Разбираемся, что такое искусственный интеллект, каковы принципы его работы и насколько мы близки к появлению полностью сознательных машин. Погружаясь в мир искусственного интеллекта, я нахожусь на пути открытий, постоянно поражаясь быстрому прогрессу и глубокому влиянию, которое ИИ оказывает на нашу жизнь. Двенадцатиярусные стеки памяти поднимают быстродействие в задачах искусственного интеллекта на 34 % в среднем по сравнению с 8-ярусными.
Искусственный интеллект и нейросети: технологическое будущее или красивый маркетинг
Новости по тегу искусственный интеллект, страница 1 из 51 | Технологии искусственного интеллекта (ИИ) стремительно развиваются. |
Как сегодня поживает искусственный интеллект | Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования». |
ТОП 10 искусственных интеллектов в 2023 году | Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу. |
Около 16% екатеринбуржцев не представляют свою жизнь без искусственного интеллекта
Ключевые слова: искусственный интеллект, машинное обучение, глубокое обучение, моделирование, информация. Искусственный интеллект ИИ — это область науки и технологии, посвященная разработке компьютерных систем, способных анализировать данные, извлекать закономерности, обучаться на основе опыта и принимать решения, которые ранее требовали человеческого интеллекта. ИИ стремится создать алгоритмы, агентов и модели, способные выполнять разнообразные когнитивные задачи, такие как распознавание образов, обработка естественного языка, планирование, решение проблем и даже создание искусства, перенося на машины способности, обычно свойственные человеку [1]. Основой ИИ часто служит машинное обучение и глубокое обучение, которые позволяют системам улучшать свою производительность и адаптироваться к новым ситуациям на основе накопленного опыта. Искусственный интеллект имеет широкий спектр применений, включая автономные транспортные средства, медицину, производство, финансы, образование и многое другое, и его развитие продолжает оказывать значительное влияние на общество и экономику. Искусственный интеллект объединяет в себе разнообразные подходы и компоненты, позволяющие системам моделировать и имитировать человеческий интеллект [2]. Является одной из основных парадигм ИИ, в которой системы обучаются на основе данных.
Эти данные могут быть предоставлены в виде примеров, и системы самостоятельно выявляют закономерности и обобщают их для принятия решений на новых данных. Глубокое обучение Deep Learning, DL. Это подраздел машинного обучения, использующий искусственные нейронные сети для анализа данных. Глубокие нейронные сети состоят из множества слоев, позволяющих извлекать все более абстрактные признаки из данных [3]. NLP занимается взаимодействием между компьютерами и человеческим языком.
Скачать Часть 1 pdf Библиографическое описание: Абдуллаев, Э. Ключевые слова: искусственный интеллект, машинное обучение, глубокое обучение, моделирование, информация. Искусственный интеллект ИИ — это область науки и технологии, посвященная разработке компьютерных систем, способных анализировать данные, извлекать закономерности, обучаться на основе опыта и принимать решения, которые ранее требовали человеческого интеллекта.
ИИ стремится создать алгоритмы, агентов и модели, способные выполнять разнообразные когнитивные задачи, такие как распознавание образов, обработка естественного языка, планирование, решение проблем и даже создание искусства, перенося на машины способности, обычно свойственные человеку [1]. Основой ИИ часто служит машинное обучение и глубокое обучение, которые позволяют системам улучшать свою производительность и адаптироваться к новым ситуациям на основе накопленного опыта. Искусственный интеллект имеет широкий спектр применений, включая автономные транспортные средства, медицину, производство, финансы, образование и многое другое, и его развитие продолжает оказывать значительное влияние на общество и экономику. Искусственный интеллект объединяет в себе разнообразные подходы и компоненты, позволяющие системам моделировать и имитировать человеческий интеллект [2]. Является одной из основных парадигм ИИ, в которой системы обучаются на основе данных. Эти данные могут быть предоставлены в виде примеров, и системы самостоятельно выявляют закономерности и обобщают их для принятия решений на новых данных. Глубокое обучение Deep Learning, DL. Это подраздел машинного обучения, использующий искусственные нейронные сети для анализа данных.
Глубокие нейронные сети состоят из множества слоев, позволяющих извлекать все более абстрактные признаки из данных [3].
