любое расстояние, изменение одной частицы мгновенно, быстрее скорости света, повлечет за собой изменение другой.

Эйнштейн не соглашался с квантовой теорией. По его мнению, весь мир должен был подчиняться классической физике, а значит, ничто не должно превышать скорости света. Посему мгновенное изменение состояния частицы, удаленной на сотни или тысячи километров только из-за случайной запутанности просто невозможно. На это Нильс Бор, сторонник квантовой механики, ответил ему: «Эйнштейн, перестань указывать Богу, что он должен делать со своими игральными костями! Этот спор в 60-х годах был переформулирован на язык эксперимента британским теоретиком Джоном Беллом.

Согласно его теории, проверить наличие или отсутствие скрытых механизмов квантовой запутанности, можно было при помощи специальной формулы она названа неравенством Белла , которая определяет, носят ли предсказания квантовой механики вероятностный характер на фундаментальном уровне, или же могут быть объяснены наличием каких-либо неизвестных скрытых параметров. И вот тут мы подходим к нашим нобелевским лауреатам, в частности Джону Клаузеру и Алану Аспе, которые уже в 80-е годы развили теорию Джона Белла и экспериментально доказали, что запутываться частицам никто и ничто не помогает, — случайные взаимодействия носят именно фундаментальный характер. Это мощное доказательство того, что законы квантовой физики, противоречащие законам классической физики, работают, и в том далеком споре двух теоретиков-гигантов оказался прав именно Бор.

Нильс Бор, рокфеллеровские постдоки и рождение квантовой механики

В 1916 году Нильс Бор возвращается в Данию, и уже на следующий год его избирают членом Датского королевского общества. Нильс Хенрик Давид Бор родился в датской столице поздней осенью 1885-го. В Копенгагенском университете, куда Нильс Бор поступил в 1903 году, его считали «тяжёлым студентом».

Нильс Бор Биография и материалы

История Бора // — Глобальный еврейский онлайн центр Прежде чем перейти непосредственно к биографии Нильса Бора, хотелось бы описать вкратце его научные открытия и достижения.
Нильс Бор: молчание о главном Нильс Бор начал с открытий, сделанных Резерфордом, и продолжал развивать их, пока не смог наложить на них свой отпечаток.
Открытия, сделанные во сне Телеграф новостей. Новости.
Открытия, сделанные во сне Телеграф новостей. Новости.
Нильс Бор | Наука | Fandom Нильс Хенрик Давид Бор родился в датской столице поздней осенью 1885-го.

Нацисты и атом

  • Нильс Хенрик Давид Бор
  • Нильс Бор, рокфеллеровские постдоки и рождение квантовой механики
  • Нобелевку дали за ответ на вопрос, «играет ли Бог в кости» - МК
  • Бор, Нильс — Википедия
  • 100 лет атому Бора, отмеченные на родине знаменитой теории -

Нильс Бор - биография

Нобелевку дали за ответ на вопрос, «играет ли Бог в кости» Нильс Бор писал, что этому открытию он обязан сну.
103 года назад Нильс Бор предложил планетарную модель строения атома В 1943 году Нильс Бор с семьей эвакуировался сперва в Великобританию, а затем в США, где работал над созданием ядерной бомбы.
Помощь Нильса Бора Нильс Бор применил квантовую теорию Макса Планка к модели Резерфорда и создал свою знаменитую модель атома.

НИЛЬС БОР: БИОГРАФИЯ И ВКЛАД - НАУКА - 2024

В своей работе Бор убедительно доказал важную теорему классической статистической механики, согласно которой магнитный момент любой совокупности элементарных электрических зарядов, движущихся по законам классической механики в постоянном магнитном поле, в стационарном состоянии равняется нулю. В 1913 году увидела свет статья «Теория торможения заряженных частиц при их прохождении через вещество», которую Бор написал после непродолжительной, но весьма плодотворной совместной работы с Эрнестом Резерфордом в Англии. В Копенгагене Бор преподавал в университете, в то же время очень активно работая над квантовой теорией строения атома. Скорым итогом масштабной работы Бора стали три части статьи «О строении атомов и молекул», опубликованные в том же 1913 году и содержащие квантовую теорию водородоподобного атома.

Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода, а также объяснить наблюдавшиеся ранее водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию. Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга. Эрнест Резерфорд писал: Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех.

Нильс Бор в личном кабинете В 1914 году Бор был приглашён в качестве лектора по математической физике в Манчестерский университет. Летом 1916 года Бор вернулся в Данию и возглавил кафедру теоретической физики в Копенгагенском университете.

Во время оккупации Дании, осознав, что его арест неизбежен, он вынужден был бежать из Копенгагена сначала на рыбацкой лодке в Швецию, оттуда в бомбоотсеке военного самолета - в Шотландию, а операция по его спасению стала одной из самых крупных и опасных операций во времена Холокоста. Его отец был профессором физиологии Копенгагенского университета, мать происходила из еврейской семьи банкиров. Нильс Бор рос в среде ученых, с детства проявляя интерес к различным открытиям и изобретениям. В семье никто не сомневался, что в будущем он будет заниматься наукой. После окончания школы юноша поступил в Копенгагенский университет, где начал изучать физику, спустя семь лет защитил докторскую диссертацию, был приглашен на работу в Кембридж, а затем в Манчестер, где начал сотрудничать с Эрнестом Резерфордом, основателем ядерной физики. Именно здесь проводились исследования, которые впоследствии привели Бора к мировой славе, а Розерфорд, с которым они очень подружились, стал для него «вторым отцом».

Спустя год Нильс Бор женился на Маргрете Норлунд, и этот брак оказался счастливым. На протяжении всей последующей жизни супруга была его самым близким другом и советчиком. У них родилось шестеро сыновей, один из которых Оге Бор пошел по стопам отца и стал известным физиком. Весной 1916 года Бор вернулся в Данию, где ему предложили престижную должность профессора в Копенгагенском университете, который теперь носит его имя. Нильс Бор с супругой В 1922 году за выдающиеся успехи в области исследования атома Нильсу Бору была присуждена Нобелевская премия, он стал уважаемым ученым и почетным гражданином Дании, и в последующие годы занимался ядерной физикой, внеся значительный вклад в изучение ядерных реакций. Несколько его немецких коллег-физиков еврейского происхождения потеряли работу, оставшись без каких-либо средств к существованию в своей стране. Бор использовал свои связи, чтобы вывезти их из Германии. По его инициативе был создан комитет по оказанию помощи ученым, вынужденным бежать от нацистского режима.

Когда весной 1940 года Дания была оккупирована немецкими войсками, ситуация еще больше обострилась, даже несмотря на то, что она оказалась в более выгодном положении, чем другие страны из-за лояльности Гитлера к датчанам, которых он считал представителями арийской расы. И даже преследование евреев в Дании не было таким жестоким, как в других оккупированных странах, во всяком случае, никого из евреев не заставляли носить «желтую звезду» и первое время не отправляли в лагеря. Но все чувствовали, что назревает что-то страшное.

