Новости коэффициент джини показывает

В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам.

Какие страны и почему отличаются высоким показателем джини география реферат

Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают. "РГ"), подготовленный Росстатом, также демонстрирует снижение неравенства. На примере коэффициента Джини показано, насколько сильно различается оценка неравенства в зависимости от используемых данных и способов расчета.

Некоторые равнее: что такое коэффициент Джини и зачем он нужен

Индекс Джини и неравенство доходов В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат.
Gini Coefficient Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход.
Доверять Джини или нет: вот в чем вопрос / Хабр Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.).

Что бы сделал Робин Гуд?

Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов – кривой Лоуренса. Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы. Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении .pdf). Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам.

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини

Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно. Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.

Gini Coefficient

Чем дальше кривая Лоренца отклоняется от идеально ровной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равноправным является общество. В приведенном выше примере Гаити более неравноправно, чем Боливия. В 1820 г. Источник: Всемирный банк. COVID-19, вероятно, окажет дальнейшее негативное влияние на равенство доходов. По данным Всемирного банка ,. Экономисты считают, что COVID-19 вызвал ежегодное увеличение коэффициента Джини на 1,2—1,9 процентных пункта в 2020 и 2021 годах. Джини внутри стран Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные: Некоторые из беднейших стран мира имеют одни из самых высоких в мире коэффициентов Джини, в то время как многие из самых низких коэффициентов Джини встречаются в более богатых европейских странах. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и со временем эта взаимосвязь менялась.

Майкл Моатсос из Утрехтского университета и Джори Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство немного росло, а затем уменьшалось по мере роста ВВП на душу населения. С 1950 по 1970 год неравенство имело тенденцию снижаться по мере того, как ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снижалось с ростом ВВП на душу населения, а затем резко возрастало. Ограничения индекса Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от надежных данных о ВВП и доходах.

Пример кривой Лоренца приведен на изображении ниже. В идеальной ситуации, то есть ситуации, когда нет неравенства в распределении доходов, эта линия будет биссектрисой, то есть пройдет под углом 45 градусов от начала координат. Индекс Джини представляет собой отношение площади фигуры между упомянутой биссектрисой и кривой Лоренца к площади треугольника, образованного биссектрисой и одной из осей. Достоинства и недостатки индекса Индекс Джини позволяет обобщенно оценить, насколько доходы распределены неравномерно. Из обобщенности метода вытекают как его достоинства, так и недостатки. Так, например, индекс: легко рассчитывается при наличии небольшого количества статистической информации; предоставляет обобщенную, не персонифицированную информацию; позволяет сравнивать страны независимо от масштаба; универсален. Индекс Джини получил широкое признание как универсальный метод оценки неравенства распределения доходов в экономике, индекс рассчитывают многие страны и международные организации для оценки неравенства. Ниже приведена карта мира с распределением стран по индексу неравенства. Источник: Всемирный Банк, 2018 год Как можно увидеть, в развитых странах индекс неравенства находится на уровне от низкого до среднего.

Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини.

Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные.

В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи

Доверять Джини или нет: вот в чем вопрос / Хабр Коэффициент Джини определяется как отношение площади фигуры, расположенной под кривой Лоренца, к площади треугольника ODC.
Как рассчитывать коэффициент Джини — Лицей имени Вернадского Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.
В России зафиксирован рост доходного неравенства GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes.

Вы точно человек?

Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.

Коэффициент Джини является важным инструментом для анализа распределения дохода или богатства в стране или регионе, но его не следует путать с абсолютным измерением дохода или богатства. Страна с высоким доходом и страна с низким доходом могут иметь одинаковый коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: например, в Турции и США коэффициент Джини дохода составляет около 0,39—0,40, согласно Организация экономического сотрудничества и развития ОЭСР ,. Графическое представление индекса Джини Индекс Джини часто представляется графически в виде кривой Лоренца ,. Коэффициент Джини равен площади под линией совершенного равенства 0,5 по определению минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Другими словами, это удвоенная площадь между кривой Лоренца и линией идеального равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая эту цифру из 0,5 площадь под линией равенства , мы получаем 0,3, которую затем делим на 0,5. Другой способ представить коэффициент Джини как меру отклонения от идеального равенства.

Чем дальше кривая Лоренца отклоняется от идеально ровной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равноправным является общество. В приведенном выше примере Гаити более неравноправно, чем Боливия. В 1820 г. Источник: Всемирный банк. COVID-19, вероятно, окажет дальнейшее негативное влияние на равенство доходов. По данным Всемирного банка ,.

Получив рекордный профицит бюджета, страна начала демонстрировать рост социального неравенства — разницы в доходах и уровне жизни богатых и бедных. Почему так происходит? Последние новости сегодня. Свежие новости. Проблема социального неравенства — не исключительно российская. Это явление вообще свойственно любой общности людей и существовало во все времена во всех странах. В то же время показатель неравенства является одним из основных для оценки того, куда вообще движется экономика государства, оказывается своего рода лакмусовой бумажкой. При этом отсутствие расслоения общества, конечно, не наблюдается нигде. Показателем стабильности же является неизменность год от года разрыва между бедными и богатыми. Государства могут бесконечно говорить о росте ВВП, бюджетных доходах, рекордах промышленности. Однако если при этом постоянно растет социальное неравенство, значит все идет не так уж хорошо. Примером такой страны стала и Россия, где уровень неравенства в последние годы стабилизировался, но на фоне победных реляций правительства о росте уровня жизни, доходов, профицитном бюджете внезапно вновь стал расти. Почему это происходит и каковы последствия этого явления? Выпуская Джини из бутылки Наиболее распространенным в мире показателем имущественного расслоения общества является коэффициент Джини. Он сравнивает годовые доходы бедных и богатых граждан и показывает уровень отклонения от абсолютной нормы, то есть одинакового роста доходов социальных групп. В индексе «0» означает равенство, а «1» — полное неравенство. Чем больше индекс, тем больше неравенство.

Степень концентрации определяется площадью фигуры А, ограниченной линией равномерного распределения и кривой Лоренца. Чем больше площадь А и чем соответственно меньше площадь В, тем степень концентрации выше. На сравнении площади А с площадью треугольника, расположенного ниже линии равномерного распределения, основан коэффициент Джини, расчётная формула которого имеет вид: G.

Как рассчитывать коэффициент Джини

Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов – кривой Лоуренса. GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes. вы делаете те новости, которые происходят вокруг нас.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Коэффициент Джини (индекс концентрации доходов). Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе. В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов.

Кривая Лоренца

Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов.
Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно.
Как рассчитывать коэффициент Джини Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства.

Похожие новости:

Оцените статью
Добавить комментарий