Читайте последние новости высоких технологий, науки и техники. Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
Последним лишь останется довести ее до ума. Эта нейросеть работает по запросам пользователя, и ее уже прозвали «убийцей Google». И недаром. Список того, что умеет ChatGPT, поражает воображение. Например, этот бот-«интеллектуал» может написать школьное сочинение. Причем, как пишет The Washington Post , оно получается настолько качественным, что его невозможно отличить от авторского текста школьника. Учителя уже бьют тревогу по этому поводу. Вот еще малый список того, что умеет ChatGPT: сочинять стихи и песни; писать рефераты на любую тему; вести увлекательные разговоры; давать персональные советы, в том числе медицинские всякий раз они сопровождаются плашкой о необходимости обратиться к врачу. ChatGPT даже попытался доказать научную теорему.
Однако попытка оказалась провальной: нейросеть написала структурированную белиберду. Хотя и вполне убедительную на непрофессиональный взгляд.
Будущее искусственного интеллекта: перспективы и выгоды
Ученые рассказали о пользе, опасности и перспективах искусственного интеллекта | Системы искусственного интеллекта занимают сферы от голосовых помощников до медицины и освоения космоса. |
Инструмент или замена человеку: чем опасно развитие искусственного интеллекта | Прогресс искусственного интеллекта оказывает существенное воздействие на сферу электронной коммерции. |
ВЦИОМ. Новости: Искусственный интеллект: угроза или светлое будущее? | В этой статье мы объясним, что означает искусственный интеллект, расскажем, зачем нужен ии, и рассмотрим, что относится к искусственному интеллекту. |
Искусственный интеллект, нейронные сети, квантовые компьютеры: AI Новости | мы находим и публикуем самые свежие и интересные новости со всего мира - Aimatics. |
Где внедряют системы искусственного интеллекта | Руководитель лаборатории искусственного интеллекта "Яндекса" Александр Крайнов рассказал, как развивается искусственный интеллект и в каких сферах используется. |
Массовая безработица и безграничные возможности? Как сегодня поживает искусственный интеллект
Технологии искусственного интеллекта (ИИ) стремительно развиваются. Прогресс искусственного интеллекта оказывает существенное воздействие на сферу электронной коммерции. Новые алгоритмы и нейросети позволяют внедрить искусственный интеллект практически в любые сферы.
Будущее сейчас. Как технологии искусственного интеллекта влияют на экономику и бизнес
Ученые рассказали о пользе, опасности и перспективах искусственного интеллекта | Стэнфордский институт искусственного интеллекта, ориентированного на человека (HAI), опубликовал шестой ежегодный доклад о влиянии и прогрессе искусственного интеллекта «Artificial Intelligence Index Report 2023». |
Новости искусственного интеллекта | Стэнфордский институт искусственного интеллекта, ориентированного на человека (HAI), опубликовал шестой ежегодный доклад о влиянии и прогрессе искусственного интеллекта «Artificial Intelligence Index Report 2023». |
Вы находитесь здесь: итоги 2023 года в сфере ИИ
Искусственный интеллект призван стать помощником и источником повышения качества человеческого капитала, но не оппонентом, полностью вымещающим работников с рынка труда. В этой статье мы объясним, что означает искусственный интеллект, расскажем, зачем нужен ии, и рассмотрим, что относится к искусственному интеллекту. Год 2030 выбран не случайно, по мнению «AI100» именно к этому времени человечество переживет главный бум внедрения искусственного интеллекта в повседневную жизнь. Новости и обзорные материалы о технологиях искусственного интеллекта: от умного дома до распознавания речи.
Будущее искусственного интеллекта: перспективы и выгоды
По статистике Facebook, более 10 тысяч компаний занимаются разработкой чат-ботов [8]. К примеру, Juniper Research отмечается высокая популярность применения виртуальных помощников. Использование чат-ботов в финансовом секторе и медицине способно сэкономить до 20 млн долл. США в год, к 2022 г.
К текущему моменту времени на мощностях французской энергетической компании Engie успешно применяются дроны с программами распознавания изображений на основе машинного обучения, которые следят за оборудованием и изучают инфраструктуру в целях предотвращения технологических и иных нарушений. ИИ-системы контроля и мониторинга широко используются и в городской среде. Наиболее простой пример — система распознавания автомобильных номеров с помощью камер видеослежения, применяемая муниципальными организациями.