В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 года он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем [27]. В 1914 году Бор сумел частично объяснить расщепление спектральных линий в эффектах Штарка и Зеемана , однако ему не удалось получить расщепление более чем на два компонента. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 года Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [28]. Дальнейшее развитие модели. Принцип соответствия 1916—1923 [ править править код ] Летом 1916 года Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете. В апреле 1917 года он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою модель, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 году , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [30]. Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна , определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [31]. Впоследствии Бор дал чёткую формулировку принципу соответствия: …"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Именно из него исходил в 1925 году Вернер Гейзенберг при построении своей матричной механики [33]. В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки [33]. В 1921 — 1923 годах в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева , представив схему заполнения электронных орбит оболочек , согласно современной терминологии [34]. Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 году нового элемента гафния Дирком Костером и Георгом Хевеши , работавшими в то время в Копенгагене [35]. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию , а не к редкоземельным элементам , как думали ранее [36]. Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия простейшей двухэлектронной системе , которой они занимались с 1916 года. Бор отчётливо понимал ограниченность существующих подходов так называемой «старой квантовой теории» и необходимость построения теории, основанной на совершенно новых принципах: …весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему [26]. Нобелевская премия[ править править код ] В 1922 году по по вкладу в изучение ядерных реакций Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома» [37]. В своей лекции «О строении атомов» [38] , прочитанной в Стокгольме 11 декабря 1922 года , Бор подвёл итоги десятилетней работы. Альберт Эйнштейн и Нильс Бор. Брюссель 1930 Новой теорией стала квантовая механика , которая была создана в 1925 — 1927 годах в работах Вернера Гейзенберга , Эрвина Шрёдингера , Макса Борна , Поля Дирака [39]. Вместе с тем, основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики было необходимо связать её с опытом, выявить смысл используемых в ней понятий ибо использование классической терминологии уже не было правомерным , то есть дать интерпретацию её формализма. Именно над этими вопросами физической интерпретации квантовой механики размышлял в это время Бор. Итогом стала концепция дополнительности , которая была представлена на конгрессе памяти Алессандро Вольты в Комо в сентябре 1927 года [40]. Исходным пунктом в эволюции взглядов Бора стало принятие им в 1925 году дуализма волна — частица. До этого Бор отказывался признавать реальность эйнштейновских квантов света фотонов , которые было трудно согласовать с принципом соответствия [41] , что вылилось в совместную с Крамерсом и Джоном Слейтером статью, в которой было сделано неожиданное предположение о несохранении энергии и импульса в индивидуальных микроскопических процессах законы сохранения принимали статистический характер. Однако эти взгляды вскоре были опровергнуты опытами Вальтера Боте и Ханса Гейгера [42]. Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории. Идея дополнительности, развитая в начале 1927 года во время отпуска в Норвегии [43] , отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел. Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо [44]. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Данные измерений объектов микромира, полученные при помощи различных экспериментальных установок, в условиях, когда взаимодействие между измерительным прибором и объектом составляет неотъемлемую часть процесса измерений, находятся в своеобразном дополнительном отношении друг к другу. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы её координата , импульс , энергия и др.

В 1903 году окончил Гаммельхольмскую грамматическую школу. В детстве Бор увлекался спортом - футболом, катанием на лыжах и парусным спортом. После школы поступил в Копенгагенский университет, в котором проявил себя как физик. В двадцать три года за свою дипломную работу об определении поверхностного натяжения воды по вибрации водяной струи получил золотую медаль датской королевской академии наук. Спустя 3 года переезжает жить и работать в Кембридж Англия.

Исторические хроники. Великие умы мира. Нильс Бор

1 марта 1869 года русский ученый-энциклопедист Дмитрий Иванович Менделеев открыл периодический закон и составил систему химических элементов. Нильс Бор, открытия которого, безусловно, изменили физику, пользовался огромным научным и нравственным авторитетом. Нильс Бор в ответ на коронную фразу Эйнштейна про кости отвечал: «Не наше дело предписывать Богу, как ему следует управлять миром». Главная» Новости» Наследный принц Дании Фредерик отмечает столетие Института Нильса Бора, вручая награды. 2 Вклад и открытия Нильс Бор.

Известные высказывания Нильса Бора

  • Известные высказывания Нильса Бора
  • Что еще почитать
  • Нильс Бор, рокфеллеровские постдоки и рождение квантовой механики
  • Нобелевку дали за ответ на вопрос, «играет ли Бог в кости»
  • Бор, Нильс — Википедия
  • Ларри Пейдж и Google

Похожие новости:

Оцените статью
Добавить комментарий