Кроме того, подобные алгоритмы применяются для систем распознавания лиц [17] Porokhovskiy, 2020. Автоматизация ручного труда также является важной и неоднозначной темой, поскольку использование алгоритмов искусственного интеллекта в промышленности способно вытеснить из этой сферы человеческий труд. Автоматизированные технологии выполняют сложные процессы быстрее и качественнее, чем человек, они способны работать 24 часа в сутки.
Следует подчеркнуть, что основная цель внедрения высокоинтеллектуальных решений сегодня — это не полная замена человека в производственных и бизнес-процессах, но повышение эффективности человеческого труда. Данная система анализирует данные медицинских полисов по операциям и процедурам в целях вычисления размеров страховых выплат. Еще одно направление применения алгоритмов искусственного интеллекта — это предиктивная аналитика.
ИИ-алгоритмические технологии способны обрабатывать огромные массивы данных, выявлять закономерности и осуществлять прогностические функции. Система анализирует характеристики покупателей и товаров и на основании данного анализа автоматически составляет качественные рекомендации [18] Sergeev, 2020. Другой пример применения искусственного интеллекта в бизнесе — это Expedia, крупнейшая в мире онлайн-платформа по планированию путешествий.
В рамках этой платформы осуществляется целый ряд процедур от бронирования отелей до аренды транспорта. Компанией довольно эффективно используется сеть машинного обучения для персонализации процесса планирования поездки каждого клиента. В отличие от традиционных типов прогнозирования, предиктивная аналитика легко адаптируется к изменениям поведения, используя массивы вновь поступающих данных.
В результате применения возможностей анализа неструктурированных данных с помощью ИИ-сервисов в процессе распространения мобильного контента, в частности сообщений в мессенджерах, электронных писем, фото и видео, осуществляется структурирование сгенерированных данных и сведений в целях получения возможностей их дальнейшей обработки. Указанный принцип заложен в основе работы сервиса Siri, который с помощью алгоритмов программы позволяет обрабатывать и структурировать человеческую речь, обеспечивая тем самым ее подготовку к проведению дальнейшего анализа. В системах анализа неструктурированных данных заложен огромный потенциал для производственных и ресурсодобывающих предприятий, которые накапливают массивы смешанной информации в течение долгого периода времени.
Такой анализ способен облегчить работу инженеров, в том числе сэкономить время на сортировку и организацию данных перед тем, как оценить их и выявить важные взаимосвязи. Кроме того, искусственный интеллект — это возможность делегировать роботам утомительные и трудоемкие для человека задачи. Например, роботизированный онлайн-ритейлер Ocado разработал систему компьютерного зрения и сеть роботов в целях замены процесса сканирования баркодов на своих торговых складах.
Это позволяет ускорить поиск и выдачу нужных товаров [21] Alizada, Muradli, 2020. Внедрение искусственного интеллекта в различные бизнес-сферы начинается, как было показано выше, со сбора и обработки необходимых данных, трансформирования и систематизации их в нужный структурированный вид. Следующим шагом является разработка ИИ-алгоритмов, которые будут способны к самообучению.
Здесь необходимы квалифицированные ИТ-специалисты, которые смогут научить систему искусственного интеллекта всем необходимым для компании или бизнеса действиям. Сегодня на рынке создано достаточно большое количество готовых ИИ-решений, которые помогут настроить алгоритмы искусственного интеллекта быстрее и качественнее.
Объем российского рынка ИИ в 2022 году оценивается в 635 млрд руб. Впрочем, если судить по темпам роста экономического эффекта, то вклад может оказаться значительнее. Основной игрок на рынке ИИ — это Сбербанк. Финансовый эффект от использования ИИ за четыре года увеличился в организации в пять раз, до более чем 230 млрд рублей в 2022 году. В 2019 г. В отчете компании отмечается, что в ближайшие годы основные инвестиции будут направлены в проекты, связанные с улучшением работы ИИ в чат-ботах, созданием изображений, мобильных приложений.
По данным McKinsey , наиболее значимые технологические тенденции на рынке ИИ — прикладной искусственный интеллект и внедрение машинного обучения. Аналитическая компания Analytics Vidhya среди актуальных трендов в области ИИ и машинного обучения в 2023 г. NLP используются в создании чат-ботов, анализе огромных текстовых документов, распознавании речи, трансформации текста в речь и пр. Бизнес-практика ИИ Для бизнеса использование ИИ становится необходимостью, конкурентным преимуществом. С его помощью компании улучшают бизнес-процессы, повышают качество продукции и услуг, оптимизируют затраты и увеличивают прибыль. Сейчас решения с использованием ИИ широко применяются в ритейле, IT и финансовой сфере, логистике, производстве. Например, XP Group с 2019 года использует машинное обучение для улучшения прогнозирования спроса, логистики и анализа ассортимента. Ритейл всегда был достаточно сильно оцифрован, сказал директор по анализу данных X5 Group Михаил Неверов.
По его словам, решения принимались на основе собранных и обработанных вручную данных, а сейчас все автоматизируется с помощью ИИ.
Оборотная сторона медали тут тоже возможна: начиная от авторских прав и заканчивая потерей неповторимой индивидуальности, присущей большим художникам, — можно сделать сколько угодно копий их произведений, отредактировать их, попросить нейросеть сгенерировать, например, изображение в стиле художника и т. Если считать нейросеть инструментом, то права и ответственность за результат, который она создала, лежит на человеке, который написал промпт, или запрос. Пользователь в случае генерации контента, который, например, нарушает закон или этические нормы, может обратиться с претензией к разработчикам, которые либо создали нейросеть, либо приобрели ее и дообучили. Как будут обстоять дела с этим в будущем? Как это сейчас делают, например, банки.
Также разработчики должны обеспечить защиту личной информации пользователей. Кроме того, в будущем будет трудно доказать, что в генерации контента участвовали данные, собранные без разрешения. И как выработать меры для решения этой проблемы, пока непонятно. Технологии и ресурсы ИИ — Какие технологии искусственного интеллекта будут востребованы и развиты через 30—50 лет? Сейчас они не очень популярны, но в будущем будут удобные гаджеты и инфраструктура, которая сделает метавселенные доступными большому числу людей и станет широко использоваться в разных сферах. Скажем, в образовательном процессе, изучая историю, дети смогут погрузиться в исторический контекст и увидеть реалистичные модели уже разрушенных объектов, воочию увидеть, предположим, древний Вавилон.
Искусственный интеллект будет внедряться в различные устройства. Это будет не просто программа, а технология автономных поездов, автомобилей, роботов и другой техники, которая сможет физически выполнять какие-то действия. Думаю, что через 30—50 лет уже появятся мощные квантовые компьютеры и они в комбинации с ИИ позволят осуществить прорыв и фундаментальные открытия в разных областях науки. Продолжит развиваться генеративный ИИ. Сейчас в контенте, создаваемом им, могут быть ошибки и противоречия. В будущем, надеюсь, эта проблема решится.
Как с этим будут обстоять дела? Если этого не будет, то и прогресс в ИИ будет медленным. Среди источников дешевой энергии может быть, например, новая энергетика или термоядерный синтез. В будущем, думаю, будет прогресс в энергетической области, который позволит сделать ИИ массовым. Регулирование ИИ — Какие меры нужно принять, чтобы избежать угроз, связанных с искусственным интеллектом? ИИ — поле для ожесточенной конкуренции, у всех свои интересы и цели.
Чтобы избежать угроз, которые несет искусственный интеллект, нужно, чтобы люди, принимающие решения, осознавали всю ответственность и понимали возможные риски.
Как отметил ранее Nikkei Asia, в Японии наблюдается нехватка частных компаний с высокопроизводительными суперкомпьютерами, необходимыми для создания LLM, несмотря на возросший интерес к ИИ. Благодаря инвестициям SoftBank превратится в сильного игрока в сфере генеративного ИИ в то время, когда международные компании пытаются выйти на рынок Японии. На прошлой неделе OpenAI открыла свой первый офис в Токио. Она стала первой из трёх небольших ИИ-моделей, которые софтверный гигант планирует выпустить в свет. В декабре прошлого года Microsoft выпустила модель Phi-2, которая работала так же хорошо, как и более крупные модели, такие как Llama 2. По словам разработчиков, Phi-3 работает лучше предыдущей версии и может давать ответы, близкие к тем, что дают модели в 10 раз больше. По сравнению с более крупными аналогами, небольшие ИИ-модели обычно дешевле в эксплуатации и лучше работают на персональных устройствах, таких как смартфоны и ноутбуки. Наряду с Phi компания также создала модель Orca-Math, которая ориентирована на решение математических задач.
Конкуренты Microsoft занимаются разработкой небольших ИИ-моделей, многие из которых нацелены на решение более простых задач, таких как обобщение документов или помощь в написании программного кода. По словам Бойда, разработчики обучали Phi-3 по «учебному плану». Они вдохновлялись тем, как дети учатся на сказках, читаемых перед сном. Это книги с более простыми словами и структурами предложений, но в то же время зачастую в них поднимаются важные темы. Поскольку существующей литературы для детей при тренировке Phi-3 не хватало, разработчики взяли список из более чем 3000 тем и попросили большие языковые модели написать дополнительные «детские книги» специально для обучения Phi-3. Бойд добавил, что Phi-3 просто развивает дальше то, чему обучились предыдущие итерации ИИ-модели. Если Phi-1 была ориентирована на кодирование, а Phi-2 начала учиться рассуждать, то Phi-3 ещё лучше справляется с кодированием и рассуждениями. Расследование Reuters показывает, что санкционная продукция Nvidia продолжает поставляться в Китай. Источник изображения: Nvidia Агентство использовало для получения подобных выводов общедоступную конкурсную документацию, в которой отображались состоявшиеся закупки серверного оборудования, в составе которого содержались запрещённые к экспорту в Китай компоненты Nvidia.
По словам представителей Reuters, уже после вступления новых ограничений в середине ноября прошлого года не менее 10 китайских учреждений смогли получить серверное оборудование, содержащее «запрещённые» ускорители Nvidia. В выборку попали конкурсные процедуры, которые проводились в период с 20 ноября прошлого года по 28 февраля текущего. Среди 11 поставщиков, выигравших конкурсные процедуры на поставку «запрещённой» вычислительной техники в Китай, все были малоизвестными торговыми компаниями из КНР, как поясняет Reuters. Поставляли ли они оборудование из запасов, сформированных до вступления в силу осенних изменений к правилам экспортного контроля, определить не удалось. Представители Nvidia заявили, что даже если указанные поставки и осуществлялись в обход санкций США, они составляют лишь малую часть оборота мирового рынка, и никак не дискредитируют ни саму компанию, ни её партнёров. Получателями оборудования по рассматриваемым конкурсам выступали государственные ВУЗы КНР и правительственные организации, а также пара исследовательских центров, работающих в аэрокосмической отрасли. Представители Super Micro заверили, что собственные требования компании к соблюдению правил экспортного контроля с запасом превосходят по строгости государственные, а поставленное в Китай оборудование относилось к прошлому поколению, которое под санкции США ранее не попадало. Китайские поставщики, которые участвовали в конкурсе, клиентами Super Micro не являлись. Dell разбирается в ситуации, но на момент подготовки материала к печати заявила, что не располагает доказательствами поставки запрещённого к экспорту в Китай оборудования в адрес упоминаемых агентством Reuters китайских организаций и компаний.
Gigabyte Technology просто заявила, что соблюдает международные правила торговли и законы Тайваня. Источник изображения: unsplash. Аналитики компании считают, что «поставки и внедрение ноутбуков с генеративным ИИ ускорятся в 2025—2026 годах вместе с появлением новых функций и вариантов использования генеративного ИИ, поддерживаемых новыми процессорными платформами производителей чипов». Источник изображения: Counterpoint Research Рейтинг пяти крупнейших брендов не изменился по сравнению с прошлым годом, при этом самыми успешными по росту поставок производителями остались Lenovo и Acer. Некоторые делают это публично, другие в закрытых презентациях, и последний из каналов позволяет нам узнать, что Microsoft к концу текущего года хочет утроить количество эксплуатируемых ускорителей до 1,8 млн штук.
Будущее сейчас. Как технологии искусственного интеллекта влияют на экономику и бизнес
на помощь психологам придут инструменты, связанные с методами искусственного интеллекта, – машинное обучение, искусственные нейронные сети, когнитивные архитектуры, большие языковые модели. Неужели искусственный интеллект оказался таким же бестолковым хайпом, как NFT? К 2024 г. искусственный интеллект сократил время медицинских скрининговых исследований на 60% и в 50 раз ускорил реакцию медицинской сестры на тревожные события. — Учебная дисциплина об искусственном интеллекте существует давно, ещё до основания СФУ. «Возможности и перспективы развития искусственного интеллекта – глобальные, затрагивающие все сферы общественной жизни.
Обзор развития ИИ-технологий: как изменится экономика, образование и общество?
Кроме того, исчезнут или сильно изменятся профессии, где много рутины. Например, секретарей и даже программистов. ИИ не заменит ученых. У них появятся новые инструменты со встроенным искусственным интеллектом, которые ускорят процессы и этапы исследования, например сбор и обработку данных, проверку гипотез и даже их генерацию с помощью нейросетей. А самой профессии ученых ничего не грозит, потому что они создают нечто принципиально новое, чего раньше вообще не существовало.
Такую работу искусственный интеллект заменить не сможет. Небольшим изменениям подвергнутся и руководители высшего звена в компаниях, которые занимаются вопросами стратегического целеполагания. Я надеюсь, что искусственный интеллект не заменит профессию учителя. Я считаю, что людей должны учить и воспитывать люди.
Но хотя, безусловно, ИИ будет большим помощником. Нужно будет уметь перестраиваться и учиться всю жизнь. Как раньше — освоить в университете одну специальность, всю жизнь по ней работать и уйти на пенсию — больше не получится. Исполнительские функции будут заменены искусственным интеллектом, а человек должен понимать и уметь объяснить, как что устроено и функционирует изнутри.
В последние годы в образовании преобладает тенденция обучения прикладным навыкам, поэтому многие даже не могут обосновать, почему что-то нужно делать так, а не иначе. В будущем, я надеюсь, в высших учебных заведениях будут учить думать глубоко. Курс «Профессия Аналитик данных» — обучение аналитике данных с нуля Машинное творчество и проблема авторских прав — Какие области искусства и культуры наиболее сильно трансформируются под влиянием генеративных нейросетей? Как это повлияет на творческие процессы?
Появятся новые традиции и даже новые виды искусства, появился же киберспорт. Оборотная сторона медали тут тоже возможна: начиная от авторских прав и заканчивая потерей неповторимой индивидуальности, присущей большим художникам, — можно сделать сколько угодно копий их произведений, отредактировать их, попросить нейросеть сгенерировать, например, изображение в стиле художника и т. Если считать нейросеть инструментом, то права и ответственность за результат, который она создала, лежит на человеке, который написал промпт, или запрос. Пользователь в случае генерации контента, который, например, нарушает закон или этические нормы, может обратиться с претензией к разработчикам, которые либо создали нейросеть, либо приобрели ее и дообучили.
Как будут обстоять дела с этим в будущем? Как это сейчас делают, например, банки. Также разработчики должны обеспечить защиту личной информации пользователей.
Особенно это актуально в условиях исчерпания потенциала традиционных источников роста. По итогам опроса эксперты пришли к выводу, что экономический потенциал искусственного интеллекта в России к 2028 г. Реализованный эффект от внедрения искусственного интеллекта к 2028 году может достичь 4,2—6,9 трлн руб. Из них 0,8-1,3 трлн руб.
Марина Дорохова, соавтор отчёта и руководитель проектов «Яков и Партнёры» Собственные базовые модели генеративного искусственного интеллекта в мире разрабатывают около десяти стран, в том числе Россия, при этом наша страна занимает 7-е место в мире по уровню поддержки государством сферы разработки искусственного интеллекта. Подобный фокус не случаен — внедрение искусственного интеллекта будет иметь гораздо более широкие последствия для страны, чем непосредственно экономический эффект, в частности развитие искусственного интеллекта положительно повлияет на качество и продолжительность жизни, повысит качество образования, создаст новые рабочие места. Это сократит временные затраты и позволит сотрудникам сосредоточиться на более творческих задачах.
За это время у нас сложился крепкий научный коллектив из психологов и специалистов по IT-технологиям, были созданы инструменты мониторинга и анализа продуктов виртуальной активности человека в социальных сетях, разработаны алгоритмы прогнозирования успешности», — рассказал П. В процессе исследования ученые КФУ будут изучать поведение человека, анализируя разнообразные продукты его виртуальной активности, в первую очередь авторские тексты, которые пользователи размещают на различных онлайн-платформах LiveJournal, «ВКонтакте», «Дзен» и др. По словам заведующего кафедрой информационных систем ИВМиИТ Фаиля Гафарова и заведующего кафедрой высшей математики и математического моделирования ИМиМ Александра Агафонова, на помощь психологам придут инструменты, связанные с методами искусственного интеллекта, — машинное обучение, искусственные нейронные сети, когнитивные архитектуры, большие языковые модели.
С их помощью исполнители проекта хотят попробовать «разобрать» поведение человека, чтобы понять, из чего же оно состоит и что на него может оказывать влияние.
Анкетирование россиян об искусственном интеллекте……….. Она изучает технологии, которые позволяют человеку писать «интеллектуальные» программы и учить компьютеры решать задачи самостоятельно. Главная задача ИИ — понять, как устроен человеческий интеллект, и смоделировать его. В области искусственного интеллекта есть подразделы. К ним относятся робототехника, наука о компьютерном зрении, обработка естественного языка и машинное обучение. Большинству людей искусственный интеллект ИИ может показаться чем-то из области фантастики, но вы можете быть удивлены, узнав, что вы уже пользуетесь устройствами с искусственным разумом! Искусственный интеллект имеет огромное влияние на нашу жизнь, и его влияние растет с каждым днем!
Главные особенности развития систем искусственного интеллекта будут: 1 наличие собственной внутренней модели внешнего мира; эта модель обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпретации запросов к системе; 2 способность к пополнению имеющихся знаний; 3 способность к дедуктивному выводу, то есть к генерации информации, которая в явном виде не содержится в системе; это качество позволяет системе конструировать информационную структуру с новой семантикой и практической направленностью; 4 умение оперировать в ситуациях, связанных с различными аспектами нечёткости, включая «понимание» естественно языка; 5 способность к диалоговому взаимодействию с человеком; 6 способность к адаптации. Актуальность: Создание искусственного интеллекта в настоящее время связана со сложностью проблем, которые приходится решать современному человечеству. К таким проблемам можно отнести освоение космоса, прогнозирование природных катаклизмов и антропогенного воздействия на окружающую среду, создание сложнейших инженерных проектов, использование современной техники в медицине и многие научные исследования. В настоящие время наука подошла к такому уровню своего развития, что появилась возможность создания искусственного интеллекта. Однако многие учёные скептически относятся к этому вопросу, так как существует множество проблем, которые пока не удаётся решить научным путём. Несмотря на это, задача создания искусственного интеллекта не стала менее актуальной. В настоящее время создаются всё более и более усовершенствованные программы, максимально напоминающие по своему действию мыслительные процессы человека. Они значительно упростили наш быт, труд и играют большую роль в современной жизни и науке.
Проблемы: 1. Занятость Автоматизация снижала количество рабочих мест в производстве в течение многих десятилетий. Скачкообразные темпы развития искусственного интеллекта ускорили этот процесс и распространили его на те сферы жизни человека, которые, как принято было считать, еще довольно долго должны были оставаться монополией человеческого интеллекта. Тенденциозность Машинное обучение, популярная ветвь искусственный интеллект, которая стоит за алгоритмами распознавания лица, контекстной рекламой и многим другим, в зависимости от данных, на основе которых строится обучение и отладка алгоритмов. Проблема состоит в том, что, если информация, вносимая в алгоритмы, будет несбалансированной, в результате на выходе может возникать скрытая и открытая тенденциозность, основанная на этой информации. В настоящее время сфера искусственного интеллекта страдает от распространенной беды под общим названием «проблема белого человека», то есть преобладании белых мужчин в результатах его работы. Ответственность Алгоритмы машинного обучения сами определяют, как реагировать на события. И несмотря на то, что действуют они в контексте вводимых данных, даже разработчики этих алгоритмов не могут объяснить, как действует их продукт, принимая решение в конкретном случае.
Конфиденциальность ИИ и МО потребляют огромные объемы данных, и компании, чей бизнес строится вокруг этих технологий, станут наращивать объемы сбора пользовательских данных, с согласия последнего или без оного, чтобы сделать свои услуги более целенаправленными и эффективными. В пылу охоты за большим количеством данных, компании могут выйти за границы конфиденциальности. Подобный случай имел место, когда один розничный магазин узнал и случайно выдал рекламной рассылкой купонов тайну беременности девочки-подростка ее ничего не подозревающему отцу.